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Ch. 1 Overview of Cryptography

§1.11

§1.12

§1.13

One approach to distributing public-keys is the so-called Merkle channel (see Simmons
[1144, p.387]). Merkle proposed that public keys be distributed over so many independent
public channels (newspaper, radio, television, etc.) that it would be improbable for an ad-
versary to compromiseal of them.

In 1979 Kohnfelder [702] suggested the idea of using public-key certificates to facilitate
the distribution of public keys over unsecured channels, such that their authenticity can be
verified. Essentially the sameidea, but by on-line requests, was proposed by Needham and
Schroeder (ses Wilkes[1244)]).

A provably securekey agreement protocol hasbeen proposed whose security isbased onthe
Heisenberg uncertainty principle of quantum physics. The security of so-called quantum
cryptography does not rely upon any compl exity-theoretic assumptions. For further details
on quantum cryptography, consult Chapter 6 of Brassard [192], and Bennett, Brassard, and
Ekert [115].

For anintroduction and detailed treatment of many pseudorandom sequence generators, see
Knuth [692]. Knuth cites an example of a complex scheme to generate random numbers
which on closer analysisis shown to produce numberswhich arefar from random, and con-
cludes: ...random numbers should not be generated with a method chosen at random.

The seminal work of Shannon [1121] on secure communications, published in 1949, re-
mains as one of the best introductionsto both practice and theory, clearly presenting many
of thefundamental ideasincluding redundancy, entropy, and unicity distance. Various mod-
els under which security may be examined are considered by Rueppel [1081], Simmons
[1144], and Preneel [1003], among others; see also Goldwasser [476].
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This chapter is a collection of basic material on probability theory, information the-
ory, complexity theory, number theory, abstract algebra, and finite fields that will be used
throughout this book. Further background and proofs of the facts presented here can be
foundinthereferencesgivenin §2.7. Thefollowing standard notation will be used through-

out:

Noas~wDdDPRE

10.
11.
12.
13.
14.
15.
16.

Z denotesthe set of integers; that is, theset {... ,—2,-1,0,1,2,...}.

Q denotesthe set of rational numbers; that is, the set { ¢ | a,b € Z,b # 0}.

R denotesthe set of real numbers.

7 isthe mathematical constant; 7 ~ 3.14159.

e isthe base of the natural logarithm; e =~ 2.71828.

[a, b] denotesthe integers x satisfyinga < x < b.

|| isthe largest integer less than or equal to =. For example, [5.2] = 5 and
|—5.2] = —6.

[z] isthe smallest integer greater than or equal to z. For example, [5.2] = 6 and
[—5.2] = —5.

If Aisafiniteset, then|A| denotesthe number of elementsin A, calledthecardinality
of A.

a € A meansthat element o isa member of the set A.

A C B meansthat A isasubset of B.

A C B meansthat A isaproper subset of B; thatisA C B and A # B.
Theintersection of sets A and B isthesst AN B = {z |z € Aandx € B}.
Theunion of sets A and B isthesst AUB = {z |z € Aorx € B}.

The difference of sets A and B istheset A — B = {z |z € Aandz ¢ B}.

The Cartesian product of sets A and B istheset A x B = {(a,b) |a € Aandb €
B} For example, {al,a2} X {bl,bQ,b;g} = {(al, bl), (al, bg), (al, b3), (ag,bl),
(CLQ, bg), (CLQ, bg)}
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Ch. 2 Mathematical Background

17. A function or mapping f : A — B isarulewhich assignsto each elementa in A
precisely oneelement b in B. If a € Aismappedtob € B thenbiscaled theimage
of a, a iscaled apreimage of b, and thisiswritten f(a) = b. Theset A iscaled the
domain of f, and the set B is called the codomain of f.

18. A function f : A — Bis1 — 1 (one-to-one) or injectiveif each element in B isthe
image of a most one elementin A. Hence f(a1) = f(az2) impliesa; = as.

19. A function f : A — B isonto or surjectiveif eachb € B istheimage of at least
onea € A.

20. A function f : A — B isabijectionif it is both one-to-one and onto. If fisa
bijection between finite sets A and B, then |A| = | B|. If f isabijection between a
set A and itself, then f is called a permutation on A.

21. lnz isthe natura logarithm of z; that is, the logarithm of z to the basee.

22. g x isthelogarithm of z to the base 2.

23. exp(z) isthe exponential function e®.

24. Y7 | a; denotesthesum ay + as + - - - + ay,.

25. T]7_, a; denotesthe product a; - as - - - - - Q.

26. For apositive integer n, the factorial functionisn! = n(n — 1)(n — 2)---1. By
convention, 0! = 1.

2.1 Probability theory

2.1.1 Basic definitions

2.1

2.2

2.3

2.4

2.5

Definition An experiment is a procedurethat yields one of a given set of outcomes. The
individual possible outcomes are called simple events. The set of all possible outcomesis
called the sample space.

This chapter only considers discrete sample spaces; that is, sample spaces with only
finitely many possible outcomes. Let the simple events of a sample space S be labeled
81,82,-.. ,8n.

Definition A probability distribution P on S isasequence of numbersp;, ps, . . . , p,, that
areall non-negativeand sumto 1. Thenumber p; isinterpreted asthe probability of s; being
the outcome of the experiment.

Definition An event E is a subset of the sample space S. The probability that event £
occurs, denoted P(E), isthe sum of the probabilitiesp; of all smpleeventss; which belong
toE. If s; € S, P({s;}) issimply denoted by P(s;).

Definition If E isan event, the complementary event is the set of simple events not be-
longing to F, denoted E.

Fact Let £ C S beanevent.
(i) 0 < P(E) < 1. Furthermore, P(S) = 1 and P(0) = 0. (0 isthe empty set.)
(i) P(E)=1- P(E).

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.



§2.1 Probability theory 51

(iii) If the outcomesin S are equaly likely, then P(E) = %

2.6 Definition Two events E; and E» are called mutually exclusiveif P(E; N E3) = 0. That
is, the occurrence of one of the two events excludes the possibility that the other occurs.

2.7 Fact Let E; and E, betwo events.
(i) P(Ey U E3) + P(Eqy N Ey) = P(E1) + P(E>). Hence, if E4 and E, are mutually
exclusive, then P(Ey U Es) = P(E4) + P(E?).

2.1.2 Conditional probability

2.8 Definition Let E; and E> be two eventswith P(E5) > 0. The conditional probability of
E, given Es, denoted P(E1|E»), is

P(E, N Es)
P(E»)
P(E,|E») measuresthe probability of event E; occurring, giventhat E» hasoccurred.

P(E4y|E2) =

2.9 Definition Events E; and E» aresaid to beindependentif P(Ey N Ey) = P(E;)P(E2).

Observethatif E; and E, areindependent, then P(E4|Es) = P(Ey) and P(E»|Eq) =
P(E,). Thatis, the occurrence of one event doesnot influencethe likelihood of occurrence
of the other.

2.10 Fact (Bayes theorem) If E; and E; are eventswith P(E3) > 0, then
P(Ey)P(E»|Ey)

P(E1|E2) = P(EQ)

2.1.3 Random variables
Let S be asample space with probability distribution P.

2.11 Definition A randomvariable X isafunction from the sample space S to the set of real
numbers; to each simple event s; € S, X assignsareal number X (s;).

Since S isassumed to befinite, X can only take on afinite number of values.

2.12 Definition Let X bearandomvariableon.S. Theexpectedvalueor meanof X isE(X) =
Dsies X(50)P(si)-

2.13 Fact Let X bearandomyvariableon S. Then E(X) = > _pz- P(X =x).

2.14 Fact If X1, Xo,...,X,, aerandomvariableson S,anday, as, ... , a,, arerea numbers,
then E(er;l aiXi) = 221 alE(Xl)

2.15 Definition Thevariance of arandom variable X of mean 4 isanon-negative number de-
fined by
Var(X) = E((X - p)?).

The standard deviation of X isthe non-negative square root of Var(X).

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.
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2.16

If arandom variable has small variance then large deviations from the mean are un-
likely to be observed. This statement is made more precise below.

Fact (Chebyshev's inequality) Let X be a random variable with mean 4 = E(X) and
variance 02 = Var(X). Thenfor any ¢t > 0,

0.2

PX —ul 2 1)< 5.

2.1.4 Binomial distribution

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

Definition Letn and k be non-negativeintegers. The binomial coefficient (2) isthe num-
ber of different ways of choosing & distinct objects from a set of n distinct objects, where
the order of choiceis not important.

Fact (propertiesof binomial coefficients) Let n and k be non-negative integers.
(i) (Z) = !(ﬁk)!-
@ (%) = ()
(i) i) = () + G-
Fact (binomial theorem) For any real numbersa, b, and non-negativeinteger n, (a+b)" =
ko (§)akom ",

Definition A Bernoulli trial is an experiment with exactly two possible outcomes, called
success and failure.

I

s

Fact Suppose that the probability of success on a particular Bernoulli trial isp. Then the
probability of exactly & successesin a sequence of n such independent trialsis

<Z>pk(1 —p)"*, foreach0 < k < n. 2.2)

Definition The probability distribution (2.1) is called the binomial distribution.

Fact The expected number of successes in a sequence of n independent Bernoulli trials,
with probability p of successin each tria, isnp. The variance of the number of successes

isnp(1 —p).

Fact (law of large numbers) Let X be the random variable denoting the fraction of suc-
cesses in n independent Bernoulli trials, with probability p of successin each trial. Then
forany e > 0,

P(|X —p| >¢€) — 0, asn — 0.

In other words, as n gets larger, the proportion of successes should be close to p, the
probability of successin each trial.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.
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2.1.5 Birthday problems

2.25 Definition
(i) For positiveintegersm, n with m > n, the number m(™ is defined as follows:

m™ =m(m—1)(m —2)---(m —n+1).
(i) Let m,n be non-negativeintegers with m > n. The Sirling number of the second

kind, denoted {"}, is
(o)

k=0
with the exception that {{} = 1.

The symbol {’;j} counts the number of ways of partitioning a set of m objectsinto n
non-empty subsets.

2.26 Fact (classical occupancy problem) An urn hasm ballsnumbered 1 to m. Supposethat n
balls are drawn from the urn one at atime, with replacement, and their numbers are listed.
The probability that exactly ¢ different balls have been drawnis

®
Pi(m,n,t) = {?}m— 1<t<n.
mn

The birthday problemis a special case of the classical occupancy problem.

2.27 Fact (birthday problem) An urn hasm balls numbered 1 to m. Suppose that »n balls are
drawn from the urn one at atime, with replacement, and their numbers are listed.

(i) The probability of at least one coincidence (i.e., aball drawn at least twice) is

m )

Py(m,n)=1—- P (m,n,n)=1— 1<n<m. (2.2

mn’

If n = O(y/m) (see Definition 2.55) and m — oo, then

) — 1o (-2 0 () <1 (-22).

(if)y Asm — oo, the expected number of draws before acoincidenceis /5.

Thefollowing explainswhy probability distribution (2.2) is referred to asthe birthday
surprise or birthday paradox. The probability that at least 2 peoplein aroom of 23 people
have the same birthday is P» (365, 23) ~ 0.507, which is surprisingly large. The quantity
P, (365, n) asoincreases rapidly as n increases; for example, P»(365,30) =~ 0.706.

A different kind of problemis consideredin Facts 2.28, 2.29, and 2.30 below. Suppose
that there are two urns, one containing m white balls numbered 1 to m, and the other con-
taining m red ballsnumbered 1 to m. First, n; ballsare selected from thefirst urn and their
numberslisted. Then ny balls are selected from the second urn and their numbers listed.
Finally, the number of coincidences between the two lists is counted.

2.28 Fact (model A) If the balls from both urns are drawn one at atime, with replacement, then
the probability of at least one coincidenceis

1 myn
L (titt2) J ML ) T2
P3(m,nq,n2) =1 mm+nz Zm {tl}{t2}7

t1,t2
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54 Ch. 2 Mathematical Background

wherethe summationisoveral 0 <t < nj,0 <ty < na. If n =n1 =ng,n = O(y/m)
and m — oo, then

) — 1o (2 10 ()] ) =1 (-22).

2.29 Fact (model B) If the balls from both urns are drawn without replacement, then the prob-
ability of at least one coincidenceis

(n1+mn2)
Py(m,n1,n3) =1 =

B m(”l)m(”2).
If ny = O(y/m), ng = O(y/m), and m — oo, then

-1 1
Py(m,ni,n2) — 1 —exp (—n1n2 {l—l—nl—i—n2 +O<—)]>.
m 2m m

2.30 Fact (model C) If then, whiteballsare drawn one at atime, with replacement, and the n
red balls are drawn without replacement, then the probability of at least one coincidenceis

n
P5(m,n1,n2) =1- <1 — @) ' .
m

If ny = O(y/m), ng = O(y/m), and m — oo, then
ninsg 1 ninz
P5(m,n1,n2)—>1—exp<— - [1+O<ﬁ>})~1—exp(— - )

2.1.6 Random mappings

2.31 Definition Let F,, denotethe collection of al functions (mappings) from afinite domain
of sizen to afinite codomain of sizen.

Models where random elements of F,, are considered are called random mappings
models. Inthissection the only random mappingsmodel considerediswhereevery function
from F,, isequally likely to be chosen; such models arise frequently in cryptography and
algorithmic number theory. Note that | F,,| = n™, whence the probability that a particular
function from F,, ischosenis 1/n™.

2.32 Definition Let f beafunctionin F, with domain and codomainequal to {1,2,...,n}.
The functional graph of f is adirected graph whose points (or vertices) are the elements
{1,2,...,n} and whose edges are the ordered pairs (z, f(x)) foral z € {1,2,... ,n}.

2.33 Example (functional graph) Consider thefunction f : {1,2,...,13} — {1,2,...,13}
defined by (1) = 4, £(2) = 11, f(3) = 1, f(4) = 6, f(5) = 3, f(6) = 9, £(7) = 3,
f(8) =11, f(9) = 1, f(10) = 2, f(11) = 10, f(12) = 4, f(13) = 7. Thefunctional
graph of f isshownin Figure2.1. O

As Figure 2.1 illustrates, a functiona graph may have several components (maximal
connected subgraphs), each component consisting of a directed cycle and some directed
trees attached to the cycle.

2.34 Fact Asn tendsto infinity, the following statements regarding the functional digraph of a
random function f from F,, aretrue:

(i) The expected number of componentsis 1 Inn.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.
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10

11

Figure 2.1: Afunctional graph (see Example 2.33).

(i) The expected number of points which are on the cyclesis y/mn /2.

(iii) The expected number of terminal points (points which have no preimages) isn/e.

(iv) The expected number of k-th iterate image points (x is a k-th iterate image point if
x=f(f(--- f(y)---)) for somey) is (1 — 7 )n, where the 7, satisfy the recurrence

k times
70 =0, Thg1 = e~ 17 for k > 0.

2.35 Definition Let f bearandom function from {1,2,... ,n}to {1,2,... ,n} andletu €
{1,2,...,n}. Consider the sequence of points ug, u1,us, ... defined by ug = u, u; =
flu;—1) fori > 1. Intermsof thefunctional graph of f, this sequence describesa path that
connectsto acycle.

(i) The number of edgesin the path is called the tail length of w«, denoted A(u).
(i) The number of edgesin the cycleis called the cycle length of w, denoted p(u).
(iii) Therho-length of u isthe quantity p(u) = A(u) + p(u).
(iv) Thetreesize of u isthe number of edgesin the maximal treerooted on acyclein the
component that contains u.
(v) The component size of u isthe number of edges in the component that contains w.
(vi) The predecessorssize of v isthe number of iterated preimages of w.

2.36 Example Thefunctional graphin Figure 2.1 has2 componentsand 4 terminal points. The
point w = 3 has parameters A(u) = 1, u(u) = 4, p(u) = 5. The tree, component, and
predecessorssizes of u = 3 are4, 9, and 3, respectively. O

2.37 Fact Asn tendsto infinity, the following are the expectations of some parameters associ-
ated with arandom pointin {1, 2, ... ,n} and arandom function from F,,: (i) tail length:
v/mn /8 (ii) cyclelength: /7n/8 (iii) rho-length: \/7n/2 (iv) tree size: n/3 (v) compo-

nent size: 2n/3 (vi) predecessorssize: 4/mn/8.

2.38 Fact Asn tendstoinfinity, the expectationsof the maximumtail, cycle, and rho lengthsin
arandomfunctionfrom F,, arecy \/n, cav/n, and cz+/n, respectively, wherec; ~ 0.78248,
co & 1.73746, and c3 ~ 2.4149.

Facts 2.37 and 2.38 indicate that in the functional graph of a random function, most
points are grouped together in one giant component, and there is a small number of large
trees. Also, almost unavoidably, acycle of length about +/n arises after following a path of
length \/n edges.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.
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2.2 Information theory

2.2.1 Entropy

2.39

2.40

241

2.42

2.43

2.44

Let X bearandom variablewhich takeson afinite set of vaueszy, z», . .. , z,, with prob-
ability P(X = z;) = p;, where0 < p; < 1foreachi, 1 <i < n,andwhered>""  p;, = 1.
Also, let Y and Z be random variables which take on finite sets of values.

Theentropy of X isamathematical measure of the amount of information provided by
an observation of X. Equivalently, it isthe uncertainity about the outcome before an obser-
vation of X. Entropy is also useful for approximating the average number of bits required
to encode the elements of X.

Definition Theentropy or uncertainty of X isdefinedtobe H(X) = —>""  p;lgp; =
S pilg ( ) where, by convention, p; - lgp; = p; - Ig <pi) =0if p; =0.

Fact (properties of entropy) Let X be arandom variable which takes on n values.
() 0<H(X) <lgn.
(i) H(X)=0ifandonlyif p, = 1 for someq, and p; = 0 for al j # i (that is, thereis
no uncertainty of the outcome).
(ili) H(X) =1gnifandonlyif p; = 1/nforeachi,1 <i < n(thatis, al outcomesare
equaly likely).

Definition Thejoint entropy of X and Y is defined to be

~Y P(X =2,Y =y)lg(P(X =z,Y =y)),

where the summation indices z and y range over all valuesof X and Y, respectively. The
definition can be extended to any number of random variables.

Fact If X andY arerandomvariables, then H(X,Y) < H(X) + H(Y), with equality if
and only if X and Y are independent.

Definition If X, Y arerandom variables, the conditional entropy of X givenY = y is
H(X|Y =y) ZP =2|Y = y)lg(P(X = zY =y)),

where the summation index x ranges over al values of X. The conditional entropy of X
given Y, also called the equivocation of Y about X, is

H(X|Y) = ZP H(X|Y =y),
where the summation index y rangesover all valuesof Y.

Fact (properties of conditional entropy) Let X and Y be random variables.

(i) Thequantity H(X|Y") measuresthe amount of uncertainty remaining about X after
Y has been observed.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.
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(i) HX|Y)>0and H(X|X) = 0.
(i) HX,)Y)=HX)+ H(Y|X)=H(Y)+ HX|Y).
(iv) H(X|Y) < H(X), with equdlity if and only if X and Y are independent.

2.2.2 Mutual information

2.45 Definition The mutual information or transinformation of random variables X and Y is
I(X;Y) = H(X) — H(X]Y). Similarly, the transinformation of X and the pair Y, Z is
definedtobe I(X;Y, Z) = H(X) — H(X|Y, Z).

2.46 Fact (propertiesof mutual transinformation)

(i) Thequantity I(X;Y") can bethought of asthe amount of information that Y reveals
about X. Similarly, the quantity I(X;Y, Z) can be thought of as the amount of in-
formation that Y and Z together reveal about X .

(i) I(X;Y) >0.

(ili) I(X;Y) = 0if and only if X and Y are independent (that is, Y contributes no in-
formation about X).

(iv) I(X;Y) =1(Y; X).

2.47 Definition The conditional transinformation of the pair X, Y given Z is defined to be
I(X;Y) = H(X|Z) — H(X|Y, Z).

2.48 Fact (properties of conditional transinformation)
(i) The quantity I(X;Y") can beinterpreted as the amount of information that Y pro-
vides about X, given that Z has already been observed.
(i) I(X;Y,2) =1(X;Y) + Iy(X; Z).
(iii) Iz(X;Y) = Iz(Y; X).

2.3 Complexity theory

2.3.1 Basic definitions

Themain goal of complexity theory isto providemechanismsfor classifying computational
problems according to the resources needed to solve them. The classification should not
depend on a particular computational model, but rather should measure the intrinsic dif-
ficulty of the problem. The resources measured may include time, storage space, random
bits, number of processors, etc., but typically the main focusistime, and sometimes space.

2.49 Definition Analgorithmis awell-defined computational procedure that takes a variable
input and halts with an outpuit.

Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone.
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Of course, theterm “well-defined computational procedure” is not mathematically pre-
cise. It can be made so by using formal computational models such as Turing machines,
random-access machines, or boolean circuits. Rather than get involved with the technical
intricacies of these models, it is simpler to think of an algorithm as a computer program
written in some specific programming language for a specific computer that takes a vari-
able input and halts with an output.

It isusually of interest to find the most efficient (i.e., fastest) algorithm for solving a
givencomputational problem. Thetimethat an algorithmtakesto halt dependsonthe*size”
of theprobleminstance. Also, theunit of time used should be made precise, especially when
comparing the performance of two algorithms.

2.50 Definition The size of the input is the total number of bits needed to represent the input
in ordinary binary notation using an appropriate encoding scheme. Occasionally, the size
of theinput will be the number of itemsin theinput.

2.51 Example (sizesof some objects)

(i) The number of bitsin the binary representation of a positiveinteger nis1 + |lgn|
bits. For simplicity, the size of n will be approximated by 1g n.
(i) If fisapolynomial of degreeat most k, each coefficient being anon-negativeinteger
at most n, thenthesizeof f is(k + 1) lgn hits.
(iii) 1If A isamatrix with r rows, s columns, and with non-negative integer entries each
at most n, thenthe size of A isrslgn hits. O

2.52 Definition The running time of an algorithm on a particular input is the number of prim-
itive operations or “steps’ executed.

Often astep istaken to mean a bit operation. For some algorithmsit will be more con-
venient to take step to mean something else such as a comparison, amachine instruction, a
machine clock cycle, a modular multiplication, etc.

2.53 Definition Theworst-case running time of an algorithmisan upper bound on the running
time for any input, expressed as afunction of the input size.

2.54 Definition The average-case running time of an algorithm is the average running time
over al inputs of afixed size, expressed as afunction of the input size.

2.3.2 Asymptotic notation

It is often difficult to derive the exact running time of an algorithm. In such situations one
isforced to settle for approximations of the running time, and usually may only derive the
asymptotic running time. That is, one studies how the running time of the algorithm in-
creases as the size of the input increases without bound.

Inwhat follows, the only functions considered are those which are defined on the posi-
tiveintegersand take on real valuesthat are always positive from some point onwards. L et
f and g be two such functions.

2.55 Definition (order notation)

(i) (asymptotic upper bound) f(n) = O(g(n)) if there exists a positive constant c and a
positive integer no suchthat 0 < f(n) < cg(n) for al n > ny.

(©1997 by CRC Press, Inc. — See accompanying notice at front of chapter.
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(ii) (asymptotic lower bound) f(n) = Q(g(n)) if there exists apositive constant ¢ and a
positive integer ny suchthat 0 < cg(n) < f(n) fordl n > ny.

(iii) (asymptotic tight bound) f(n) = ©(g(n)) if there exist positive constants ¢; and ca,
and a positive integer ng such that c1g(n) < f(n) < cag(n) foral n > ny.

(iv) (o-notation) f(n) = o(g(n)) if for any positive constant ¢ > 0 there exists aconstant
ng > 0 suchthat 0 < f(n) < cg(n) foral n > ne.

Intuitively, f(n) = O(g(n)) meansthat f growsno faster asymptoticaly than g(n) to
within a constant multiple, while f(n) = Q(g(n)) meansthat f(n) grows at least as fast
asymptotically as g(n) towithinaconstant multiple. f(n) = o(g(n)) meansthat g(n) isan
upper bound for f(n) that is not asymptotically tight, or in other words, the function f(n)
becomesinsignificant relativeto g(n) asn getslarger. Theexpression o(1) isoften used to
signify afunction f(n) whose limit asn approaches co is0.

2.56 Fact (propertiesof order notation) For any functions f(n), g(n), h(n), and l(n), thefol-
lowing aretrue.

(i) f(n) = O(g(n)) ifand only if g(n) = Q(f(n))

(i) f(n) =O(g(n)) if and only if f(n) = O(g(n)) and f(n) = Q(g(n)).
(iii) 1f f(n) = O(h(n)) and g(n) = O(h(n)), then (f + g)(n) = O(h(n)),
(iv) If f(n) = O(h(n)) and g(n) = O(l(n)), then (f - g)(n) = O(h(n)l(n)).

O( )=
(v) (reflexivity) f(n) = O(f(n)).
(vi) (transitivity) If f(r) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

2.57 Fact (approximations of some commonly occurring functions)
(i) (polynomial function) If f(n) isapolynomial of degree k with positive leading term,
then f(n) = ©(n¥).
(ii) For any constant ¢ > 0, log,n = O(lgn).
(iii) (sirling'sformula) For all integersn > 1,

2™ (%)n < nl < m( )

Thusn! = v2mn (2)" (1+O(1)). Also, n! = o(n™) and n! = Q(2").
(iv) 1g(n!) = ©(nlgn).

mH(1/020)

2.58 Example (comparative growth rates of some functions) Let e and ¢ be arbitrary constants
with0 < € < 1 < ¢. Thefollowing functionsare listed in increasing order of their asymp-
totic growth rates:

1<Inlnn <Inn <exp(vVInnlnlnn) < n <n® <n®" < <n” <. O

2.3.3 Complexity classes

2.59 Definition A polynomial-time algorithmis an algorithm whose worst-case running time
function is of the form O(n*), where n istheinput size and k is aconstant. Any algorithm
whose running time cannot be so bounded is called an exponential-time algorithm.

Roughly speaking, polynomial-time algorithms can be equated with good or efficient
algorithms, while exponential-time algorithms are considered inefficient. There are, how-
ever, some practical situations when this distinction is not appropriate. When considering
polynomial-timecomplexity, the degree of the polynomial issignificant. For example, even
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2.60

2.61

2.62

2.63

2.64

2.65

though an algorithm with arunning time of O(n'™™"), n being theinput size, is asymptot-
ically slower that an algorithm with arunning time of O(n!9), the former algorithm may
befaster in practice for smaller values of n, especidly if the constants hidden by the big-O
notation are smaller. Furthermore, in cryptography, average-case complexity is more im-
portant than worst-case complexity — a necessary condition for an encryption scheme to
be considered secureisthat the corresponding cryptanalysis problemis difficult on average
(or more precisely, almost always difficult), and not just for some isolated cases.

Definition A subexponential-time algorithm is an algorithm whose worst-case running
time function is of theform e°("), where n isthe input size.

A subexponential-timealgorithmisasymptotically faster than an algorithm whose run-
ning time is fully exponentia in the input size, while it is asymptotically ower than a
polynomial-time algorithm.

Example (subexponential running time) Let A be an algorithm whose inputs are either
elements of afinitefield IF, (see §2.6), or an integer g. If the expected runningtime of A is
of theform

Ly[a,c] = O (exp ((c+ o(1))(Ing)*(Inlng)'~)), (2.3

where ¢ is a positive constant, and « is a constant satisfying0 < « < 1,then Aisa
subexponential-time algorithm. Observe that for & = 0, L0, ¢] isapolynomial inlng,
whilefor o = 1, Ly[1, ¢] isapolynomial in ¢, and thus fully exponential inln g. O

For simplicity, the theory of computational complexity restricts its attention to deci-
sion problems, i.e., problems which have either YES or NO as an answer. Thisis not too
restrictive in practice, as all the computational problemsthat will be encountered here can
be phrased as decision problemsin such away that an efficient algorithm for the decision
problem yields an efficient algorithm for the computational problem, and vice versa.

Definition The complexity class P isthe set of all decision problemsthat are solvablein
polynomial time.

Definition The complexity class NP isthe set of all decision problemsfor whicha YES
answer can beverifiedin polynomial time given someextrainformation, called acertificate.

Definition Thecomplexity class co-NP isthe set of all decision problemsfor whichaNO
answer can be verified in polynomial time using an appropriate certificate.

It must beemphasizedthat if adecision problemisin NP, it may not bethe casethat the
certificate of a Y ES answer can be easily obtained; what is asserted is that such acertificate
does exist, and, if known, can be used to efficiently verify the YES answer. The sameis
true of the NO answers for problemsin co-NP.

Example (problemin NP) Consider the following decision problem:

COMPOSITES

INSTANCE: A positive integer n.

QUESTION: Isn composite? That is, are thereintegersa, b > 1 such that n = ab?
COMPOSITESbelongsto NP becauseif aninteger n iscomposite, then thisfact canbe

verifiedin polynomial timeif oneisgivenadivisor a of n, where1l < a < n (the certificate

in this case consists of the divisor a). Itisin fact also the case that COMPOSITES belongs

to co-NP. It is still unknown whether or not COMPOSITES belongsto P. O
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2.66

2.67

2.68

2.69

2.70

2.71

2.72

Fact P C NP and P C co-NP.

The following are among the outstanding unresolved questionsin the subject of com-
plexity theory:
1. IsP =NP?
2. IsNP = co-NP?
3. IsP = NP nNco-NP?
Most expertsare of theopinion that the answer to each of thethree questionsisNO, although
nothing along these lines has been proven.
The notion of reducibility is useful when comparing the relative difficulties of prob-
lems.

Definition Let L; and Ly betwo decision problems. L; issaid to polytimereduceto Lo,
written L1 <p Lo, if thereisan algorithm that solves L; which uses, as a subroutine, an
algorithm for solving L», and which runsin polynomial timeif the algorithm for L, does.

Informaly, if Ly <p Lo, then L, isat least as difficult as L1, or, equivalently, L, is
no harder than L.

Definition Let L; and Lo betwo decision problems. If Ly <p Lo and Ly <p L1, then
L, and L, are said to be computationally equivalent.

Fact Let Ly, L, and L3 be three decision problems.
(i) (transitivity) If L; <p Lo and L, <p L3, then L; <p Ls.
(II) If L1 <p Lo and Ly €P, thenL1 eP.

Definition A decision problem L is said to be NP-complete if
(i) L € NP, and
(i) Ly <p Lforevery L; € NP.

The class of all NP-complete problemsis denoted by NPC.

NP-complete problems are the hardest problems in NP in the sense that they are at
least asdifficult asevery other problemin NP. There arethousands of problemsdrawn from
diverse fields such as combinatorics, number theory, and logic, that are known to be NP-
complete.

Example (subset sum problem) The subset sum problem s the following: given a set of
positiveintegers{a1, as, ... ,a, } and apositive integer s, determine whether or not there
is asubset of the a; that sum to s. The subset sum problemis NP-complete. O

Fact Let L, and Lo be two decision problems.
(i) If Ly isNP-completeand L; € P, then P =NP.
(i) If L1 € NP, Lo isNP-complete, and Ly <p L1, then L; isaso NP-complete.
(iti) If Ly isNP-completeand L; € co-NP, then NP = co-NP.

By Fact 2.72(i), if a polynomial-time algorithm is found for any single NP-complete
problem, then it isthe case that P = NP, aresult that would be extremely surprising. Hence,
a proof that a problem is NP-complete provides strong evidence for its intractability. Fig-
ure 2.2 illustrates what is widely believed to be the relationship between the complexity
classes P, NP, co-NP, and NPC.

Fact 2.72(ii) suggests the following procedure for proving that a decision problem L
is NP-complete:
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NP N co-NP NP

)

Figure 2.2: Conjectured relationship between the complexity classes P, NP, co-NP, and NPC.

1. Provethat L; € NP.
2. Select aproblem Lo that is known to be NP-complete.
3. Provethat Ly, <p L;.

2.73 Definition A problemisNP-hardif thereexists some NP-completeproblemthat polytime

reducestoit.

Note that the NP-hard classification is not restricted to only decision problems. Ob-
serve also that an NP-complete problem is also NP-hard.

2.74 Example (NP-hard problem) Given positiveintegersas, as, ... , a, and apositive inte-

ger s, the computational version of the subset sum problem would ask to actually find a
subset of the a; which sumsto s, provided that such a subset exists. This problem is NP-
hard. O

2.3.4 Randomized algorithms

2.75

The algorithms studied so far in this section have been deterministic; such algorithmsfol-
low the same execution path (sequence of operations) each time they execute with the same
input. By contrast, a randomized algorithm makes random decisions at certain pointsin
the execution; hence their execution paths may differ each time they are invoked with the
same input. The random decisions are based upon the outcome of a random number gen-
erator. Remarkably, there are many problems for which randomized a gorithms are known
that are more efficient, both in terms of time and space, than the best known deterministic
algorithms.

Randomized algorithms for decision problems can be classified according to the prob-
ability that they return the correct answer.

Definition Let A be arandomized algorithm for a decision problem L, and let I denote
an arbitrary instance of L.
(i) AhasO-sidederror if P(A outputsYES| I'sanswerisYES) = 1, and
P(Aoutputs YES | I'sanswer isNO ) = 0.
(i) A has1-sided error if P(A outputs YES | I'sanswer is YES) > 1, and
P(Aoutputs YES | I'sanswer isNO ) = 0.
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(iii) A has2-sided error if P(A outputs YES | I'sanswer isYES) > 2, and
P(A outputs YES | I'sanswer isNO ) < 1.
The number % in the definition of 1-sided error is somewhat arbitrary and can be re-
placed by any positive constant. Similarly, the numbers 2 and 1 in the definition of 2-sided
error, can bereplaced by £ + e and 1 — ¢, respectively, for any constant e, 0 < € < 3.

2.76 Definition Theexpected running time of arandomized algorithmisan upper bound onthe
expected running time for each input (the expectation being over all outputs of the random
number generator used by the algorithm), expressed as a function of the input size.

The important randomized complexity classes are defined next.

2.77 Definition (randomized complexity classes)

(i) The complexity class ZPP (“zero-sided probabilistic polynomial time”) is the set of
all decision problems for which there is a randomized algorithm with O-sided error
which runsin expected polynomial time.

(i) The complexity class RP (“randomized polynomial time”) is the set of all decision
problemsfor which there is arandomized algorithm with 1-sided error which runsin
(worst-case) polynomial time.

(iii) The complexity class BPP (“bounded error probabilistic polynomial time”) isthe set
of all decision problemsfor which thereisarandomized algorithm with 2-sided error
which runsin (worst-case) polynomial time.

2.78 Fact P C ZPP C RP C BPPand RP C NP.

2.4 Number theory

2.4.1 The integers
Theset of integers{... ,—3,—2,-1,0,1,2,3,...} isdenoted by the symbol Z.

2.79 Definition Leta, b beintegers. Then a dividesd (equivalently: a isadivisor of b, or a is
afactor of b) if thereexistsaninteger c suchthat b = ac. If a dividesb, then thisis denoted
by alb.

2.80 Example (i) —3|18,since 18 = (—3)(—6). (ii) 173|0, since 0 = (173)(0). O

The following are some elementary properties of divisibility.

2.81 Fact (propertiesof divisibility) For dl a, b, ¢ € Z, thefollowing are true:
@) ala.
(ii) If a|b and b|c, then alc.
(iii) If a|b and alc, then a|(bz + cy) fordl z,y € Z.
(iv) If a|b and bla, then a = +b.
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2.82 Definition (division algorithm for integers) If a« and b are integerswith b > 1, then or-
dinary long division of a by b yields integers ¢ (the quotient) and » (the remainder) such
that
a=qb+r, where0<r <b.
Moreover, ¢ and r are unique. The remainder of the division is denoted a mod b, and the
guotient is denoted a div b.
2.83 Fact Leta,b e Zwithb #0. Thena divb = |a/b] anda mod b = a — b|a/b].
2.84 Example If a = 73,b = 17,theng = 4andr = 5. Hence 73 mod 17 = 5 and
73 div 17 = 4. O
2.85 Definition Aninteger cisacommon divisor of a and b if ¢|a and c|b.
2.86 Definition A non-negativeinteger d is the greatest common divisor of integers a and b,
denoted d = ged(a, b), if
(i) disacommondivisor of ¢ and b; and
(i) whenever c|a and c|b, then ¢|d.
Equivalently, gcd(a, b) isthe largest positive integer that dividesboth a and b, with the ex-
ception that ged(0,0) = 0.
2.87 Example Thecommondivisorsof 12and 18 are{+1, +2, +3, +6},and gcd(12, 18) = 6.
O
2.88 Definition A non-negativeinteger d istheleast common multiple of integersa and b, de-
noted d = lcm(a, b), if
(i) ald and b|d; and
(i) whenever a|c and b|c, then d|c.
Equivalently, lem(a, b) is the smallest non-negative integer divisible by both a and b.
2.89 Fact If a and b are positive integers, then lem(a, b) = a - b/ ged(a, b).
2.90 Example Sincegcd(12,18) = 6, it followsthat lem(12,18) = 12 - 18/6 = 36. O
2.91 Definition Twointegersa andb aresaidto berelatively primeor coprimeif ged(a, b) = 1.
2.92 Definition Aninteger p > 2 issaid to be prime if its only positive divisorsare 1 and p.
Otherwise, p is called composite.
The following are some well known facts about prime numbers.
2.93 Fact If pisprimeand p|ab, then either p|a or p|b (or both).
2.94 Fact There are an infinite number of prime numbers.
2.95 Fact (primenumber theorem) Let (x) denote the number of prime numbers < z. Then

lim m(z)

evoox/lnx
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This means that for large values of z, w(x) is closely approximated by the expres-
sion z/Inz. For instance, when z = 10'°, w(z) = 455,052,511, whereas |z/Inz| =
434,294, 481. A more explicit estimate for 7(x) is given below.

2.96 Fact Let 7(z) denote the number of primes < x. Thenfor z > 17
xr
7'('(.13) > m
andforz > 1

x
1.2 —.
m(x) < 55061na:

2.97 Fact (fundamental theorem of arithmetic) Every integer n > 2 has afactorization as a
product of prime powers;

e1, € er
n:p11p22...pkk’

where the p; are distinct primes, and the e; are positive integers. Furthermore, the factor-
ization is unique up to rearrangement of factors.

2.98 Fact Ifa=p{'ps?---pi*, b =p{1p22 ---pi’“, whereeache; > 0 and f; > 0, then

min(el,fl)pg’lin(emh) . .pglin(emfk)

ged(a, b) = p;
and

maX(el,fl)p;nax(eg,fQ) . _p;nax(emfk)'

lcm(a7 b) =D

2.99 Example Leta = 4864 = 28-19,b = 3458 = 2-7- 13- 19. Then gcd (4864, 3458) =
2-19 = 38 and lcm (4864, 3458) = 28 - 7- 13 - 19 = 442624. O

2.100 Definition Forn > 1, let ¢(n) denote the number of integersin theinterval [1, n] which
arerelatively primeton. Thefunction ¢ iscalled the Euler phi function (or the Euler totient
function).

2.101 Fact (propertiesof Euler phi function)
(i) If pisaprime, then ¢(p) =p — 1.
(i) The Euler phi function is multiplicative. That is, if gcd(m,n) = 1, then ¢(mn) =
p(m) - ¢(n).

(iii) 1f n = p{'ps? - - - pi* isthe primefactorization of n, then
1 1 1
o (1= 1) (1= ) (12 1),
Y41 p2 Pk
Fact 2.102 gives an explicit lower bound for ¢(n).

2.102 Fact For dl integersn > 5,
n

$(n) >

6lnlnn’
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2.4.2 Algorithmsin Z

Let a and b be non-negative integers, each less than or equal to n. Recall (Example 2.51)
that the number of bitsin the binary representation of n is |lgn]| + 1, and this number is
approximated by 1g ». The number of bit operationsfor the four basic integer operations of
addition, subtraction, multiplication, and division using the classical algorithmsis summa-
rizedin Table2.1. Thesealgorithmsare studied in more detail in §14.2. More sophisticated
techniques for multiplication and division have smaller complexities.

Operation ‘ Bit complexity ‘
Addition a+b O(lga+1gb) = O(lgn)
Subtraction a—"b O(lga+1gb) = O(lgn)
Multiplication a-b O((lga)(lgb)) = O((1gn)?)
Division a=qgb+7r | O((lgq)(Igb)) = O((Ign)?)

Table 2.1: Bit complexity of basic operationsin Z.

The greatest common divisor of two integers a and b can be computed via Fact 2.98.
However, computing agcd by first obtaining prime-power factorizations does not result in
an efficient algorithm, as the problem of factoring integers appears to be relatively diffi-
cult. The Euclidean algorithm (Algorithm 2.104) is an efficient algorithm for computing
the greatest common divisor of two integers that does not require the factorization of the
integers. It is based on the following ssimple fact.

2.103 Fact If a and b are positive integerswith a > b, then ged(a, b) = ged (b, a mod b).

2.104 Algorithm Euclidean algorithm for computing the greatest common divisor of two integers

INPUT: two non-negativeintegers a and b with a > b.
OUTPUT: the greatest common divisor of a and b.

1. Whileb # 0 do the following:
1.1 Set r<—a mod b, a<-b, b<r.
2. Return(a).

2.105 Fact Algorithm 2.104 hasarunning time of O((1gn)?) bit operations.

2.106 Example (Euclidean algorithm) The following are the division steps of Algorithm 2.104
for computing ged (4864, 3458) = 38:

4864 1-3458 4 1406
3458 = 2-1406 4 646
1406 = 2-6464 114
646 = 5-114476
114 = 1-76+38
76 = 2-38+0. ]
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The Euclidean algorithm can be extended so that it not only yieldsthe greatest common
divisor d of two integersa and b, but also integers x and y satisfying ax + by = d.

2.107 Algorithm Extended Euclidean algorithm

INPUT: two non-negativeintegers a and b with a > b.
OUTPUT: d = gcd(a, b) and integers z, y satisfying ax + by = d.
1. If b = 0then set d<—a, z+1, y<«0, and return(d,z,y).
2. Set .232(—1, .131(—0, yQFO, y1<—1.
3. Whileb > 0 do the following:
3.1 g«|a/b|, r<a —qb, xx2 — qx1, Y<Y2 — qY1-
3.2 a<b, b1, xo¢11, T1X, Yoi—y1, ANd y1y.
4. Setd<—a, r<+x2, y<y2, andreturn(d,z,y).

2.108 Fact Algorithm 2.107 has arunning time of O((Ign)?) bit operations.

2.109 Example (extended Euclidean algorithm) Table 2.2 shows the steps of Algorithm 2.107
with inputsa = 4864 and b = 3458. Hence gcd(4864,3458) = 38 and (4864)(32) +

(3458)(—45) = 38. O
la] r] @[ y[ af b] 22] =] o] w|
— -] -] —4864]348] 1] 0| 0] 1
1 1406 1 —1 | 3458 | 1406 0 1 1 -1
2 646 -2 3 | 1406 646 1 —2 -1 3
2 114 5 -7 646 114 —2 5 3 =7
5| 76| —27| 38| 14| 76| 5| 27| —7| 38
1| 38| 32| -45| 76| 38| -27| 32| 38| —45
2 0| —91| 128] 38 0| 32| —-91|-45] 128

Table 2.2: Extended Euclidean algorithm (Algorithm 2.107) with inputs a = 4864, b = 3458.

Efficient algorithms for ged and extended ged computations are further studied in §14.4.

2.4.3 The integers modulo n
Let n be apositive integer.

2.110 Definition If a and b are integers, then o is said to be congruent to b modulo n, written
a =0b (mod n),if ndivides(a—b). Theinteger n is called the modul us of the congruence.

2.111 Example (i)24 =9 (mod 5) since24 —9 =3 - 5.
(i) —11 =17 (mod 7) since —11 — 17 = —4- 7. 0

2.112 Fact (propertiesof congruences) For al a, a1, b, b1, ¢ € Z, thefollowing are true.

(i) a=b (mod n) if and only if a and b leave the same remainder when divided by n.
(i) (reflexivity) a = a (mod n).
(iii) (symmetry) If a = b (mod n) thenb = a (mod n).
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2.113

2.114

2.115

2.116

2.117

2.118

2.119

2.120

2.121

(iv) (trangtivity) If a =b (mod n) and b = ¢ (mod n), thena = ¢ (mod n).
(V) Ifa = a; (mod n)andb = b; (mod n),thena + b = a3 + b1 (mod n) and
ab = a1b; (mod n).

The equivalence class of an integer a is the set of al integers congruent to & modulo
n. From properties (ii), (iii), and (iv) above, it can be seen that for afixed n the relation of
congruence modulo n partitions Z into equivalence classes. Now, if a = gn + r, where
0 <r <mn,thena =r (mod n). Hence each integer a is congruent modulo n to a unique
integer between 0 and n — 1, called the least residue of a modulon. Thusa and r arein the
same equivalence class, and so » may simply be used to represent this equivalence class.

Definition Theintegers modulo n, denoted Z,,, is the set of (equivalence classes of) in-
tegers{0,1,2,...,n — 1}. Addition, subtraction, and multiplication in Z,, are performed
modulo n.

Example Zgs = {0,1,2,...,24}. InZas, 13 + 16 = 4,snce 13 + 16 = 29 = 4
(mod 25). Similarly, 13 - 16 = 8 in Zss. O

Definition Leta € Z,. The multiplicative inverse of a modulon isaninteger z € Z,
suchthat ax = 1 (mod n). If suchan z exists, thenitisunique, and a is said to be invert-
ible, or aunit; theinverse of a is denoted by a~*.

Definition Leta,b € Z,. Division of a by b modulo n isthe product of ¢ and b~ modulo
n, and isonly defined if b isinvertible modulo n.

Fact Leta € Z,,. Thena isinvertibleif and only if gcd(a,n) = 1.

Example Theinvertible dementsin Zg are 1, 2, 4, 5, 7, and 8. For example, 4=1 = 7

because4 - 7=1 (mod 9). O
Thefollowing is ageneralization of Fact 2.117.

Fact Letd = ged(a,n). The congruence equation axz = b (mod n) hasasolution z if

and only if d divides b, in which case there are exactly d solutions between 0 and n — 1;
these solutions are all congruent modulo n/d.

Fact (Chinese remainder theorem, CRT) If theintegersny, no, ... ,ny are pairwiserela
tively prime, then the system of simultaneous congruences

= a; (mod ny)

az (mod ng)

x = a (modng)
has a unique solution modulon = nyng - - - ng.
Algorithm (Gauss's algorithm) The solution z to the simultaneous congruences in the
Chinese remainder theorem (Fact 2.120) may be computed as x = Zle a; N; M; mod n,

where N; = n/n; and M; = N[I mod n;. These computations can be performed in
O((lgn)?) bit operations.
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2.125

2.126

2.127
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2.129
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2.131

Another efficient practical algorithm for solving simultaneous congruencesin the Chinese
remainder theorem is presented in §14.5.

Example The pair of congruencesz = 3 (mod 7), x = 7 (mod 13) has aunique solu-
tionz =59 (mod 91). O

Fact If gcd(ny,n2) = 1, thenthepair of congruencesz = a (mod n1),z = a (mod ny2)
hasaunique solution z = a (mod niny).

Definition The multiplicative group of Z,, isZ; = {a € Z, | gcd(a,n) = 1}.1In
particular, if nisaprime thenZ, = {a|1<a<n-—1}.

Definition Theorder of Z;, is defined to be the number of elementsin Z;,, namely |Z |.

It follows from the definition of the Euler phi function (Definition 2.100) that |Z,,| =
¢(n). Notedsothatif a € Z; andb € Z;,thena - b € Z,, and so Z;, is closed under
multiplication.

Fact Letn > 2 beaninteger.
(i) (Euler'stheorem) If a € Z7, then a®™ =1 (mod n).
(ii) If nisaproduct of distinct primes, andif r = s (mod ¢(n)), thena” = a® (mod n)
for all integers a. In other words, when working modulo such an n, exponents can
be reduced modulo ¢(n).

A special case of Euler’'stheorem is Fermat's (little) theorem.

Fact Let p beaprime.
(i) (Fermat'stheorem) If gcd(a,p) = 1,thena?~! =1 (mod p).
@ii) f r = s (mod p — 1), thena” = a® (mod p) for al integersa. In other words,
when working modulo a prime p, exponents can be reduced modulo p — 1.
(iii) Inparticular, a? = a (mod p) for al integersa.

Definition Leta € Z;. Theorder of a, denoted ord(a), istheleast positiveinteger ¢ such
that * =1 (mod n).

Fact If theorder of a € Z;, ist,and a® = 1 (mod n), then ¢ divides s. In particular,

tp(n).

Example Letn = 21. ThenZ}, = {1,2,4,5,8,10,11,13,16,17,19,20}. Note that
#(21) = ¢(7)p(3) = 12 = |Z3,|. Theordersof elementsin Z3, arelisted in Table2.3. O

an§1 11214581011 |13 (16| 17| 19| 20
oderofa || 163|626 | 6| 2| 3|61 6|2

Table 2.3: Orders of elementsin Zs; .

Definition Let a € Z;,. If the order of a is ¢(n), then « is said to be a generator or a
primitive element of Z;, . If Z;, has agenerator, then Z; is said to be cyclic.
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2.132 Fact (propertiesof generatorsof Z;)
(i) Z! hasagenerator if and only if n = 2,4, p* or 2p*, where p is an odd prime and
k > 1. In particular, if p isaprime, then Z,, has a generator.

(ii) If cisagenerator of Z),thenZ) = {a* mod n | 0 <i < ¢(n) — 1}.

(iii) Supposethat o isagenerator of Z. Thenb = o' mod n is aso agenerator of Z,
if and only if ged(z, #(n)) = 1. It followsthat if Z;, is cyclic, then the number of
generatorsis ¢(¢(n)).

(iv) a € Z} isagenerator of Z* if and only if a®(™/P % 1 (mod n) for each prime
divisor p of ¢(n).

2.133 Example Z3, isnot cyclic since it does not contain an element of order ¢(21) = 12 (see
Table 2.3); note that 21 does not satisfy the condition of Fact 2.132(i). On the other hand,
Zss iscyclic, and has a generator o = 2. O

2.134 Definition Leta € Z). a issaid to be aquadratic residue modulo n, or asquare modulo
n,if thereexistsan = € Z; suchthat 22 = a (mod n). If nosuch z exists, then a iscalled
a quadratic non-residue modulo n. The set of all quadratic residues modulo n is denoted
by Q,, and the set of all quadratic non-residuesis denoted by Q,,.

Note that by definition 0 ¢ Z, whence 0 ¢ Q,, and 0 £ Q,,.

2.135 Fact Let p be an odd prime and let o be a generator of Z;,. Thena € Z, is a quadratic
residue modulo p if and only if a« = o mod p, wheres is an even integer. It follows that
1Qp] = (p—1)/2and |Q,| = (p — 1)/2; that is, half of the elementsin Z* are quadratic
residues and the other half are quadratic non-residues.

2.136 Example a = 6 isagenerator of Zj;. The powersof « arelisted in the following table.

1 012 |3|4]|5|6 |7|8]9]|10]11
o’mod13 || 16|10 |89 |2|12|7|3|5| 4 |11

Hence Q13 = {1,3,4,9,10,12}and Q,5 = {2,5,6,7,8, 11}. O

2.137 Fact Let n be aproduct of two distinct odd primesp and ¢, n = pg. Thena € Z; isa
quadratic residue modulo n if and only if a € Q, anda € Q,. Itfollowsthat |Q,| =

|Qpl -+ 1Qql = (p— (g —1)/4and [Q,| = 3(p — 1)(¢ — 1)/4.

2.138 Example Letn = 21. ThenQy = {1,4,16}and Q,, = {2,5,8,10,11,13,17,19, 20}.
O

2.139 Definition Leta € Q,,. If x € Z;, satisfiesz? = a (mod n), then z is called a square
root of @ modulo .

2.140 Fact (number of sguare roots)

(i) If pisanodd primeand a € @, then a has exactly two square roots modulo p.
(i) Moregenerally, let n = p7*ps? - - - p;* wherethep; aredistinct odd primesand e; >
1. If a € Q,, then a has precisely 2* distinct square roots modulo n.

2.141 Example Thesguarerootsof 12 modulo 37 are7 and 30. The squarerootsof 121 modulo
315 arell, 74,101, 151, 164, 214, 241, and 304. U
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2.4.4 Algorithmsin Z,

2.142

2.143

2.144

Letn beapositiveinteger. Asbefore, theelementsof Z,, will berepresented by theintegers
{0,1,2,... ,n—1}.
Observethat if a,b € Z,,, then

a-+b, ifa+b<n,

(a—i—b)modn:{ atb—n, ifatb>n

Hence modular addition (and subtraction) can be performed without the need of along di-
vision. Modular multiplication of a and b may be accomplished by simply multiplying
and b as integers, and then taking the remainder of the result after division by n. Inverses
in Z,, can be computed using the extended Euclidean algorithm as next described.

Algorithm Computing multiplicative inverses in Z,,

INPUT: a € Z,.
OUTPUT: ¢! mod n, provided that it exists.
1. Usetheextended Euclideanalgorithm (Algorithm 2.107) tofind integersa and y such
that ax + ny = d, whered = ged(a, n).
2. 1f d > 1, then a~! mod n does not exist. Otherwise, return(z).

Modular exponentiation can be performed efficiently with the repeated square-and-
multiply algorithm (Algorithm 2.143), which is crucial for many cryptographic protocols.
One version of this algorithm is based on the following observation. Let the binary repre-
sentation of k be °'_ k;2¢, whereeach k; € {0,1}. Then

t
ak _ Hakﬂi _ (a20)k0 (a21)k1 . (a2t)kt'
=0

Algorithm Repeated square-and-multiply algorithm for exponentiation in Z,,

INPUT: a € Z,, andinteger 0 < k < n whose binary representationisk = ZEZO ;20
OUTPUT: a* mod n.
1. Set b+1. If £ = 0 thenreturn(d).
2. Set A+a.
3. If kg = 1 then set b<—a.
4. For i from 1 to t do the following:
4.1 Set A+ A? mod n.
4.2 If k; = 1then set b<—A - b mod n.

5. Return(b).

Example (modular exponentiation) Table 2.4 showsthe stepsinvolvedin thecomputation
of 5°%6 mod 1234 = 1013. O

Thenumber of bit operationsfor thebasic operationsin Z,, issummarizedin Table 2.5.
Efficient algorithmsfor performing modular multiplication and exponentiation are further
examinedin §14.3 and §14.6.
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7 0 1 2 3 4 5 6 7 8 9
ki || O 1 0 1 0 1 0 0 1
A || 5|25 625 | 681 | 1011 | 369 421 779 947 925
b 1 1] 625 | 625 67 67 | 1059 | 1059 | 1059 | 1013
Table 2.4: Computation of 5°°° mod 1234.
Operation ‘ Bit complexity ‘
Modular addition (a +b) mod n O(lgn)
Modular subtraction (a —b) mod n O(lgn)
Modular multiplication (a-b) mod n O((Ign)?)
Modular inversion a~! modn O((1gn)?)
Modular exponentiation a* mod n,k <n | O((lgn)?)

Table 2.5: Bit complexity of basic operationsin Z,,.

2.4.5 The Legendre and Jacobi symbols

The Legendre symbol is a useful tool for keeping track of whether or not an integer a isa
guadratic residue modulo a prime p.

2.145 Definition Let p be an odd prime and a an integer. The Legendre symbol ( ) is defined

to be
a 0, ifpla,
(—) = 1, ifae @y,
p ~1, ifaeQ,.

2.146 Fact (propertiesof Legendre symbol) Let p be an odd primeand a, b € Z. Then the Leg-
endre symbol has the following properties:
() (&) = a?=1/2 (mod p). In particular, (G) =1land (3} =
—-1€Q@,ifp=1 (mod 4),and -1 € Q, if p=3 (mod 4).
(i) (& b) = & )( ). Henceif a € Z, then (% )—1.
(iii) If a =0 (mod p), then (p) (%).
(iv) () = (—1)#*~1/8 Hence (3) =tifp=1or7 (mod 8),and (¢) = ~1ifp=3
or5 (mod 8).
(v) (law of quadratic reciprocity) If ¢ isan odd prime distinct from p, then

(g) _ (%)(_1)@—1)(«1—1)/4’

In other words, (’5) = (%) unless both p and ¢ are congruent to 3 modulo 4, in which
case (2) =~ (9).
The Jacobi symbol is ageneralization of the Legendre symbol to integersn which are
odd but not necessarily prime.

(—1)=1/2, Hence
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2.147 Definition Letn > 3 beoddwith primefactorizationn = pi*p5? - - - pi*. Thenthe Jacobi
symbol (£) is defined to be

()-G) G -G
n p P2 )
Observethat if n is prime, then the Jacobi symbol is just the Legendre symbol.

2.148 Fact (propertiesof Jacobi symbol) Letm > 3,n > 3 beodd integers, and a, b € Z. Then
the Jacobi symbol has the following properties:

(i) (£) =0,1, or — 1. Moreover, (£) = 0 if and only if ged(a, n) # 1.
(i) (2) = (2)(2). Henceif a € Z7, then (%) = 1.
) (2 = (2))

(iv) If a = b (mod n), then (£) = (ﬁ).

n

W () =1
(vi) (32) = (~1)™1/2 Hence (ZL) = 1ifn=1 (mod 4), and (3) = ~1ifn =3
(mod 4).

i) (2) = (~1)"*~1/8, Hence (2) = 1ifn = 1or7 (mod 8), and (2) = —1if
n=3o0r5 (mod 8).

(viii) () = (Z)(-1)m=D®=1/4 |n other words, () = (Z) unless both m and n are
congruent to 3 modulo 4, in which case () = —(Z).

n
m

By properties of the Jacobi symbol it followsthat if n isodd and a = 2¢a; where a;

is odd, then
(2) _ <2_> (ﬂ) _ <E>e<w><_l)<aln<m>/4,
n n n n a

This observation yields the following recursive algorithm for computing (%) , which does
not require the prime factorization of n.

2.149 Algorithm Jacobi symbol (and Legendre symbol) computation

JACOBI(a,n)
INPUT: an odd integer n > 3, and aninteger a, 0 < a < n.
OUTPUT: the Jacobi symbol (2) (and hence the Legendre symbol when n is prime).
1. If a = 0 then return(0).
2. If a = 1 then return(1).
3. Writea = 2°a;, Wwhere a; isodd.
4. If eiseventhen set s<—1. Otherwiseset s<—1if n =1 or 7 (mod 8), or set s« — 1
ifn=3o0r5 (mod 8).
If n =3 (mod 4) anda; = 3 (mod 4) then set s« — s.
Set ny<—n mod aj.
7. If a1 = 1 then return(s); otherwise return(s - JACOBI(n1,a1)).

o u

2.150 Fact Algorithm 2.149 has arunning time of O((Ign)?) bit operations.
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2.151

2.152

2.153

2.154

2.155

Remark (finding quadratic non-residues modulo a prime p) Let p denote an odd prime.
Even thoughit is known that half of the elementsin Z,, are quadratic non-residues modulo
p (see Fact 2.135), there is no deterministic polynomial-time algorithm known for finding
one. A randomized algorithm for finding aquadratic non-residueisto simply select random
integersa € Z;, until oneis found satisfying (¢) = —1. The expected number iterations
beforeanon-residueisfoundis2, and hencethe proceduretakes expected polynomial -time.

Example (Jacobi symbol computation) For a = 158 andn = 235, Algorithm 2.149 com-
putes the Jacobi symbol (328) asfollows:
158 2NN L (L) (B (qyrasaga _ (7T
(235) (235) (235) (=) ( 79 )( 2 \79
9\, _qyersa _ (2 _
(77)( 2 =\m) =t
Unlike the Legendre symbol, the Jacobi symbol (%) does not reveal whether or not a

is a quadratic residue modulo n. It isindeed truethat if a € @y, then () = 1. However,
(%) =1 doesnotimply that a € Q.

n

O

Example (quadratic residues and non-residues) Table 2.6 lists the elementsin Z3, and
their Jacobi symbols. Recall from Example 2.138 that Q2; = {1,4,16}. Observe that

() =1but5 ¢ Qax. O

a € Z3 16

a® mod n
(5)
)
(31)

=== = =
|
—
—

|
—
—
===

Table 2.6: Jacobi symbols of elementsin Z3; .

Definition Letn > 3 bean odd integer, and let J,, = {a € Z;, | (%) = 1}. Theset of
pseudosguares modulo n, denoted Q... isdefined to bethe set J,, — Q.

Fact Let n = pq be aproduct of two distinct odd primes. Then |Q,,| = |én| =(p—
1)(g —1)/4; that is, half of the elementsin J,, are quadratic residues and the other half are
pseudosguares.

2.4.6 Blum integers

2.156

2.157

2.158

Definition A Bluminteger isacomposite integer of the form n = pq, where p and q are
distinct primes each congruent to 3 modulo 4.

Fact Let n = pq be aBlum integer, and let a € Q,,. Then a has precisely four square
roots modulo n, exactly one of whichisasoin @,,.

Definition Letn beaBluminteger andlet a € Q,,. Theuniquesquareroot of a in @Q,, is
called the principal square root of a modulo n.
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2.159 Example (Bluminteger) For the Blum integer n = 21, J, = {1,4,5,16,17,20} and
Q. = {5,17,20}. Thefour squarerootsof a« = 4 are 2, 5, 16, and 19, of which only 16 is
alsoin Q2;. Thus16 isthe principa square root of 4 modulo 21. O

2.160 Fact If n = pq isaBlum integer, then the function f : Q, — @, defined by f(z) =
x? mod n isapermutation. The inverse function of f is:

ffl(a:) = 2((=D(@=D+4/8 116d n.

2.5 Abstract algebra

This section provides an overview of basic algebraic objects and their properties, for refer-
encein theremainder of this handbook. Several of the definitionsin §2.5.1 and §2.5.2 were
presented earlier in §2.4.3 in the more concrete setting of the algebraic structure Z;, .

2.161 Definition A binary operation onaset .S isamappingfromS x Sto S. Thatis, xisa
rule which assigns to each ordered pair of elementsfrom .S an element of S.

2.5.1 Groups
2.162 Definition A group (G, ) consists of aset G with abinary operation x on G satisfying
the following three axioms.

(i) Thegroup operationisassociative. Thatis, ax (bxc) = (a*b)xcforal a,b,c € G.
(il) Thereisanelement 1 € G, called theidentity element, suchthata «1 = 1%xa = a

foral a € G.
(iii) For each a € G thereexistsan element a~! € G, called the inverse of a, such that
axa l=a"lxa=1.

A group G isabelian (or commutative) if, furthermore,
(iv) axb=0bxafordla,becdG.

Note that multiplicative group notation has been used for the group operation. If the
group operation is addition, then the group is said to be an additive group, the identity ele-
ment is denoted by 0, and the inverse of a is denoted —a.

Henceforth, unless otherwise stated, the symbol « will be omitted and the group oper-
ation will simply be denoted by juxtaposition.

2.163 Definition A group G isfiniteif |G| isfinite. The number of elementsin afinite groupis
caleditsorder.

2.164 Example Theset of integersZ with the operation of addition formsagroup. The identity
element is 0 and the inverse of an integer a isthe integer —a. d

2.165 Example The set Z,,, with the operation of addition modulo n, forms a group of order
n. The set Z,, with the operation of multiplication modulo n is not a group, since not all
elementshavemultiplicativeinverses. However, theset Z;, (see Definition2.124) isagroup
of order ¢(n) under the operation of multiplication modulo n, with identity element 1. O
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2.166

2.167

2.168

2.169

2.170

2.171

2.172

2.173

2.174

Definition A non-empty subset H of agroup G isasubgroup of G if H isitself agroup
with respect to the operation of G. If H isasubgroupof G and H # G, then H iscaled a
proper subgroup of G.

Definition A groupGiscyclicif thereisanelement o € G suchthat for eachb € G there
isan integer i with b = . Such an element « is called agenerator of G.

Fact If Gisagroupanda € G, then the set of al powersof a formsacyclic subgroup of
G, called the subgroup generated by a, and denoted by (a).

Definition Let G beagroupanda € G. Theorder of a isdefined to be the least positive
integer ¢ such that a* = 1, provided that such an integer exists. If such at does not exigt,
then the order of a is defined to be co.

Fact Let G beagroup, andlet a € G bean element of finite order t. Then |(a)|, the size
of the subgroup generated by «, isequal to t.

Fact (Lagrange'stheorem) If G isafinitegroupand H isasubgroupof G, then | H| divides
|G|. Hence, if a € G, the order of o divides|G|.

Fact Every subgroup of acyclic group G isaso cyclic. Infact, if G isacyclic group of
order n, then for each positive divisor d of n, G contains exactly one subgroup of order d.

Fact Let G beagroup.
(i) If the order of a € G ist, then the order of a* ist/ ged(t, k).

(i) If G isacyclic group of order n and d|n, then G has exactly ¢(d) elements of order
d. In particular, G has ¢(n) generators.

Example ConsiderthemultiplicativegroupZi, = {1,2,...,18} of order 18. Thegroup
iscyclic (Fact 2.132(i)), and a generator is e = 2. The subgroups of Z7,, and their gener-
ators, arelisted in Table 2.7. O

| Subgroup | Generators | Order |
{1y 1 1
{1,18} 18
{1,7,11} 7,11
{1,7,8,11,12, 18} 8,12
{1,4,5,6,7,9,11, 16,17} 4,5,6,9,16,17
{1,2,3,...,18} 2,3,10,13, 14, 15

© O W N

—
(e ]

Table 2.7: The subgroups of Z7,.

2.5.2 Rings
2.175 Definition Aring (R, +, x) consistsof aset R with two binary operationsarbitrarily de-

noted + (addition) and x (multiplication) on R, satisfying the following axioms.
(i) (R,+) isan abelian group with identity denoted 0.
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(i) Theoperation x isassociative. Thatis, a x (b x ¢) = (a xb) x cforadl a,b,c € R.
(ili) Thereisamultiplicativeidentity denoted 1, with1 # 0, suchthat 1 xa =ax1=a
foral a € R.
(iv) Theoperation x isdistributive over +. Thatis, a x (b+¢) = (a x b) + (a x ¢) and
(b+c)xa=(bxa)+ (cxa)fordla,b,ce R.
Theringisacommutativeringif a x b =b x aforal a,b € R.

2.176 Example Theset of integersZ with the usual operations of addition and multiplicationis
acommutative ring. O

2.177 Example The set Z,, with addition and multiplication performed modulo n is a commu-
tative ring. O

2.178 Definition Anelement o of aring R iscalled aunit or an invertible element if thereisan
elementb € R suchthata x b = 1.

2.179 Fact The set of unitsin aring R formsa group under multiplication, called the group of
unitsof R.

2.180 Example Thegroup of unitsof thering Z,, isZ;, (see Definition 2.124). O

2.5.3 Fields

2.181 Definition A field isacommutative ring in which all non-zero elements have multiplica-
tiveinverses.

m times
——

2.182 Definition Thecharacteristic of afieldis0if 1 + 1+ --- + 1 isnever equal to 0 for any
m > 1. Otherwise, the characteristic of the field is the least positive integer m such that
>, 1equalsO.

2.183 Example The set of integers under the usual operations of addition and multiplicationis
not afield, sincetheonly non-zerointegerswith multiplicativeinversesare1 and —1. How-
ever, the rational numbers Q, the real numbersR, and the complex numbers C form fields
of characteristic 0 under the usual operations. O

2.184 Fact Z, isafield (under the usual operations of addition and multiplication modulo n) if
and only if n isaprime number. If n is prime, then Z,, has characteristic n.

2.185 Fact If the characteristic m of afield is not 0, then m is a prime number.

2.186 Definition A subset F' of afield E isasubfield of E if F isitself afield with respect to

the operations of E. If thisisthe case, E issaid to be an extension field of F'.
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2.5.4 Polynomial rings

2.187

2.188

2.189

2.190

2.191

2.192

Definition If R isacommutativering, then apolynomial in the indeterminate x over the
ring R is an expression of the form

f(x) = anz™ + -+ ax2® + a1z + ap

whereeach a; € Randn > 0. The element a; is caled the coefficient of z? in f(x).
The largest integer m for which a,,, # 0 is called the degree of f(x), denoted deg f(z);
anm is called the leading coefficient of f(z). If f(x) = ao (a constant polynomial) and
ap # 0,then f(x) hasdegree0. If all the coefficientsof f(z) are0, then f(x) iscalled the
zero polynomial and its degree, for mathematical convenience, is defined to be —oco. The
polynomial f(z) issaid to be monic if itsleading coefficient is equal to 1.

Definition If Risacommutativering, the polynomial ring R[z] isthering formed by the
set of al polynomiasin the indeterminate = having coefficients from R. The two opera-
tions are the standard polynomial addition and multiplication, with coefficient arithmetic
performedin thering R.

Example (polynomial ring) Let f(z) = 2% + x + 1 and g(z) = 2? + = be elements of
the polynomial ring Z, [x]. Working in Zs[x],
f(@) +g(x) =2 +2* +1
and
f(z)-g(z) =2° +2* +2° + z. O

For the remainder of thissection, F' will denote an arbitrary field. The polynomial ring
F[z] has many propertiesin common with theintegers (more precisely, F'[z] and Z areboth
Euclidean domains, however, this generalization will not be pursued here). These similar-
ities are investigated further.

Definition Let f(z) € F|x] beapolynomial of degreeat least 1. Then f(x) issaid to be
irreducible over F' if it cannot be written as the product of two polynomialsin F[z], each
of positive degree.

Definition (division algorithm for polynomials) If g(z), h(z) € F|[z], with h(z) # 0,
then ordinary polynomial long division of g(x) by h(x) yieldspolynomialsg(x) andr(z) €
F[z] such that

g(x) = q(z)h(z) + r(x), wheredegr(z) < degh(x).

Moreover, ¢(z) and r(x) are unique. The polynomial ¢(x) is called the quotient, while
r(z) iscaledtheremainder. Theremainder of thedivisionissometimesdenoted g(x) mod
h(z), and the quotient is sometimes denoted g(z) div h(z) (cf. Definition 2.82).

Example (polynomial division) Consider thepolynomialsg(z) = z6+2°+z*+22+2+1
and h(z) = z* + 23 + 1 in Zy[x]. Polynomial long division of g(z) by h(z) yields

g(x) = 22h(z) + (2> + = + 1).
Hence g(z) mod h(z) = 2® + x + 1 and g(z) div h(x) = 2. O
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2.193

2.194

2.195

2.196

2.197

2.198

Definition If g(x), h(z) € F[z] then h(z) divides g(z), written h(z)|g(z), if g(z) mod
h(z) = 0.

Let f(z) be afixed polynomial in F[z]. Aswith the integers (Definition 2.110), one
can define congruences of polynomialsin F'[x] based on division by f(z).

Definition If g(z), h(x) € F|[z], then g(x) is said to be congruent to ~(x) modulo f(z)
if f(x) dividesg(z) — h(z). Thisisdenoted by g(x) = h(z) (mod f(z)).

Fact (properties of congruences) For al g(x), h(z), g1 (), h1(z), s(x) € F[z], thefol-
lowing are true.
(i) g(z) = h(x) (mod f(x)) if and only if g(x) and h(z) leave the same remainder
upon division by f(x).
(i) (reflexivity) g(x) = g(z) (mod f(x)).
(iii) (symmetry) If g(x) = h(z) (mod f(z)), then h(z)
(iv) (transitivity) If g(z) = h(z) (mod f(x)) and h(z)
g(x) = s(z) (mod f()).
(V) If g(z) = g1(z) (mod f(x)) and h(z) = hi(z) (mod f(x)), then g(x) + h(z) =
g1(z) + hi(z) (mod f(z)) and g(x)h(z) = g1(x)hi(z) (mod f(x)).

Let f(x) beafixed polynomial in F'[z]. The equivalenceclass of apolynomial g(z) €
F[z] isthe set of all polynomiasin F[x] congruentto g(x) modulo f(z). From properties
(i), (iii), and (iv) above, it can be seen that the relation of congruence modulo f(x) par-
titions F'[x] into equivalence classes. If g(x) € Flx], then long division by f(z) yields
unique polynomialsq(xz), r(z) € Flz] suchthat g(z) = q(x) f(z) + r(x), wheredeg r(z)
< deg f(z). Hence every polynomial g(z) is congruent modulo f(z) to a unique polyno-
mial of degree less than deg f(x). The polynomial (x) will be used as representative of
the equivalence class of polynomials containing g(z).

g(x) (mod f(z)).
s(z) (mod f(z)), then

Definition F[z]/(f(x)) denotes the set of (equivalence classes of) polynomialsin F[z]
of degreelessthann = deg f(z). Additionand multiplication are performed modulo f (z).

Fact F[z]/(f(z)) isacommutativering.

Fact If f(x) isirreducibleover F', then F[z]/(f(x)) isafield.

2.5.5 Vector spaces
2.199 Definition A vector space V' over afield F' isan abelian group (V, +), together with a

multiplication operatione : F' x V' — V (usually denoted by juxtaposition) such that for
al a,b e Fandv,w € V, thefollowing axioms are satisfied.
() a(v+w) = av + aw.

(ii) (a+b)v =av + bv.

(iii) (ab)v = a(bv).

(iv) 1v = v.
Theelementsof V arecalled vectors, whilethe elementsof F arecalled scalars. Thegroup
operation + is called vector addition, while the multiplication operation is called scalar
multiplication.
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2.200

2.201

2.202

2.203

2.204

2.205

2.206

2.207

Definition LetV beavector spaceover afield F'. A subspaceof V' isan additivesubgroup
U of V whichis closed under scalar multiplication, i.e., av € U foradla € Fandv € U.

Fact A subspace of avector spaceis also avector space.

Definition Let.S = {vy,vs,... ,v,} beafinite subset of avector space V over afield F.

(i) A linear combination of .S is an expression of theform a;v1 + azvs + -+ + an Uy,
whereeacha; € F.

(i) Thespanof S, denoted (S), isthe set of all linear combinationsof S. The span of S
isasubspace of V.

(iii) If U isasubspaceof V, then Sissadtospan U if (S) = U.

(iv) Theset S islinearly dependent over F' if there exist scdars ay, as, . .. , ay, not al
zero, such that aivy1 + asve + - -+ + a,v, = 0. If no such scalars exist, then S is
linearly independent over F'.

(V) A linearly independent set of vectorsthat spansV iscaled abasisfor V.

Fact Let V beavector space.
(i) If V hasafinite spanning set, then it has abasis.
(if) If V hasabasis, thenin fact all bases have the same number of elements.

Definition If avector space V hasabasis, then the number of elementsin abasisiscalled
the dimension of V', denoted dim V.

Example If Fisany field, then the n-fold Cartesian product V= F x F' x --- x F'isa
vector space over F' of dimension n. The standard basisfor V is {ej, e, ... , e, }, where
e; isavector with al in the i*® coordinate and 0’s el sewhere. O

Definition Let E be an extension field of F'. Then E can be viewed as a vector space
over the subfield F', where vector addition and scalar multiplication are simply the field
operations of addition and multiplicationin E. The dimension of thisvector spaceis called
the degree of E over F, and denoted by [E : F]. If thisdegreeisfinite, then E iscalled a
finite extension of F'.

Fact Let F', E, and L befields. If L isafinite extension of £ and E is afinite extension
of F', then L isaso afinite extension of F' and

[L:F)=|[L:E]E:F|.

2.6 Finite fields

2.6.1 Basic properties
2.208 Definition A finitefield isafield F which containsafinite number of elements. Theorder

of F' isthe number of elementsin F.
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2.209

2.210

2.211

2.212

2.213

2.214

2.215

Fact (existence and uniqueness of finite fields)

(i) If Fisafinitefield, then F' containsp™ elementsfor someprimep andinteger m > 1.
(i) For every prime power order p™, thereisaunique (up to isomorphism) finitefield of
order p™. Thisfield is denoted by [F,,=, or sometimesby GF(p™).

Informally speaking, two fields are isomorphic if they are structurally the same, al-
though the representation of their field elements may be different. Notethat if p isaprime
then Z,, is afield, and hence every field of order p is isomorphic to Z,. Unless otherwise
stated, the finite field I, will henceforth be identified with Z,,.

Fact If F, isafinitefield of order ¢ = p™, p aprime, then the characteristic of I, isp.
Moreover, F, containsacopy of Z, asasubfield. Hence I, can be viewed as an extension
field of Z,, of degree m.

Fact (subfieldsof afinitefield) Let ', beafinitefield of order ¢ = p™. Thenevery subfield
of F, hasorder p™, for somen that is a positive divisor of m. Conversely, if n isapositive
divisor of m, then there is exactly one subfield of F, of order p™; an element a € F, isin
the subfield I, if and only if a?”" = a.

Definition Thenon-zeroelementsof F, form agroup under multiplication called themul-
tiplicative group of ¥, denoted by F;.

Fact I isacyclic group of order ¢ — 1. Hencea? = a fordl a € T,

Definition A generator of the cyclic group I}, is called a primitive element or generator
of .

Fact If a,b € Fy, afinitefield of characteristic p, then

(@a+b)? =a® +v* foralt>0.

2.6.2 The Euclidean algorithm for polynomials

2.216

2.217

Let Z,, be the finite field of order p. The theory of greatest common divisors and the Eu-
clidean algorithm for integers carries over in a straightforward manner to the polynomial
ring Z,[z] (and more generally to the polynomia ring F'[x], where F is any field).

Definition Letg(x), h(z) € Z,[z], wherenot both are 0. Then the greatest common divi-
sor of g(z) and h(x), denoted ged(g(z), h(z)), isthe monic polynomial of greatest degree
in Z,[z] which divides both g(z) and h(z). By definition, ged(0,0) = 0.

Fact Z,[x] is aunique factorization domain. That is, every non-zero polynomial f(x) €
Z,[z] has afactorization

f(@) = afi(2) f2(2) - - fr(x)*,

wherethe f;(z) are distinct monic irreducible polynomialsin Z,, [z], the e; are positivein-
tegers, anda € Z,. Furthermore, thefactorization isunigque up to rearrangement of factors.

Thefollowing is the polynomial version of the Euclidean algorithm (cf. Algorithm 2.104).
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2.218

2.219

2.220

2.221

2.222

2.223

Algorithm Euclidean algorithm for Z,[z]
INPUT: two polynomials g(z), h(z) € Zy[z].
OUTPUT: the greatest common divisor of g(z) and h(x).
1. While h(z) # 0 do thefollowing:
1.1 Setr(z)<g(z) mod h(z), g(z)«h(z), h(z)-r(z).
2. Return(g(z)).

Definition A Z,-operation means either an addition, subtraction, multiplication, inver-
sion, or divisionin Z,.

Fact Supposethatdeg g(x) < manddeg h(z) < m. Then Algorithm2.218 hasarunning
time of O(m?) Z,-operations, or equivalently, O(m?(Ig p)?) bit operations.

Aswith the case of theintegers (cf. Algorithm 2.107), the Euclidean algorithm can be
extended so that it also yields two polynomials s(z) and ¢(z) satisfying

s(z)g(x) + t(z)h(z) = ged(g(x), h(z)).

Algorithm Extended Euclidean algorithm for Z,[z]
INPUT: two polynomials g(z), h(z) € Zp[z].
OUTPUT: d(z) = ged(g(z), h(z)) and polynomials s(z), t(xz) € Zp[x] which satisfy
s(z)g(z) + t(x)h(z) = d(z).
1. If h(z) = 0 then set d(z)+g(x), s(x)<+1, t(x)<«0, and return(d(z),s(x) t(z)).
2. Set sa(x)+1, s1(z)<0, ta(x)<0, ti(x)+1.
3. While h(z) # 0 do the following:
3.1 g(x)+g(z) div h(z), r(x)+g(x) — h(zx)q(z).
3.2 s(x)+s2(z) — q(x)s1(x), t(x)+t2(x) — q(x)t1(z).
3.3 g(x)«h(z), h(z)+r(z).
3.4 sy(xz)s1(x), s1(x)s(x), ta(x)ti(x), and ti(x)«t(x).
4. Setd(z)<g(z), s(x)sa(x), t(z)ta(x).
5. Return(d(x),s(x),t(x)).

Fact (runningtime of Algorithm 2.221)
(i) Thepolynomidss(x) andt(x) given by Algorithm 2.221 have small degree; that is,
they satisfy deg s(z) < degh(x) and degt(x) < deg g(z).
(ii) Supposethat deg g(x) < manddegh(xz) < m. ThenAlgorithm 2.221 hasarunning
time of O(m?) Z,-operations, or equivalently, O(m?(1g p)?) bit operations.

Example (extended Euclidean algorithmfor polynomials) The following are the steps of
Algorithm 2.221 with inputs g(z) = 2'© + 2% + 2® + 2% + 2° + 2* + 1 and h(z) =
20+ 2% + 2% + 2% + 2% + 1inZyx)].
Initialization

s2(x)<1, s1(x)<=0, ta(x)+0, t1(x)+1.
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Iteration 1
q(z)z + 1, r(x)e2® + 27 + 25 + 22 + 2,
s(x)«1, t(x)+z+1,
g(@)a® +2b + 2% + 2% + 22 + 1, h(z)+a2® + 27 + 2% + 2% + 1,
s2(2)4=0, s1(x)+1, ta(x)+1, t1(x)z + 1.
Iteration 2
q(x)z+1, r(z)a® + 22 + 2 + 1,
s(z)+x + 1, t(x)+2?,
g@)a® + 2" + 28 + 22 + 1, h(z)25 + 22 + 2+ 1,
sa(x)¢1, si(z)x + 1, to(x)—x + 1, t1(z)+2>.
Iteration 3
gx)ezd + 22+ +1, r(z)2® + 2+ 1,
s(x)at, t(x)e2® +at + 23 + 22+ + 1,
g(x)a® + 22 + 2+ 1, h(z)e2® + 2 +1,
sa(z)—z + 1, s1(z)a?, ta(x)2?, ti(z)a® + 2t + 23 + 22 + 2 + 1.
Iteration 4
q(z)+2? + 1, r(z)«-0,
s()ab + 2t +z+ 1, t(x)ea" + 28 + 22 + 2 + 1,
g(z)+a® +x + 1, h(x)+0,
sa(w)z?, si(z)ab + a2t + 2 +1,
to(z)e2d +at+ 2+ 22+ + 1, ty(x)ea" + 28+ 22+ 2+ 1.

Hence ged(g(z), h(z)) = 2* + = + 1 and
(z1)g(z) + (° +2* +2® + 2* + 2 + Dh(z) = 2° + o + 1. O

2.6.3 Arithmetic of polynomials

2.224

2.225

A commonly used representation for the elements of afinitefield F,, whereg = p™ and p
isaprime, isapolynomial basisrepresentation. If m = 1, thenF, isjust Z,, and arithmetic
is performed modulo p. Since these operations have already been studied in Section 2.4.2,
it is henceforth assumed that m > 2. The representation is based on Fact 2.198.

Fact Let f(z) € Z,[z] beanirreducible polynomial of degree m. Then Z,[z]/(f(z)) is
afinitefield of order p™. Addition and multiplication of polynomialsis performed modulo

f(@).

Thefollowing fact assures that all finite fields can be represented in this manner.

Fact For eachm > 1, there exists a monic irreducible polynomial of degree m over Z,.
Hence, every finite field has a polynomial basis representation.

An efficient agorithm for finding irreducible polynomialsover finitefieldsis presented
in §4.5.1. Tables4.6 and 4.7 list some irreducible polynomiasover the finite field Z.

Henceforth, the elements of the finite field - will be represented by polynomialsin
Z,[z] of degree < m. If g(z), h(z) € Fpm, then addition is the usual addition of polyno-
miasin Z,[z]. The product g(x)h(z) can beformed by first multiplying g(z) and h(z) as
polynomials by the ordinary method, and then taking the remainder after polynomial divi-
sion by f(x). Multiplicative inversesin IF,,» can be computed by using the extended Eu-
clidean algorithm for the polynomial ring Z,, [x].
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2.226 Algorithm Computing multiplicative inverses in Fpm

INPUT: anon-zeropolynomia g(z) € Fpm. (Theelementsof thefield F,,~ arerepresented
asZy(x]/(f(z)), where f(z) € Z,[x] isanirreducible polynomial of degree m over Z,.)
OUTPUT: g(z)~* € Fym.
1. Usetheextended Euclidean algorithm for polynomials(Algorithm 2.221) to find two
polynomids s(z) and t(z) € Z,[z] such that s(x)g(z) + t(z) f(z) = 1.
2. Return(s(z)).

Exponentiationin IF,» can be done efficiently by the repeated square-and-multiply al-
gorithm (cf. Algorithm 2.143).

2.227 Algorithm Repeated square-and-multiply algorithm for exponentiation in Fpm

INPUT: g(x) € Fpm and aninteger 0 < k < p™ — 1 whose binary representation is
k=Y""_, k2" (Thefield F,m isrepresented as Z, [z]/(f(x)), where f(z) € Zy[z] isan
irreducible polynomial of degree m over Z,.)
OUTPUT: g(x)* mod f(z).
1. Set s(x)<1. If k = 0 thenreturn(s(x)).
2. Set G(x)«g(z).
3. If kg = 1 then set s(z)«—g(z).
4. For ¢ from 1 to ¢ do the following:
4.1 Set G(z)+G(z)? mod f(z).
4.2 If k; = 1then set s(z)«G(x) - s(x) mod f(x).
5. Return(s(z)).

The number of Z,-operations for the basic operationsin Fy,~ is summarized in Ta-

ble2.8.
Operation ‘ Number of Z,-operations
Addition g(x) + h(x) O(m)
Subtraction g(x) — h(z) O(m)
Multiplication g(z) - h(z) O(m?)
Inversion g(z)™1 O(m?)
Exponentiation  g(x)*, k < p™ O((1g p)m?)

Table 2.8: Complexity of basic operations in Fp,m.

Insomeapplications(cf. §4.5.3), it may be preferableto use aprimitive polynomial to define
afinitefield.

2.228 Definition An irreducible polynomial f(z) € Z,[x] of degree m is caled a primitive
polynomial if x isagenerator of F.., the multiplicative group of all the non-zero elements

inFym = Zy[a] /(f(x)).

2.229 Fact Theirreducible polynomid f(z) € Z,[z] of degree m is a primitive polynomial if
and only if f(x) dividesz* — 1 for k = p™ — 1 and for no smaller positive integer .
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2.230

2.231

Fact For eachm > 1, there existsamonic primitive polynomial of degreem over Z,,. In
fact, there are precisely ¢(p™ — 1)/m such polynomials.

Example (thefinitefield F,4 of order 16) It can beverified (Algorithm 4.69) that the poly-
nomia f(z) = z* + z + 1 isirreducible over Z,. Hence the finite field F,« can be repre-
sented as the set of all polynomialsover I, of degreelessthan 4. That is,
Fou = {azz® + aga® + a1z +ao | a; € {0,1}}.
For convenience, the polynomia azz® + asx? + a1 + ao is represented by the vector
(agazalao) of Iength 4, and
Foa = {(a3a2a1a0) | a; € {0, 1}}
The following are some examples of field arithmetic.
(i) Field elementsare simply added componentwise: for example, (1011) + (1001) =
(0010).
(i) Tomultiply thefield elements (1101) and (1001), multiply them as polynomialsand
then take the remainder when this product is divided by f(x):
(3 +224+1)-(2®+1) = 28 4+2°+22+1
= 24274241 (mod f(x)).
Hence (1101) - (1001) = (1111).
(iii) The multiplicative identity of Fos is (0001).
(iv) Theinverseof (1011) is(0101). To verify this, observe that
(B +z+1)-2°+1) = d+22+2+1
1 (mod f(z)),

whence (1011) - (0101) = (0001).
f(x) isaprimitive polynomial, or, equivalently, the field element = = (0010) is a genera-
tor of F3.. This may be checked by verifying that all the non-zero elementsin F,. can be
obtained as a powers of x. The computations are summarized in Table 2.9. O

A list of some primitive polynomialsover finite fields of characteristic twoisgivenin
Table 4.8.

2.7 Notes and further references

§2.1

§2.2

A classic introduction to probability theory is thefirst volume of the book by Feller [392].
The material on the birthday problem (§2.1.5) is summarized from Nishimura and Sibuya
[931]. See also Girault, Cohen, and Campana [460]. The material on random mappings
(8§2.1.6) is summarized from the excellent article by Flgjolet and Odlyzko [413].

Theconcept of entropy wasintroduced in the seminal paper of Shannon[1120]. Theseideas
werethen applied to develop amathematical theory of secrecy systems by Shannon [1121].
Hellman [548] extended the Shannon theory approach to cryptography, and this work was
further generalized by Beauchemin and Brassard [80]. For an introduction to information
theory seethe booksby Welsh [1235] and Goldieand Pinch [464]. For more compl etetreat-
ments, consult Blahut [144] and McEliece [829].
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| i | z'mod z* + x4+ 1 | vector notation |
0 1 (0001)
1 x (0010)
2 z? (0100)
3 z3 (1000)
4 z+1 (0011)
5 22+ (0110)
6 3 4 22 (1100)
7 2’ +a+1 (1011)
8 z? +1 (0101)
9 2 +z (1010)
10 2 +z+1 (0111)
11 24t (1110)
12| 2®+22+2+1 (1111)
13 24?1 (1101)
14 23+ 1 (1001)
Table 2.9: The powers of z modulo f(z) = z* + = + 1.
§2.3
Among the many introductory-level books on algorithms are those of Cormen, Leiserson,
and Rivest [282], Rawlins [1030], and Sedgewick [1105]. A recent book on complexity
theory is Papadimitriou [963]. Example 2.58 is from Graham, Knuth, and Patashnik [520,
p.441]. For an extensive list of NP-complete problems, see Garey and Johnson [441].
82.4
Two introductory-level books in number theory are Giblin [449] and Rosen [1069]. Good
number theory books at a more advanced level include Koblitz [697], Hardy and Wright
[540], Ireland and Rosen [572], and Niven and Zuckerman [932]. The most comprehensive
workson the design and analysis of algorithms, including number theoretic algorithms, are
the first two volumes of Knuth [691, 692]. Two more recent books exclusively devoted to
this subject are Bach and Shallit [70] and Cohen [263]. Facts 2.96 and 2.102 are due to
Rosser and Schoenfeld [1070]. Shallit [1108] describes and analyzes three algorithms for
computing the Jacobi symbol.
§2.5
Among standard referencesin abstract algebraare the books by Herstein [556] and Hunger-
ford [565].
§2.6

An excellent introduction to finite fields is provided in McEliece [830]. An encyclopedic
treatment of the theory and applications of finite fields is given by Lidl and Niederreitter
[764]. Two books which discuss various methods of representing the elements of afinite
field are those of Jungnickel [646] and Menezes et al. [841].
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