
TE
AM
FL
Y

Team-Fly®

RSA Security’s
Official Guide to

Cryptography

Steve Burnett and Stephen Paine

Osborne/McGraw-Hill
New York Chicago San Francisco

Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

Copyright © 2001 by The McGraw--Hill Companies. All rights reserved. Manufactured in the United States of America. Except as per-
mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-219225-9

The material in this eBook also appears in the print version of this title:0-07-213139-X.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-
marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe-
ment of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior con-
sent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your
right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the con-
tent of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause what-
soever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072192259

 abc
McGraw-Hill

To Pao-Chi, Gwen, Ray, Satomi, Michelle, Alexander,
Warren, Maria, Daniel, and Julia

—Steve Burnett

To Danielle, thanks for understanding while I worked on
this book

To Alexis and Elizabeth, a father could not ask for better
children

—Stephen Paine

This page intentionally left blank.

Contents
Credits xiii

Foreword xv

Acknowledgments xvii

Preface xix

About the Authors xxii

Chapter 1 Why Cryptography? 1

Security Provided by Computer Operating Systems 2

How Operating Systems Work 2

Default OS Security: Permissions 3

Attacks on Passwords 4

Attacks That Bypass Operating Systems 6

Data Recovery Attack 6

Memory Reconstruction Attack 9

Added Protection Through Cryptography 11

The Role of Cryptography in Data Security 12

Chapter 2 Symmetric-Key Cryptography 15

Some Crypto Jargon 18

What Is a Key? 20

Why Is a Key Necessary? 22

Generating a Key 22

A Random Number Generator 27

A Pseudo-Random Number Generator 28

Attacks on Encrypted Data 30

Attacking the Key 30

Breaking the Algorithm 36

Measuring the Time It Takes to Break Your Message 37

Symmetric Algorithms: The Key Table 37

Symmetric Algorithms: Block Versus Stream Ciphers 38

Block Ciphers 38

Stream Ciphers 41

Block Versus Stream: Which Is Better? 45

Digital Encryption Standard 46

Triple DES 47

Commercial DES Replacements 49

Advanced Encryption Standard 50

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Summary 51

Real-World Example: Oracle Databases 51

Chapter 3 Symmetric-Key Management 53

Password-Based Encryption 54

Programming Convenience 59

Breaking PBE 63

Slowing Down an Attack on a Password 64

Good Passwords 65

Password Generators 67

Hardware-Based Key Storage 69

Tokens 69

Crypto Accelerators 73

Hardware Devices and Random Numbers 75

Biometrics 75

Summary 76

Real-World Examples 76

Keon Desktop 77

Other Products 79

Chapter 4 The Key Distribution Problem and Public-Key Cryptography 81

Sharing Keys in Advance 83

Problems With This Scheme 84

Using a Trusted Third Party 85

Problems With This Scheme 86

Public-Key Cryptography and the Digital Envelope 88

Security Issues 91

Breaking a Public-Key Algorithm 92

Some History of Public-Key Cryptography 93

How Public-Key Cryptography Works 94

The RSA Algorithm 98

The DH Algorithm 105

The ECDH Algorithm 111

Comparing the Algorithms 117

Security 117

Key Sizes 119

Performance 120

Transmission Size 122

Interoperability 122

ContentsVI

Protecting Private Keys 122

Using the Digital Envelope for Key Recovery 123

Key Recovery via a Trusted Third Party 124

Key Recovery via a Group of Trustees 126

Key Recovery via Threshold Schemes 127

How a Threshold Scheme Works 130

Summary 132

Real-World Example 133

Chapter 5 The Digital Signature 137

The Uniqueness of a Digital Signature 138

Message Digests 141

Collisions 145

The Three Important Digest Algorithms 148

A Representative of Larger Data 149

Data Integrity 153

Back to Digital Signatures 154

Trying to Cheat 156

Implementing Authentication, Data Integrity, and Nonrepudiation 159

Understanding the Algorithms 159

RSA 160

DSA 161

ECDSA 163

Comparing the Algorithms 163

Security 163

Performance 164

Transmission Size 165

Interoperability 165

Protecting Private Keys 166

Introduction to Certificates 166

Key Recovery 169

Summary 169

Real-World Example 170

Chapter 6 Public-Key Infrastructures and the X.509 Standard 171

Public-Key Certificates 172

Unique Identifiers 174

Standard Version 3 Certificate Extensions 175

Entity Names 177

VIIContents

ASN.1 Notation and Encoding 179

The Components of a PKI 179

Certification Authority 180

Registration Authority 180

Certificate Directory 181

Key Recovery Server 182

Management Protocols 182

Operational Protocols 184

Registering and Issuing Certificates 184

Revoking a Certificate 185

Certificate Revocation Lists 186

Suspending a Certificate 190

Authority Revocation Lists 190

Trust Models 191

Certificate Hierarchies 192

Cross-Certification 193

X.509 Certificate Chain 194

The Push Model Versus the Pull Model 195

Managing Key Pairs 196

Generating Key Pairs 197

Protecting Private Keys 197

Managing Multiple Key Pairs 198

Updating Key Pairs 199

Keeping a History of Key Pairs 200

Deploying a PKI 201

The Future of PKI 201

Roaming Certificates 201

Attribute Certificates 203

Certificate Policies and Certification Practice Statements 204

Summary 206

Real-World Examples 206

Keon Certificate Server 207

Keon Web PassPort 207

Chapter 7 Network and Transport Security Protocols 209

Internet Protocol Security 209

IP Security Architecture 210

IPSec Services 211

The Authentication Header Protocol 211

Integrity Check Value Calculation 212

ContentsVIII

Transport and Tunnel Modes 213

The Encapsulating Security Payload Protocol 215

Encryption Algorithms 216

ESP in Transport and Tunnel Modes 217

Security Associations 218

Combining Security Associations 219

Security Databases 220

Security Policy Database 222

Security Association Database 222

Key Management 223

Internet Key Exchange 224

Secure Sockets Layer 227

The History of SSL 227

Session and Connection States 228

The Record Layer Protocol 230

The Change Cipher Spec Protocol 231

The Alert Protocol 232

The Handshake Protocol 233

The Client Hello Message 234

The Server Hello Message 235

The Server Certificate Message 236

The Server Key Exchange Message 236

The Certificate Request Message 237

The Server Hello Done Message 237

The Client Certificate Message 237

The Client Key Exchange Message 238

The Certificate Verify Message 238

The Finished Message 239

Ending a Session and Connection 239

Resuming Sessions 240

Cryptographic Computations 240

Encryption and Authentication Algorithms 240

Summary 241

Real-World Examples 242

Chapter 8 Application-Layer Security Protocols 243

S/MIME 243

Overview 244

S/MIME Functionality 245

Cryptographic Algorithms 245

IXContents

S/MIME Messages 247

Enhanced Security Services 252

Interoperability 253

Secure Electronic Transaction (SET) 253

Business Requirements 254

SET Features 255

SET Participants 256

Dual Signatures 257

SET Certificates 258

Payment Processing 260

Summary 264

Real-World Examples 265

Chapter 9 Hardware Solutions: Overcoming Software Limitations 267

Cryptographic Accelerators 267

Authentication Tokens 269

Token Form Factors 270

Noncontact Tokens 270

Contact Tokens 275

Smart Cards 275

Smart Card Standards 276

Types of Smart Cards 276

Readers and Terminals 278

JavaCards 279

History and Standards 279

JavaCard Operations 280

Other Java Tokens 281

Biometrics 282

Biometric Systems Overview 282

Recognition Methods 285

Biometric Accuracy 288

Combining Authentication Methods 289

Summary 291

Vendors 291

Chapter 10 Digital Signatures: Beyond Security 293

Legislative Approaches 295

Legal Guidelines from the American Bar Association 295

Legal Concepts Related to Digital Signatures 296

ContentsX

TE
AM
FL
Y

Team-Fly®

Nonrepudiation 296

Authentication 298

Written Versus Digital Signatures 299

Requirements for the Use of Digital Signatures 299

Public Key Infrastructures 300

Control of Key Revocation 300

Time-Stamping 300

Current and Pending Legislation 302

The E-SIGN Act 303

Dealing with Legal Uncertainties 306

Summary 307

Real-World Examples 307

Chapter 11 Doing It Wrong: The Break-Ins 309

Measuring Losses 309

Types of Security Threats 310

Unauthorized Disclosure of Data 311

Unauthorized Modification of Data 311

Unauthorized Access 312

Disclosure of Network Traffic 313

Spoofing of Network Traffic 314

Identifying Intruders 314

Insiders 315

Hackers 315

Terrorists 315

Foreign Intelligence Services 316

Hactivists 316

Intruder Knowledge 317

Case Studies 317

Data in Transit 317

Data at Rest 318

Authentication 319

Implementation 320

Information Security: Law Enforcement 321

Summary 322

Chapter 12 Doing It Right: Following Standards 323

Security Services and Mechanisms 324

Authentication 324

XIContents

Confidentiality 326

Integrity 326

Nonrepudiation 327

Standards, Guidelines, and Regulations 327

The Internet Engineering Task Force 327

ANSI X9 328

National Institute of Standards and Technology 328

Common Criteria 330

The Health Insurance Portability Act 330

Developer Assistance 331

Insurance 332

Security Research 332

Case Studies 333

Implementation 333

Authentication 334

Data at Rest 335

Data in Transit 336

Summary 336

Appendix A Bits, Bytes, Hex, and ASCII 339

Appendix B A Layman’s Guide to a Subset of ASN.1, BER, and DER 347

Appendix C Further Technical Details 387

Index 407

ContentsXII

Credits
Oracle is a registered trademark of Oracle Corporation. Various product
and service names referenced herein may be trademarks of Oracle
Corporation. All other product and service names mentioned may be
trademarks of their respective owners.

The ALX 300 is courtesy of Compaq Computer Corporation.

The ikey 2000 and the CryptoSwift accelerator is courtesy of Rainbow
Technologies, Inc.

Data Key is courtesy of Datakey Inc.

The Java Ring is courtesy of Dallas Semiconductor Corp.

The box blue accelerator and card reader is courtesy of nCipher Inc.

The Luna CA3—Photos courtesy of Chrysalis-ITS®, Inc.

The Smarty Smart Card Reader is courtesy of SmartDisk Corporation.

The RSA SecurID Card and token are courtesy of RSA Security Inc.

The BioMouse Plus is courtesy of American Biometric Company.

The XyLoc proximity card is courtesy of Ensure Technologies.

The Trusted Time products are courtesy of Datum.

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Foreword
Welcome to the second book from RSA Press, RSA Security’s Official
Guide to Cryptography!

As the Internet becomes a more pervasive part of daily life, the need
for e-security becomes even more critical. Any organization engaged in
online activity must assess and manage the e-security risks associated
with this activity. Effective use of cryptographic techniques is at the core
of many of these risk-management strategies. This book provides a prac-
tical guide for the use of cryptographic e-security technologies to provide
for privacy, security, and integrity of an organization’s most precious
asset: data.

It is an exciting time for cryptography, with important technical, busi-
ness, and legal events occurring in quick succession. This book can help
the reader better understand the technology behind these events.

In January 2000, the United States Government announced a signifi-
cant relaxation in restrictions on the export of strong cryptography. This
decision has permitted U.S. companies to now compete for cryptographic
business on a worldwide basis. Previously, many of the algorithms dis-
cussed in this book were treated as munitions and were subject to severe
restrictions on their export from the U.S.

In September 2000, the patent on the RSA algorithm, arguably the
most important patent in cryptography, expired. Now any firm or indi-
vidual can create implementations of this algorithm, further increasing
the pervasiveness of one of the most widespread technologies in the his-
tory of computing.

In October 2000, the United States National Institute of Standards and
Technology announced its selection of the winner of the Advanced Encryp-
tion Standard (AES) selection process, an algorithm called Rijndael devel-
oped by two Belgian researchers. The AES algorithm is intended to
replace the venerable, and increasingly vulnerable Data Encryption Stan-
dard (DES) algorithm. AES is expected to become the most widely used
algorithm of its type in a short time.

The security technology industry has undergone explosive growth in a
short period of time, with many new options emerging for the deployment
of e-security techniques based on cryptography. Ranging from new devel-
opments in cryptographic hardware to the use of personal smart cards in
public key infrastructures, the industry continues to increase the range
of choices available to address e-security risks. This book provides the

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

reader with a solid foundation in the core cryptographic techniques of
e-security—including RSA, AES, and DES mentioned previously, and
many others—and then builds on this foundation to discuss the use of
these techniques in practical applications and cutting-edge technologies.

While this book does discuss the underlying mathematics of cryptog-
raphy, its primary focus is on the use of these technologies in familiar,
real-world settings. It takes a systems approach to the problems of using
cryptographic techniques for e-security, reflecting the fact that the degree
of protection provided by an e-security deployment is only as strong as the
weakest link in the chain of protection.

We hope that you will enjoy this book and the other titles from RSA
Press. We welcome your comments as well as your suggestions for future
RSA Press books. For more information on RSA Security, please visit our
web site at www.rsasecurity.com; more information on RSA Press can
be found at www.rsapress.com.

Burt Kaliski
Director and Chief Scientist

RSA Laboratories
bkaliski@rsasecurity.com

ForewordXVI

Acknowledgments
The first person I’d like to thank is Stephen Paine. He did the work of
putting together the original proposal and outline. Later on, he reorga-
nized the structure to make the book better. He planned; I just wrote.

Betsy Hardinger and LeeAnn Pickrell at Osborne/McGraw Hill are the
two editors who made many suggestions (most of which we accepted) to
improve the language, readability, and flow of the content. Stephen Paine
and I have our names on the book, but I think they deserve plenty of
credit for their contributions.

Blake Dournaee of RSA did a great job of reviewing. If it hadn’t been
for Blake, I would be suffering from great embarrassment for a couple of
mistakes he caught. Of course, any errors still residing in this book belong
entirely to Stephen and me.

We received help from many people for the examples. Mark Tessin of
Reynolds Data Recovery and Dennis Vanatta of 4Sites Internet Services
gave me the information and screen shot for the data recovery discussion
in Chapter 1. Mary Ann Davidson and Kristy Browder of Oracle helped
me put together the example in Chapter 2. For the Keon example, Peter
Rostin and Nino Marino of RSA were my sources.

The people at Osborne/McGraw Hill said we had complete control over
the acknowledgments, so I’d like to thank some people who didn’t con-
tribute to the book so much as contributed to my career. If it hadn’t been
for Dave Neff at Intergraph, I don’t think I would have been much of a
programmer and hence never could have been successful enough at RSA
to be chosen to write this book. It was Victor Chang, then the VP of engi-
neering at RSA, who hired me, let me do all kinds of wonderful things in
the field and industry of cryptography, and made RSA engineering a great
place to work. The geniuses of RSA Labs, especially Burt Kaliski and Matt
Robshaw, taught me most of the crypto I know today, and the engineers
at RSA, especially Dung Huynh and Pao-Chi Hwang, taught me all about
the crypto code.

—Steve Burnett

The first person I’d like to thank is Steve Burnett. I am positive that if
he had not agreed to co-author this book with me, I might have given up
before I began.

RSA Press definitely must be thanked for giving Steve Burnett and me
a chance to write this book. Also, I’d like to thank Steve Elliot, Alex
Corona, Betsy Hardinger, LeeAnn Pickrell, and all of the other employees
of Osborne/McGraw Hill who worked to make this book possible.

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Both Jessica Nelson and Blake Dournaee did an excellent job provid-
ing technical review—thank you. I’d like to offer a special thanks to
Mohan Atreya and Scott Maxwell of RSA Security; both were a source of
excellent ideas and technical input.

Thanks to my friends at RSA Security for being patient and under-
standing while I worked long hours on the book.

I especially want to thank Jerry Mansfield, a great friend who taught
me to take life as it comes. Finally, I would like to thank my family for
their support.

—Stephen Paine

AcknowledgmentsXVIII

Preface
Application developers never used to add security to their products
because the buying public didn’t care. To add security meant spending
money to include features that did not help sales. Today, customers
demand security for many applications. The Federal Bureau of Investi-
gation published the following Congressional Statement on February 16,
2000:

“There were over 100 million Internet users in the United States in 1999.
That number is projected to reach 177 million in United States and 502 mil-
lion worldwide by the end of 2003. Electronic commerce has emerged as a
new sector of the American economy, accounting for over $100 billion in sales
during 1999; by 2003 electronic commerce is projected to exceed $1 trillion.”

At the same time, the Computer Security Institute (CSI) reported an
increase in cybercrime, “55% of the respondents to our survey reported
malicious activity by insiders.” Knowing this, you can be sure growing cor-
porations need security products.

The most important security tool is cryptography. Developers and engi-
neers need to understand crypto in order to effectively build it into their
products. Sales and marketing people need to understand crypto in order
to prove the products they are selling are secure. The customers buying
those products, whether end users or corporate purchasing agents, need
to understand crypto in order to make well-informed choices and then to
use those products correctly. IT professionals need to understand crypto
in order to deploy it properly in their systems. Even lawyers need to
understand crypto because governments at the local, state, and national
level are enacting new laws defining the responsibilities of entities hold-
ing the public’s private information.

This book is an introduction to crypto. It is not about the history of
crypto (although you will find some historical stories). It is not a guide to
writing code, nor a math book listing all the theorems and proofs of the
underpinnings of crypto. It does not describe everything there is to know
about crypto; rather, it describes the basic concepts of the most widely
used crypto in the world today. After reading this book, you will know

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

what computer cryptography does and how it’s used today. For example,
you will

� Understand the difference between a block cipher and a stream
cipher and know when to use each (if someone tries to sell you an
application that reuses a stream cipher’s key, you will know why you
shouldn’t buy it).

� Know why you should not implement key recovery on a signing-only
key.

� Understand what SSL does and why it is not the security magic
bullet solving all problems, which some e-commerce sites seem to
imply.

� Learn how some companies have effectively implemented crypto in
their products.

� Learn how some companies have used crypto poorly (smart people
learn from their own mistakes; brilliant people learn from other
people’s mistakes).

There are, of course, many more things you will learn in this book.
Chapter 1 delves into why cryptography is needed today; Chapters 2

through 5 describe the basic building blocks of crypto, such as symmetric
keys and public keys, password-based encryption, and digital signatures.
In Chapters 6 through 8, you will see how these building blocks are used
to create an infrastructure through certificates and protocols. In Chapter
9, you will learn how specialized hardware devices can enhance your secu-
rity. Chapter 10 explores the legal issues around digital signatures.
Finally, Chapters 11 and 12 show you some real-world examples of com-
panies doing it wrong and doing it right.

Throughout this book we use some standard computer hexadecimal
notation. For instance, we might show a cryptographic key such as the fol-
lowing:

0x14C608B9 62AF9086

Many of you probably know what that means, but if you don’t, read
Appendix A. It’s all about how the computer industry displays bits and
bytes in hexadecimal. It also describes ASCII, the standard way letters,
numerals, and symbols are expressed in computers.

PrefaceXX

TE
AM
FL
Y

Team-Fly®

In Chapter 6, you’ll find a brief description of ASN.1 and BER/DER
encoding. If you want to drill down further into this topic, read
Appendix B.

In Appendix C, you will find further detailed information about many
of the topics discussed in the book. These details are not crucial to under-
standing the concepts presented in the main body of the book; but for
those who wish to learn more about the way crypto is used today, this
appendix will offer interesting reading.

Finally, the accompanying CD contains the RSA Labs Frequently
Asked Questions (FAQ) about cryptography. The FAQ contains more
detailed information about many of the concepts presented in this book.
For instance, the FAQ describes much of the underlying math of crypto
and the political issues surrounding export, and it offers a glossary and
bibliography. Our goal in writing this book was to explain the crypto that
the vast majority of you need to know. If you want more detail, start with
the FAQ.

XXIPreface

About the Authors

Steve Burnett With degrees in math from Grinnell College in Iowa
and The Claremont Graduate School in California, Steve Burnett has
spent most of his career converting math into computer programs, first
at Intergraph Corporation and now with RSA Security. He is currently
the lead crypto engineer for RSA’s BSAFE Crypto-C and Crypto-J prod-
ucts, which are general purpose crypto software development kits in C
and Java. Burnett is also a frequent speaker at industry events and col-
lege campuses.

Stephen Paine Stephen Paine has worked in the security field
throughout most of his career—formerly for the United States Marine
Corps and SUN Microsystems. He is currently a systems engineer for
RSA Security, where he explains security concepts to corporations and
developers worldwide and provides training to customers and RSA
employees.

About the Reviewers

Blake Dournaee Blake Dournaee joined RSA Security’s developer sup-
port team in 1999, specializing in support and training for the BSAFE
cryptography toolkits. Prior to joining RSA Security, he worked at NASA-
Ames Research Center in their security development group. He has a B.S.
in Computer Science from California Polytechnic State University in San
Luis Obispo and is currently a graduate student at the University of
Massachusetts.

Jessica Nelson Jessica Nelson comes from a strong background in com-
puter security. As an officer in the United States Air Force, she spear-
headed the 12 Air Force/Southern Command Defensive Information
Warfare division. She built programs that integrated computer and com-
munications security into the DoD’s Information Warfare. She graduated
from UCSD with a degree in physics and has worked with such astro-
physicists as Dr. Kim Griest and Dr. Sally Ride. She currently acts as tech-
nical sales lead in the western division of a European security company.

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Why Cryptography?

“According to the affidavit in support of the criminal complaint, the Secret
Service began investigating this matter when it learned that there had
been unauthorized access to [online brokerage] accounts of several [anony-
mous company] employees. One [anonymous company] employee told
authorities that approximately $285,000 had been drained from his
[online brokerage] account when an unknown person was able to access his
account by calling the online broker and providing a name and social secu-
rity number. It was later determined that at least eight [anonymous com-
pany] employees had been victimized this past spring, and that these eight
had lost a total of $700,000 from their stock accounts . . . [anonymous com-
pany] officials revealed that while working in the financial department,
[the accomplice] had access to confidential employee information such as
social security numbers and home addresses.”*

If someone tells you, “I don’t need security. I have no secrets, nothing
to hide,” respond by saying, “OK, let me see your medical files. How
about your paycheck, bank statements, investment portfolio, and credit
card bills? Will you let me write down your Social Security number,

CHAPTER 1

*Source: U.S. Department of Justice, July 20, 2000

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

credit card numbers, and bank account numbers? What’s the PIN for
your ATM, credit card, or phone card? What’s your password to log on to
the network at work? Where do you keep your spare house key?”

The point is that we all have information we want kept private. Some-
times the reason is simply our natural desire for privacy; we would feel
uncomfortable if the whole world knew our medical history or financial
details. Another good reason is self-protection—thieves could use some
kinds of information to rob us. In other words, the motives for keeping a
secret are not automatically nefarious.

Corporations also have secrets—strategy reports, sales forecasts, tech-
nical product details, research results, personnel files, and so on.
Although dishonest companies might try to hide villainous activities from
the public, most firms simply want to hide valuable information from dis-
honest people. These people may be working for competitors, they might
be larcenous employees, or they could be hackers and crackers: people who
break into computer networks to steal information, commit vandalism,
disrupt service, or simply to show what they can do.

Security Provided by Computer
Operating Systems

In the past, security was simply a matter of locking the door or storing
files in a locked filing cabinet or safe. Today, paper is no longer the only
medium of choice for housing information. Files are stored in computer
databases as well as file cabinets. Hard drives and floppy disks hold many
of our secrets. How do you lock a hard drive?

How Operating Systems Work

Before we talk about how computer data is protected, let’s take a brief
look at how computers get and store information. The usual way to access
data on a computer or network is to go through the operating system (OS),
such as DOS, Windows, Windows 95, Windows NT, MacOS, UNIX, Linux,
Solaris, or HP/UX. The OS works like an application, taking input, per-
forming operations based on the input, and returning output. Whereas, for

Chapter 12

example, a spreadsheet application takes the numbers you type into it,
inserts them into cells, and possibly performs calculations such as adding
columns, an OS takes your commands in the form of mouse clicks, joy-
sticks, touch screens, or keyboard input-commands such as “show a listing
of the files in this directory”—and performs the request, such as printing
to the screen a list of files. You can also ask the OS to launch a particular
application—say, a text editor. You then tell the text editor to open a file.
Behind the scenes, the editor actually asks the OS to find the file and
make its contents available to the editor.

Virtually all computers built today include some form of protection
courtesy of the OS. Let’s take a look at how such protection works.

Default OS Security: Permissions

Virtually all operating systems have some built-in permissions, which
allow only certain people access to the computer (its hard drive, memory,
disk space, and network connection). Such access is implemented via a
login procedure. If the user does not present the appropriate credentials
(perhaps a user name and password), the OS will not allow that individ-
ual to use the computer. But even after a user is logged in, certain files
may still be off-limits. If someone asks to see a file, the OS checks to see
whether that requester is on the list of approved users; if not, the OS does
not disclose the contents (see Figure 1-1).

Access to most business computers and networks is controlled by some-
one known as a superuser or system administrator (often shortened to sys
admin). This system administrator is the person charged with creating
and closing user accounts and maintaining the systems and network. A
typical task of this superuser account is to override protections. Someone
forgot a password? A file is read-protected (meaning that it cannot be
opened and read)? The superuser has permission to circumvent the OS
permissions to respond to these problems. (This is where the name “super-
user” comes from; this individual can do anything.)

How does the OS know that the person requesting such system over-
rides is the superuser? The OS grants this access by user name and pass-
word. The superuser user name is usually “su” or “root” or “administrator.”
Unfortunately, techniques for circumventing these default defenses are
widely known.

3Why Cryptography?

Attacks on Passwords

Many computers or operating systems come with a preset superuser
account and password. In many cases, several passwords are used for var-
ious superuser functions. The superuser may have a password to create
accounts, a different password to control network functionality, another to
conduct or access nightly backups, and so on.

Chapter 14

Figure 1-1

(a) In Windows
NT, a file’s
permission is
given in its
Properties screen.
(b) In UNIX, you
type ls -l to see a
file’s permission

For a cracker, logging on to a system as the superuser is possibly the
best way to collect data or do damage. If the superuser has not changed an
operating system’s preprogrammed passwords, the network is vulnerable
to attack. Most crackers know these passwords, and their first attempt to
break into a network is simply to try them.

If an attacker cannot log on as the superuser, the next best thing might
be to figure out the user name and password of a regular user. It used to
be standard practice in most colleges and universities, and in some com-
mercial companies, to assign every student or employee an account with
a user name and an initial password—the password being the user name.
Everyone was instructed to log on and change the password, but often,
hackers and crackers logged on before legitimate users had a chance. In
other cases, some people never actually used their accounts. Either way,
intruders were able to gain access. This “user name as password” system
is still used on many campuses and corporate settings to this day.

If the password of a particular user name is not the user name itself,
crackers may try to guess the correct password. Guessing a password
might be easy for an insider (such as a fellow employee), who probably
knows everyone’s user name. It’s common for people to use a spouse’s
name or a birthday as a password. Others write down their passwords,
and a quick search of a desk might yield the valuable information. Some
systems have guest accounts, with a user name of “guest” and a password
of “guest.”

But even if the intruder is not very good at guessing passwords, appli-
cations are available that automate exhaustive password searches. These
applications, called password cracking software, are made by a variety of
people for various reasons—some legitimate and others not so legitimate.
To use one of these tools, the intruder needs access to your computer (net-
work access may be sufficient). Once connected, the hacker simply runs
the password cracking application. If the password is weak, within min-
utes the hacker will have privileged access.

Figure 1-2 shows a popular application known as l0phtCrack. This
application is designed to allow systems administrators to test the pass-
words in use by their users. The idea is that if a sys admin can crack a
password, so can crackers.

5Why Cryptography?

Attacks That Bypass Operating Systems
An operating system tags certain files and prevents unapproved people
from seeing the contents. Although a cracker or thief might be able to gain
access to such files by posing as the superuser or a regular user, another
possibility is to ignore the OS altogether and get the contents in some
other way.

Data Recovery Attack

One function of a computer’s operating system is to help users find and
use the specific data or application they want. In this way, an OS works
like the index of a book. Just as an index directs you to the specific page
where you’ll find the piece of information you want out of all the pages in
a book, the OS organizes data under a directory file structure and uses file
extensions to direct you to the data you want on the hard disk. But as far
as the computer is concerned, the data is simply so many electronic bits.

Chapter 16

Figure 1-2

l0phtCrack is
used to test
passwords for
vulnerability

If you don’t care what order they’re in, it’s possible to read those bits as
bits and not as files of text or numbers. Human beings can’t read bits in
this way, but software and hardware devices are available that can scan
storage media and read the bits. These tools bypass the OS and grab the
raw bits of data, which can then be reconstructed into the original files.

In fact, an entire industry has been built on the concept of reading bits
as bits, a process called data recovery. When you have a system crash or
some kind of physical damage to a hard drive, you can take your computer
to a data recovery expert, who often can reconstruct the files on the disk.
These companies provide a valuable service, helping to prevent total
losses in the event of a natural disaster or computer failure.

Reynolds Data Recovery of Longmont, Colorado, performs data recov-
ery and also sells software that allows you to perform your own recovery
(see Figure 1-3). According to the company’s advertising, one of its prod-
ucts, Inspector Copier, “does not reference the OS installed on the devices,
[and] this allows copies of different systems such as NT, Novell, UNIX,
Linux or Windows 2000!”

7Why Cryptography?

Figure 1-3

Inspector Copier
from Reynolds
Data Recovery
(courtesy of Mark
Tessin of
Reynolds Data
Recovery)

But the techniques of data recovery can also be used by attackers to cir-
cumvent OS protections. To extend Inspector Copier, Reynolds sells a net-
work backup service that remotely backs up data on hard drives. It uses
Inspector Copier to extract the bits so that even if a hard drive is dam-
aged, a clean backup can be made. Although this service can be valuable
to many companies, it also means that the data recovery program can be
run remotely. Mark Tessin of Reynolds points out that the service can
even circumvent Windows NT security. Suppose your PC is connected to a
network but you don’t want the outside world to see your C: drive. You can
set the permissions on your drive so that only you have read or write per-
mission to it (see Figure 1-4). The Reynolds network backup service can
circumvent that permission and read the files anyway. This is not to imply
that Reynolds Data Recovery will steal your data, only to illustrate that it
is possible.

Chapter 18

Figure 1-4

Setting network
permissions on a
local drive using
Windows NT

TE
AM
FL
Y

Team-Fly®

For serious disk drive failures (such as fire damage), data recovery
might be possible only through specialized hardware devices. But an
attacker is not trying to steal your data from a damaged drive. Data recov-
ery software is so sophisticated and effective that it’s all anyone needs to
extract bits from a healthy storage medium.

To ensure the security of your data, you must assume that even though
some protections may be sufficient against some opponents, there will
likely be someone out there with the resources to mount a successful
attack. Only if such an individual never comes after your data are you safe.

Memory Reconstruction Attack

Often, sensitive material is not stored on hard drives but does appear in
a computer’s memory. For example, when the program you’re running
allocates some of the computer’s memory, the OS tags that area of mem-
ory as unavailable, and no one else can use it or see it. When you’re fin-
ished with that area of memory, though, many operating systems and
programs simply “free” it—marking it as available—without overwriting
it. This means that anything you put into that memory area, even if you
later “deleted” it, is still there. A memory reconstruction attack involves
trying to examine all possible areas of memory. The attacker simply allo-
cates the memory you just freed and sees what’s left there.

A similar problem is related to what is called “virtual memory.” The
memory managers in many operating systems use the hard drive as vir-
tual memory, temporarily copying to the hard drive any data from mem-
ory that has been allocated but is momentarily not being used. When that
information is needed again, the memory manager swaps the current vir-
tual memory for the real memory. In August 1997, The New York Times
published a report about an individual using simple tools to scan his hard
drive. In the swap space, he found the password he used for a popular
security application.

On UNIX systems, the OS “dumps core” in response to certain system
errors. Core dump has become almost synonymous with a program exiting
ungracefully. But on UNIX, the core file that results from a core dump is
actually a snapshot of memory at the time the error occurred. An attacker
who wants to read memory may be able to induce a core dump and peruse
the core file.

9Why Cryptography?

Figure 1-5 illustrates how memory reconstruction attacks work.

Chapter 110

Total memory

Your allocated memory

Password

Password

Password

Core

Attacker reads
your hard drive

Memory manager swaps
to disk for virtual memory

Induced core dump
causes snapshot of
memory written to
core file

While allocated to you,
outsiders can't read it

Figure 1-5

Your sensitive
material, such a
password, is not
stored on a hard
drive but does
appear in
memory. An
attacker may
read the data in
memory in the
swap space, in a
core file, or
simply after you
free it

After freeing the memory,
others have access to the
addresses you wrote to

Password

Added Protection Through Cryptography
For your secrets to be secure, it may be necessary to add protections not
provided by your computer system’s OS. The built-in protections may be
adequate in some cases. If no one ever tries to break into or steal data
from a particular computer, its data will be safe. Or if the intruder has not
learned how to get around the simple default mechanisms, they’re suffi-
cient. But many attackers do have the skills and resources to break vari-
ous security systems. If you decide to do nothing and hope that no skilled
cracker targets your information, you may get lucky, and nothing bad will
happen. But most people aren’t willing to take that risk.

As you’ll learn in the chapters to come, one of the most important tools
for protecting data is cryptography, any of various methods that are used
to turn readable files into gibberish. For example, suppose your sensitive
material looks like this:

do not believe that the competition can match the new feature set,
yet their support, services, and consulting offerings pose a
serious threat to our salability. We must invest more money in our

Here is what the data looks like when it’s encrypted:

ú?SdÏ:1/4lYïõ´]Y çmúcA‡[< _b:vH˜_ô UGØ›e´œ_%` ‚‹_lo¡`üùØ_"G
ri§õêÌqY_Ë•ùK_æ7ÁFT1�Ó_ . . . ÀªR8’» ÿÄh . . . o-
2ñ?Í•ÇÕ(tm)ÇvéR]’Î_¬’(r)‹Ñ_UéR`q3/4¥Ü_Ã‡ÁuÉ·¶ _>FômÈÕ6_cêàB1/28#ùh&(G
[gh_!›¶�Oædtn*´bô1/4jWM1/4B-Â_�_¬1/4<"-ÏEÿåb{=.AÛH__

Even if an attacker obtains the contents of the file, it is gibberish. It does
not matter whether or not the OS protections worked. The secret is still
secret.

In addition to keeping secrets, cryptography can add security to the
process of authenticating people’s identity. Because the password method
used in almost all commercial operating systems is probably not very
strong against a sophisticated (or even an unsophisticated) attacker, it’s
important to add protection. The cryptographic techniques for providing
data secrecy can be adapted to create strong digital identities. If attackers
want to pose as someone else, it’s not a matter simply of guessing a pass-
word. Attackers must also solve an intractable mathematical problem (see
Figure 1-6).

11Why Cryptography?

The Role of Cryptography in Data Security
In the physical world, security is a fairly simple concept. If the locks on
your house’s doors and windows are so strong that a thief cannot break in
to steal your belongings, the house is secure. For further protection
against intruders breaking through the locks, you might have security
alarms. Similarly, if someone tries to fraudulently withdraw money from
your bank account but the teller asks for identification and does not trust
the thief ’s story, your money is secure. When you sign a contract with
another person, the signatures are the legal driving force that impels both
parties to honor their word.

In the digital world, security works in a similar way. One concept is pri-
vacy, meaning that no one can break into files to read your sensitive data
(such as medical records) or steal money (by, for example, obtaining credit
card numbers or online brokerage account information). Privacy is the
lock on the door. Another concept, data integrity, refers to a mechanism
that tells us when something has been altered. That’s the alarm. By
applying the practice of authentication, we can verify identities. That’s
comparable to the ID required to withdraw money from a bank account
(or conduct a transaction with an online broker). And finally, nonrepudia-
tion is a legal driving force that impels people to honor their word.

Chapter 112

Figure 1-6

To pose as Steve
Burnett of RSA
Security, you’d
have to factor this
number (see also
Chapter 4)

Cryptography is by no means the only tool needed to ensure data secu-
rity, nor will it solve all security problems. It is one instrument among
many. Moreover, cryptography is not foolproof. All crypto can be broken,
and, more importantly, if it’s implemented incorrectly, it adds no real secu-
rity. This book provides an introduction to cryptography with a focus on
the proper use of this tool. It is not intended as a complete survey of all
there is to know about cryptography. Rather, this book describes the most
widely used crypto techniques in the world today.

13Why Cryptography?

This page intentionally left blank.

Symmetric-Key
Cryptography

Cryptography converts readable data into gibberish, with the ability to
recover the original data from that gibberish. The first flavor of crypto is
called symmetric-key. In this approach, an algorithm uses a key to convert
information into what looks like random bits. Then the same algorithm
uses the same key to recover the original data.

Pao-Chi is a sales rep for a company that makes printing machinery. He
sells to newspapers, magazines, independent printing houses large and
small, and even universities. His product line includes presses, tools,
replacement parts, repair services, and training. The end of the quarter is
coming up in a couple of weeks, and he’s just received a memo from Gwen,
the vice president of sales. The company is having difficulty “making its
numbers,” the memo says. Then it outlines a new, complex pricing policy.

This new policy lists the asking prices for all their products and also
indicates the lowest prices sales reps are allowed to negotiate. In the past,
they’ve based the amount of the discounts they give on the size of the
order, expectations of future sales with a given client, and other factors.
But now, the memo states, sales reps have the authority to give even big-
ger discounts.

Pao-Chi wants to closely limit who has access to this information. If
potential customers knew how far he was willing to go in discounting,
they would have the edge in negotiations. Existing customers might
demand rebates, and competitors would gain knowledge that could aid

CHAPTER 2

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

them in winning contracts. In addition, stock analysts or business
reporters could report the company’s slow sales this quarter, affecting its
reputation.

How can Pao-Chi and Gwen keep this memo secret? They could choose
not to let it leave the office, or maybe Pao-Chi could simply memorize it.
But it’s more than 20 pages long and too complex to memorize, and he’ll
need to consult it while trying to make a sale.

So Pao-Chi keeps an electronic copy of the memo on his laptop, and
takes steps to protect the file. In Chapter 1, we saw that typical protection
techniques are not sufficient. Pao-Chi can lose his laptop, or someone
might steal it or simply look through the files while he’s at lunch. To pro-
tect the file, he decides to encrypt it.

Let’s say Pao-Chi buys a computer program to encrypt sensitive files.
When running the program, he simply flips the switch to “Encrypt” and
feeds the file to the program (see Figure 2-1). When the file comes out of
the program, it looks like gibberish. If intruders get their hands on it, they
will have no idea what it means.

Chapter 216

Figure 2-1

If you feed your
sensitive files to
an encryption
program, you get
what looks like
gibberish

The problem is that as long as the file is gibberish Pao-Chi won’t be
able to read it either. To read it, he must somehow convert it back to its
original form. The program has just such a feature: he flips the switch to
“Decrypt,” feeds in the gibberish, and out comes the file in its former con-
dition.

But there’s one problem with this scenario. If intruders are able to
obtain the encrypted file, surely they can obtain the program that con-
verts it back. Even if they can’t, where can Pao-Chi safely store the pro-
gram? If he can keep the program out of the hands of attackers, why not
store his file there as well?

No, he doesn’t have a place where he can keep the encrypting and
decrypting program safe. And if Pao-Chi has access to it, he must assume
that attackers can gain access. That’s why he uses encryption in the first
place. By itself, an encryption machine cannot protect secrets. Pao-Chi
needs additional protection.

That additional protection is a secret number. If he feeds the file and a
secret number to the program, the program will encrypt the file. Until the
program has a secret number, it will not run. To decrypt the file, Pao-Chi
must present the gibberish and the same secret number (see Figure 2-2).

17Symmetric-Key Cryptography

Figure 2-2

To get encrypted
gibberish, you
feed sensitive
data and a secret
number to the
encryption
machine. To
recover the file,
you flip the
switch to
“Decrypt” and
then feed it the
gibberish and the
secret number

If an attacker somehow obtains a copy of the gibberish and feeds it to
the program for recovery, it won’t work. The program asks for the number,
which the attacker does not know. It’s possible to try numbers at random
(or to try all possible numbers systematically), but every time a wrong
number is inserted, the application simply spits out different gibberish
(see Figure 2-3).

Chapter 218

Figure 2-3

If attackers try
numbers other
than the secret
value, they get
only more
gibberish

Even though someone can use the same program Pao-Chi used, it never
re-creates the original file without the secret number. Even if the attacker
guesses a number close to the original number, even if it is off by only 1,
the program will not produce anything close to the correct encrypted file.

Some Crypto Jargon
The system we’ve just described is known as symmetric-key cryptography.
Some people call it secret-key cryptography. Here are some official terms.

TE
AM
FL
Y

Team-Fly®

When you want to convert sensitive information to gibberish, you
encrypt the data. To convert it back, you decrypt it.

To do this, you use an algorithm. The word “algorithm” is a scientific
term for a recipe or step-by-step procedure. It is a list of instructions or
things to do in a particular order. An algorithm might have a rigid list of
commands to follow, or it might contain a series of questions and depend-
ing on the answers, describe the appropriate steps to follow. A mathemat-
ical algorithm might list the operations to perform in a particular order to
“find x.” For example, an automobile diagnostic algorithm may ask ques-
tions about oil pressure, torque, fluid levels, temperature, and so on, to
determine what’s wrong. A computer program can also implement an
algorithm, meaning the program converts the algorithm’s list of com-
mands, questions, and operations into the computer’s language, enabling
it to perform the steps in the appropriate order. In computer cryptography,
algorithms are sometimes complex mathematical operations or simply bit
manipulations. Many encryption algorithms exist, and each one has its
own particular list of commands or steps. Just as you can have a program
that plays Solitaire or one that computes the trajectory of satellites, you
can have a program that implements an encryption algorithm that takes
your data and converts it to gibberish.

The data that you want to keep secret is called plaintext (some call it
cleartext). Your plaintext could be a human-readable text file, such as the
memo. Or it could be a binary file, which looks like nonsense to human
eyes but makes perfect sense to a computer program. For example, if you
open a PowerPoint file using Windows’ Edit text editor, the file looks like
gibberish because the program can’t convert the PowerPoint formatting
information; but if you open the same file in PowerPoint, it appears as
intended. Whether or not your information is readable by a human or a
given program, it’s called plaintext.

After the data is encrypted, it’s known as ciphertext.
The algorithm encrypts your plaintext into ciphertext, but it needs one

more thing—a key. In our sales rep example, the secret number used to
encrypt the pricing memo was its key. In computer crypto, the key is
always a number or a set of numbers.

We’ve also met the attacker, someone trying to steal information. Actu-
ally, an attacker may try to do more than simply uncover someone else’s
secrets. Some attackers try to pose as people they are not, disable Web
sites, delete someone else’s information, prevent customers from buying at
a particular online merchant, slow down systems, and on and on and on.
The term “attacker” is simply a catchall for the individual from whom you
must protect your digital assets.

19Symmetric-Key Cryptography

The study of breaking cryptographic systems is known as of cryptanaly-
sis. Similar to the attacker, the cryptanalyst looks for weaknesses in algo-
rithms. All algorithms can be “broken;” the good ones are simply the
algorithms strong enough to withstand an attack for so long the break
comes “too late.” So a cryptanalyst’s job is to find weaknesses that may help
someone break the algorithm faster. Attackers may use cryptanalytic tech-
niques to do damage, but they may also use other tools.

The cryptographer develops crypto systems; the cryptanalyst looks for
weaknesses. It’s important for the crypto community to know about
the weaknesses because attackers are looking for them as well. Attackers
are almost certainly not going to announce their discoveries to the world,
so cryptanalysts perform a service, letting us all know what attackers
probably know but won’t tell us.

What Is a Key?
The term “key” comes from the fact that the secret number you choose
works in the same way that a conventional key works. To protect the con-
tents of your house, you install a lock on the door. To operate the lock, you
insert the key and turn it. The lock’s tumblers and mechanisms work with
the key in a prescribed way to activate a barrier that prevents the door
from being opened. To unlock the door, you insert the key and turn it in
the opposite direction. The tumblers and mechanisms work with the key
to reverse the process and allow the door to be opened.

In cryptography, to protect the contents of your files, you install a lock
(an encryption algorithm) on your door (the computer). To operate the lock
(encrypt the data), you insert the key (the secret number) and execute it
(instead of turning this key, you operate the program by double-clicking,
clicking OK, or pressing ENTER). The algorithm performs its steps using the
key to alter the plaintext and convert it to ciphertext. To unlock the
encrypted file, you insert the same key and execute. The algorithm reverses
the steps and converts the ciphertext back to the original plaintext.

Just as only the correct house key can open your front door, only the
correct encryption key can decrypt data. In symmetric-key cryptography,
the key that is used to encrypt data is the same key that is used to decrypt
it. “Symmetric” essentially means “the same on two sides,” and that’s what
we have here: the same key on two sides of the encryption process. Fig-
ure 2-4, a picture you’ll see quite a bit in this book, is the image we use to
visualize cryptography.

Chapter 220

In this book we talk about some of the many different encryption algo-
rithms you have to choose from, but remember that keys are not inter-
changeable among algorithms. For example, suppose that you encrypt
data using the Triple Digital Encryption Standard (DES) algorithm (dis-
cussed later in the section titled “Triple DES”). If you try to decrypt the
data using the Advanced Encryption Standard (AES) cipher (discussed
later in the section titled “Advanced Encryption Standard”), even if you
use the same key, you will not get the correct result.

21Symmetric-Key Cryptography

Figure 2-4

This encryption
algorithm uses
the key to convert
plaintext to
ciphertext. In
symmetric-key
cryptography, the
key used for
encryption is also
necessary for
decryption

Why Is a Key Necessary?
All computer crypto operates with keys. Why is a key necessary? Why not
create an algorithm that doesn’t need a key?

As you saw in the memo example, if attackers can understand the algo-
rithm, they can recover secret data simply by executing the algorithm.
That’s like installing a deadbolt on your front door with the lock on the
outside. It’s true that when the deadbolt is in place, the door cannot be
opened. But anyone can open the door simply by turning the lock.

It might seem that the solution is to keep the algorithm secret, but that
approach has several problems. First, attackers always crack the algo-
rithm (see “Historical Note: They Always Figure Out The Algorithm,” later
in this chapter). What’s more, suppose you do manage to keep the algo-
rithm secret. Unless you are a cryptography expert and develop your own
algorithms, you also must trust the company that wrote your algorithm
never to reveal it deliberately or accidentally. Does anyone have that
much trust in a corporate entity?

Here’s the real question: Which would you trust more to keep secrets—
an algorithm that must be kept secret, or an algorithm that can do its job
even if everyone in the world knows exactly how it works? That’s where
keys come in.

Keys relieve you of the need to worry about the algorithm used in your
encryption scheme. If you protect your data with a key, you need protect
only the key, something that’s easier to do than protecting an algorithm.
In this book you’ll learn a lot about key protection. Also, if you use keys to
protect your secrets, you can use different keys to protect different secrets.
This means that if someone breaks one of your keys, your other secrets are
still safe. If you’re depending on a secret algorithm, an attacker who
breaks that one secret gets access to all your secrets.

Generating a Key
In a symmetric-key cryptographic system, the key is only a number. It can
be any number as long as it’s the right size, so you simply pick a number
at random. Then, the next time you need a key, you pick another number at
random. The question is, how do you pick a number at random?

Chapter 222

23Symmetric-Key Cryptography

Historical Note: They Always Figure
Out the Algorithm
Cryptographers are often asked a key question: “Can’t I just encrypt
my data and simply not tell the attackers what algorithm I used and
how big the key is? How can they break my message then?” There
are three answers.

Answer 1: They Always Figure It Out Anyway

Attackers can deduce your algorithm without any help from you.
Eventually, they always figure it out. Always. Without exception.
Never in the history of cryptography has someone been able to keep
an algorithm secret.

In war, spies have always found ways of discovering the algo-
rithm, whether it originates in a mathematical operation or a
machine. They steal it or get someone to reveal it, maybe through
blackmail, extortion, or the time-tested cryptanalytic technique
known as “the rubber-hose attack.” Agents have always uncovered
the algorithm or gotten a copy of the machine. For example, in World
War II, Polish soldiers captured the German Enigma machine early
in the war. Enigma was the crypto machine the German military
used. The allies (namely the British) were able to crack the code
more easily because they had the machine in their possession.

Alternatively, the cryptanalysts simply figure out the algorithm.
In World War II, U.S. codebreakers were able to determine the inner
workings of the Japanese code machines without having one of the
machines in their possession.

In modern times, a company called Gemstar Development created
a code that converted date, time, and channel indicators into a sin-
gle code number. These code numbers were published in TV listings
as “VCR�.” People who bought a GemStar control box could program
their VCRs simply by punching in the numbers, simplifying the
process and thus benefiting people who owned the product. Only the
Gemstar box knew how to decrypt the code numbers. But Ken
Shirriff, Curt Welch, and Andrew Kinsman broke the Gemstar algo-
rithm, and they published it in the July 1992 issue of Cryptologia, a
trade journal. Now, anyone who wants to decode those numbers

continues

Chapter 224

(such as VCR manufacturers) can do it without buying a Gemstar
control box.

Another example is RC4, an algorithm invented in 1987 but never
published. Cryptanalysts and other experts studied it and deter-
mined that RC4 was a good way to keep data secret. But the com-
pany that created it, RSA Data Security, never made the inner
workings of the RC4 algorithm public. This secrecy was for monetary
and not security reasons; the company hoped that by keeping it
secret no one else would implement and sell it. In 1994, anonymous
hackers posted the algorithm on the Internet. How did they figure it
out? It was probably by stepping through a copy of the object code
with an assembly language debugger. Incidentally, RC4 is now used
as part of Secure Socket Layer (SSL), the World Wide Web’s secure
communication protocol (see Chapter 7). RC4 is arguably the most
commonly used symmetric cipher, even more so than DES, discussed
later in this chapter in the section “Digital Encryption Standard.”

If a cryptographic system is hardware-based, engineers open it
and look at the internals. In 1998, David Wagner and Ian Goldberg,
at the time graduate students at the University of California at
Berkeley, opened a supposedly secure digital cell phone and cracked
its code.

Sometimes it is possible to keep an algorithm secret long enough
to be effective, but eventually the enemy figures it out. For example,
in World War II, the U.S. Army used Navajo soldiers to communicate.
They simply spoke in Navajo. The Japanese military did not have
anyone in its employ who spoke Navajo, nor did it have dictionaries
or other reference material. The encryption worked because the
algorithm (the Navajo language itself) was kept secret.

Now, of course, any large military has linguists on staff who either
know or can easily learn any language used to encrypt secrets.

Answer 2: You Can’t Make Money Developing
Secret Algorithms

Gemstar did make money for a while using a secret algorithm, but
only until someone cracked it. The ultimate problem, though, goes
deeper. Think about it this way: How can you sell something without
letting buyers see what they’re buying?

continues

25Symmetric-Key Cryptography

Suppose, for example, that you sell a software cryptographic sys-
tem to an e-mail vendor, enabling it to encrypt messages. How could
you prevent this client, or anyone else, from looking at your code?
There are plenty of ways to reverse-engineer software, as shown in
the RC4 story.

“Fine,” you may counter, “I won’t sell my algorithm to just anyone.
I’ll make sure that only people I trust can use it.” Is it possible to
trust enough people to make money that way? And how are your
trusted clients going to use your algorithm? About the only thing
they could do so is store their data and talk to each other. But people
want to communicate with others who do not purchase their algo-
rithm from the same vendor. As a result, the algorithms must be
standardized, and that means they must be public.

The other problem with trying to sell algorithms arises on the
buyer’s side of the arrangement. If you want to use cryptography,
you must employ a hardware device or a software program. The
problem is this: Just as you have access to the product, so do attack-
ers. Where did you get your hardware or software—a retail software
store, a business-to-business vendor? Attackers can go to the same
source and get their own copies.

In short, if you use your own algorithm and want to keep it secret,
you can’t sell it. As a result, you can’t make any money.

Answer 3: Publicly Known Algorithms
Are More Secure

Let’s say you’re the purchasing agent for your company and it’s up to
you to decide which cryptographic algorithm to buy.Your company will
use this algorithm to store data and communicate securely. Two sales
reps offer their products. One warns, “This algorithm is secure as long
as the attacker does not know its inner workings.”The other proclaims,
“You can tell attackers what the algorithm is and how long the key is,
but they can never retrieve your sensitive data without the key.”

Which one would you buy?
If it is possible to build a cryptographic system in which the algo-

rithm is completely known, and if attackers still can’t break it with-
out the key, isn’t that system more secure than one that can be
broken if the algorithm is uncovered? Well, it is possible to build
such cryptographic systems.

continues

To answer that question, let’s consider what the word “random” means.
You probably have an intuitive idea of randomness, and most likely it’s
correct. To be more formal than intuition, we could put it this way: “If
someone knows what the current numbers are, is it possible to predict the
next numbers?” To put it the way cryptographers prefer, random values
are simply sets of numbers that pass statistical tests of randomness and
are unrepeatable.

Suppose that you choose a few thousand numbers and ask a mathe-
matician, “Are these numbers random?” To simplify things and to conform
to computer conventions, you make the numbers binary, meaning that
they are sequences of 1’s and 0’s. The mathlete will draw on a set of tests

Chapter 226

When algorithms are made public, cryptanalysts and computer
engineers get a chance to examine them for weaknesses. If an algo-
rithm is vulnerable, you can choose not to use it. Otherwise, you can
be confident that your data is safe. If an algorithm is kept secret, on
the other hand, analysts will not be able to find any weaknesses it
may have. Does that mean it has no weaknesses? Not necessarily; it
simply means that you don’t know whether or not it is vulnerable.
Maybe a cracker, lurking somewhere in a basement, has obtained a
copy of the algorithm (remember, they always do) and has already
found a successful attack. But this cracker has decided not to share
the information. If you use the secret algorithm, all your data is com-
promised but you don’t know it.

When an algorithm is made public, however, that’s no guarantee
that it is secure. Maybe analysts have not yet found the weakness,
and the basement-dwelling cracker has found it. But great minds
thrive on finding flaws in public cryptographic systems. There’s
prestige (and sometimes a little money) in finding chinks in the
armor. If the cryptographic community cannot find something wrong
with an algorithm, there’s a good chance that no one else will.

Sources: See David Kahn’s The CodeBreakers for the histories of the Enigma, Purple,
and Navajo codetalkers. See Cecil Adams’ Return of the Straight Dope for the Gem-
Star story.

that examine the numbers. Among these tests (see Figure 2-5) are ques-
tions such as these: Are there roughly the same count of 1’s and 0’s? Do
some patterns of 1’s and 0’s appear “too often”? Do some patterns of 1’s
and 0’s appear “not often enough”? If the numbers pass the tests, we say
that the numbers are probably random. “Probably” random? Can’t we say
“definitely” random? No, we can’t, and in a few paragraphs you’ll see why.

A Random Number Generator

If you have a few thousand numbers, you can test them for randomness.
But where do you get those few thousand numbers in the first place? One
source is a random number generator (RNG). These devices work by gath-
ering numbers from various kinds of unpredictable inputs, such as by
measuring radioactive decay, examining atmospheric conditions in the
vicinity, or calculating minute variances in electrical current. These num-
bers pass the tests of randomness.

If you ask the machine for a second group of numbers, you will virtually
never receive the same sequence again. That’s because the output is based
on input that’s always changing. The numbers are unrepeatable.

So to return to our original definition, we can ask, “Can anyone predict
what the next numbers will be?”To do that, someone would have to predict
the minor variations in the radioactive decay, atmospheric conditions, or
electricity of the current. These are things we assume that no one can do.

Intel produces an RNG that uses system thermal noise as its variable
and unpredictable input. Currently, this device does not ship automatically

27Symmetric-Key Cryptography

Figure 2-5

Testing numbers
for randomness.
Here, the pattern
110 appears too
often, so it fails

with every Pentium-based PC, although maybe in the future it will. Other
companies (such as nCipher, Chrysalis, and Rainbow) sell devices known
as cryptographic accelerators (discussed in Chapters 3 and 9). These
devices come with RNGs.

A Pseudo-Random Number Generator

Where can you get random numbers if you don’t have an RNG? It turns
out there are algorithms called pseudo-random number generators
(PRNGs). Just as there are algorithms that convert plaintext into cipher-
text, there are algorithms that produce what are called “pseudo-random”
numbers.

If you use one of these algorithms to generate a few thousand numbers
and apply the statistical tests, the numbers pass. What makes these num-
bers pseudo-random and not random is that they are repeatable. If you
install the same PRNG on another computer, you get the same results. If
you run the program two weeks later, you get the same results.

This is one reason we say that numbers that pass statistical tests of
randomness are “probably” random. Even if they pass, do we know
whether they are repeatable? The math tests give us only part of the
answer.

If the numbers are repeatable, what good is a PRNG? The answer is
that you can change the output by using what is known as a seed. Just as
RNGs take input (radioactive decay, atmospheric conditions, electrical
variances), a PRNG takes input (the seed). If you change the input, you
change the output. With RNGs, the input is constantly changing on its
own, unpredictably. With a PRNG, it’s up to you to make sure the input
changes each time you want to generate new numbers.

What is this seed? In the real world, a seed can be lots of things: the
time of day down to the millisecond, various constantly changing com-
puter state measurements, user input, and other values. Maybe you’ve
seen a user-input seed collector. An application may ask you to move the
mouse around. At selected intervals, the program looks at where, on the
screen, the arrow is located. This value is a pair of numbers: how many
pixels up from the bottom of the screen and how many pixels over from
the left. Any one input is not sufficient, but if you put them all together
you have unpredictability (see Figure 2-6).

You may be thinking, “Why use a PRNG to generate the numbers? Why
not just use the seed?” There are two main reasons. The first reason is the
need for speed. Seed collection is often time-consuming. Suppose you need

Chapter 228

TE
AM
FL
Y

Team-Fly®

only a few thousand bits of random data. A seed collector may take several
minutes to gather the necessary numbers. When was the last time you
waited several minutes for a program to do something without getting
frustrated? To save time, you can gather 160 or so bits of seed (which may
take little time), feed it to the PRNG, and get the required thousands of
bits in a few milliseconds.

The second reason to use a PRNG is entropy, a term that describes
chaos. The greater the entropy, the greater the chaos. To put it another
way, the more entropy, the more random the output. Suppose you want
128 bits of entropy. A seed may have that, but it is spread over 2,400 bits.
For example, the time of day down to the millisecond is represented in
64 bits. But the year, the month, the date, and maybe even the hour and
minute might be easy to guess. The millisecond—two or three bits of the
time of day—is where the entropy is. This means that out of 64 bits of
seed, you have 2 bits of entropy. Similarly, your other seed data may suf-
fer the same condition. A PRNG will take that 2,400 bits of seed and com-
press it to 128 bits.

Well, then, why not take the seed and throw away the low-entropy bits?
In a sense, that’s what a PRNG does. You can do it, or you can have a
PRNG do it, and the latter means less work for you.

29Symmetric-Key Cryptography

Figure 2-6

A random
number generator
(left) collects
unpredictable
information and
converts it into
random numbers.
A pseudo-random
number generator
(right) collects
seed information
and converts it
into numbers that
pass statistical
tests of random-
ness but can be
repeated

By the way, most PRNGs use message digests to do the bulk of the
work. We talk about the details of digests in Chapter 5, but for now, let’s
just say that they are the “blenders” of cryptography. Just as a blender
takes recognizable food and purees it into a random, unrecognizable blob,
a message digest takes recognizable bits and bytes and mixes them up
into a random, unrecognizable blob. That sounds like what we look for in
a PRNG.

A good PRNG always produces pseudo-random numbers, regardless of
the seed. Do you have a “good” seed (one with lots of entropy)? The PRNG
will produce numbers that pass tests of randomness. Do you have a “bad”
seed (or no seed at all)? The PRNG will still produce good numbers that
pass the tests.

Then why do you need a good seed? The answer is given in the next section.

Attacks on Encrypted Data
Someone wants to read the data you’ve encrypted. This person, known as
the attacker, must first decrypt the data. To do that, the attacker must
either identify the key or break the algorithm.

Attacking the Key

If attackers can figure out what your key is, they can decrypt your data.
One approach, the brute-force attack, is to try every possible key until the
right one is identified. It works this way. Let’s say your key is a number
between 0 and 100,000,000,000 (one hundred billion). The attacker takes
your ciphertext (perhaps only 8 or 16 bytes’ worth) and feeds it to the
decryption algorithm along with the “alleged key” of 0. The algorithm does
its job and produces a result. If the resulting data appears reasonable, 0
is probably the correct key. If it’s gibberish, 0 is not the true key. In that
case, you try 1, and then 2, 3, 4, and so on (see Figure 2-7).

Remember, an algorithm simply performs its steps, regardless of the
input. It has no way of knowing whether the result it produces is the cor-
rect one. Even if the value is close to the key, maybe off by only 1, the
result is gibberish. So it’s necessary to look at the result to tell whether it
might be the key. Smart attackers write programs to examine the result.
Is it a series of letters of the alphabet? Yes? Pass this key to the attacker.
No? Try the next key.

Chapter 230

It usually takes very little time to try a key. The attacker can probably
write a program that tries many keys per second. Eventually, the attacker
could try every possible number between 0 and 100 billion, but that may
not be necessary. Once the correct key is found, there’s no need to search
any more. On average, the attacker will try half of all possible keys—in
our example, 50 billion keys—before finding the correct one. Sometimes it
takes more time, sometimes less, but, on average, about half the possible
keys must be tried.

31Symmetric-Key Cryptography

Figure 2-7

The brute force
attack. If you
know that the key
is a number
between 1 and
100,000,000,000,
you try each
number in turn
until a number
produces
something that’s
not gibberish

How long would it take an attacker to try 50 billion keys? Three years?
Three days? Three minutes? Suppose you want to keep your secret safe for
at least three years, but it takes an attacker only three minutes to try
50 billion values. Then what do you do? You choose a bigger range. Instead
of finding a number between 0 and 100 billion, you find a number between
0 and 100 billion billion billion billion. Now the attacker will have to try,
on average, many more keys before finding the right one.

This concept of the range of possible keys is known as key size. Gold is
measured in troy ounces, atoms are measured in moles, and cryptographic
keys are measured in bits. If someone asks, “How big is that key?” the
answer might be 40 bits, 56 bits, 128 bits, and so on. A 40-bit key means
that the range of possible values is from 0 to about 1 trillion. A 56-bit key
is 0 to about 72 quadrillion. The range of a 128-bit key is so large that it’s
easier just to say it’s a 128-bit key (see Figure 2-8).

Chapter 232

Figure 2-8

The larger the
key size, the
greater the range
of possible values
a key can be.
Each bit in each
position, whether
0 or 1, is
important

Each bit of key size you add doubles the time required for a brute-force
attack. If a 40-bit key takes 3 hours to break, a 41-bit key would take 6
hours, a 42-bit key, 12 hours, and so on. Why? Each additional bit doubles
the number of possible keys. For example, there are eight possible num-
bers of size 3 bits:

000 001 010 011 100 101 110 111

These are the numbers from zero to seven. Now add one more bit:

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Every number possible with 3 bits is possible with 4 bits, but each of
those numbers is possible “twice”: once with the first bit not set, and again
with it set. So if you add a bit, you double the number of possible keys. If
you double the number of possible keys, you double the average time it
takes for brute-force attack to find the right key.

In short, if you want to make the attacker’s job tougher, you choose a
bigger key. Longer keys mean greater security. How big should a key be?
Over the years, RSA Laboratories has offered challenges. The first person
or organization to crack a particular message wins a money prize. Some of
the challenges have been tests of brute-force time. In 1997, a 40-bit key
fell in 3 hours, and a 48-bit key lasted 280 hours. In 1999, the Electronic
Frontier Foundation found a 56-bit key in 24 hours. In each case, a little
more than 50 percent of the key space was searched before the key was
found. In January 1997, a 64-bit challenge was issued. As of December
2000, it has still not been solved.

In all these situations, hundreds or even thousands of computers were
operating cooperatively to break the keys. In fact, with the 56-bit DES
challenge that the Electronic Frontier Foundation broke in 24 hours, one
of those computers was a custom-built DES cracker. This kind of computer
does only one thing: check DES keys. An attacker working secretly would
probably not be able to harness the power of hundreds of computers and
might not possess a machine built specifically to crack a particular algo-
rithm. That’s why, for most attackers, the time it takes to break the key
would almost certainly be dramatically higher. On the other hand, if the
attacker were a government intelligence agency with enormous resources,
the situation would be different.

We can devise worst-case scenarios. Let’s use as our baseline an exag-
gerated worst-case scenario: examining 1 percent of the key space of a
56-bit key takes 1 second, and examining 50 percent takes 1 minute (see
Table 2-1). Each time that we add a bit to the key size, we double the
search time.

Currently, 128 bits is the most commonly used symmetric-key size. If
technology advances and brute-force attackers can improve on these num-
bers (maybe they can reduce the 128-bit times to a few years), then we
would need to use a 256-bit key.

You may be thinking, “Technology is always advancing, so I’ll have to
keep increasing key sizes again and again. Won’t there come a time when
I’ll need a key so big it becomes too unwieldy to handle?” The answer is

33Symmetric-Key Cryptography

that you’ll almost certainly never need a key longer than 512 bits
(64 bytes). Suppose that every atom in the known universe (there are
about 2300 of them) were a computer and that each of these computers
could check 2300 keys per second. It would take about 2162 millennia to
search 1 percent of the key space of a 512-bit key. According to the Big
Bang theory, the amount of time that has passed since the universe came
into existence is less than 224 millennia. In other words, it is highly
unlikely that technology will ever advance far enough to force you to use
a key that’s “too big.”

That may not matter, though, because there’s another attack on the
key. Instead of trying to reproduce the key, attackers can try to reproduce
the PRNG and seed that were used to produce the key. It works like this.
Attackers know the particular PRNG and seed-collection method you
used. (Remember, as discussed earlier in this chapter in “Historical Note:
They Always Figure Out the Algorithm,” the attacker will always know
your algorithms and methods.) If attackers can guess your seed, they can
seed the PRNG and produce the same key. If you used a small seed,
attackers will try every possible value until they find the correct one. This
happened to Netscape, as described in “Historical Note: Netscape’s Seed.”

Your defense against this kind of attack is to use a good seed. A PRNG
will always produce good pseudo-random numbers regardless of seed. But
the seed must also be strong enough to withstand a brute-force attack.

Chapter 234

Bits 1 percent of Key Space 50 percent of Key Space

56 1 second 1 minute

57 2 seconds 2 minutes

58 4 seconds 4 minutes

64 4.2 minutes 4.2 hours

72 17.9 hours 44.8 days

80 190.9 days 31.4 years

90 535 years 321 centuries

108 140,000 millennia 8 million millennia

128 146 billion millennia 8 trillion millennia

Table 2-1

A Worse Than
Worst-Case
Scenario: How
Long a Brute-
Force Attack Will
Take for Various
Key Sizes

35Symmetric-Key Cryptography

Historical Note: Netscape’s Seed
Symmetric-key cryptography is one component of SSL (see Chap-
ter 7), which was invented by researchers at Netscape. Not surpris-
ingly, Netscape offered an implementation of SSL that is part of all
Netscape browsers (after version 1.0).

At some point in an SSL session, the code must generate a key. To
do so, Netscape’s implementation uses a PRNG. In version 1.1
(released in 1995), the code collected the time of day, the process ID,
and the parent process ID as the seed for the PRNG.

Ian Goldberg and David Wagner (remember them from the earlier
historical note?) decided to test how good a seed these three sources
would produce. They discovered that the process IDs were easy to
capture if one had access to the computer. If one did not have access
to the computer, all it took was a little brute-force testing because
each ID was only 15 bits. The time of day? Well, the year, the month,
the date, and even the hour and minute were known; an attacker
simply had to look at when the SSL session occurred. The second?
There were only 60 possible values (Netscape used time of day only
down to the second and not the millisecond).

On September 17, 1995, Goldberg and Wagner reported to the
Cypherpunks newsgroup that they could find the seed, and hence
the key, in less than a minute. Whether the key was 40 bits or
128 bits, it took only one minute.

Netscape fixed the problem in version 2.0 by adding more seed.
Each platform (Windows, Mac, and UNIX) has different seed
sources, but among the many platform-dependent seeds Netscape
now uses are cursor or mouse position, memory status, last key
pressed, audio volume, and many others.

Sources: Gary McGraw and John Viega, “Make Your Software Behave: Playing The
Numbers,” Reliable Software Technologies, April 4, 2000.
Keith Dawson, “Tasty Bits from the Technology Front,” http://www.tbtf.com, Sept. 20,
1995.
Taher El Gamal, letter to the Internet community posted on many Web sites, Sept. 25,
1995. El Gamal was, at the time, director of security for Netscape.

Breaking the Algorithm

Suppose that someone figured out that with a given algorithm, every 14th
bit of a given ciphertext is the same as every 12th bit of its plaintext. In
other words, if the 14th bit of ciphertext is 1, the 12th bit of plaintext is 1,
the 28th bit of ciphertext is 0, the 24th of plaintext is 0, and so on, no mat-
ter what the key. Furthermore, the attacker sees that if certain combina-
tions of bits appear in certain locations in the ciphertext, a corresponding
portion of the plaintext must be another pattern.

If an algorithm had such weaknesses, an attacker could look at the
ciphertext and decipher parts of the plaintext even without knowing the
key. This knowledge might be enough to enable the attacker to recover
enough of the original message to do damage (see Figure 2-9).

Chapter 236

Figure 2-9

If an algorithm
has a weakness,
an attacker
might figure
out portions
of plaintext
without the key,
reconstructing
most or all of
the message

Here’s another possible weakness. Suppose the attacker knows what
some of the plaintext and its corresponding ciphertext is. And suppose
this attacker is able to therefore deduce the key. But if the attacker
knows what the plaintext is, why bother figuring out the key? The
answer is that the attacker might know, or be able to guess, only a por-
tion of the plaintext. Recall the memo at the beginning of the chapter.
An attacker might see the ciphertext, realize it’s a Word for Windows
document, and guess some of the control characters at the beginning.

Furthermore, the attacker guesses the document is a memo from the con-
ventional “TO:”, “FROM:”, and, “RE:” In short, if someone can compute
the key from a chunk of ciphertext and its corresponding plaintext, the
rest of the message will follow. This is known as a known-plaintext
attack. Obviously, you don’t want to use an algorithm that might be sus-
ceptible to such an attack.

Measuring the Time It Takes to Break Your Message

How long will your secret remain secret? The answer is, as long as it takes
the attacker to break it. The attacker has two kinds of tools: the brute-
force attack and attacks that exploit weaknesses in your algorithm.

In analyzing the security of your message, a key question is how long
would a successful brute-force attack take. There’s no rigid, specified time,
since the attacker may get lucky and find it early or may get unlucky and
find it later, but as shown in Table 2-1, you can estimate the variables
based on worst-case scenarios. In general, the bigger the key, the longer a
brute-force attack will take. But if the algorithm is weak, it doesn’t mat-
ter how long the key is. The statement “Longer keys mean more security”
doesn’t apply to a weak algorithm. The point is this: If you pick a weak
algorithm, you have no control over how strongly your secret is protected.

So the best strategy is to pick an algorithm that is not weak and further
deter an attacker by using a longer key.

That statement may seem so obvious that it’s not worthwhile even to
mention it. If you’re curious about what happens when people overlook
these obvious protections, however, read “Crypto Blunders” in the
accompanying CD for a couple of stories on using weak algorithms and
small keys.

Symmetric Algorithms: The Key Table
Virtually all symmetric ciphers use the key to build a key table, which is
usually a pseudo-random array of a particular size in a particular format.
This process is known as key setup, or initialization. It’s the key table that
does the encryption.

Why have a key table? One reason is that you might want to use keys
of varying lengths depending on the application. The algorithm needs a

37Symmetric-Key Cryptography

key value that is the same size from one use to the next, but your key
might vary from 64 bits to 128 to 192 or even 256 bits. For that reason, you
build a key table (which is bigger than the biggest possible key size) from
the key. It’s easier to create a constant-sized key table at the beginning of
your encryption session than to do it repeatedly while encrypting data.

Another reason to use a key table is to prevent attacks on the algorithm.
Recall that there are two ways to break security: a brute-force attack and
attacks on an algorithm’s weaknesses. If you use a big, pseudo-random key
table, it’s easier to do serious scrambling. With good scrambling, the
ciphertext looks nothing like the plaintext. If the algorithm cannot do a
good job of creating gibberish unless it has a good key, that is be an algo-
rithmic weakness. A good algorithm will simply expand the key into a big-
ger value and make sure that no matter what key it’s given, the key table
is random. An attacker could try a brute-force attack on the key table, but
that would be more time-consuming than an attack on the key.

The user should give the algorithm a good key. But even with a bad key,
it is possible to create a good key table. Just as a PRNG produces good
numbers no matter what the seed is, a good encryption algorithm pro-
duces a good key table no matter what the key is. With a good key table,
the algorithm produces a good scramble, the resulting ciphertext is not at
all close to the plaintext, and the attacker cannot exploit an algorithm’s
weakness.

Symmetric Algorithms: Block Versus
Stream Ciphers

If you’re using symmetric-key cryptography, how do you choose a good
algorithm? There are two types of symmetric-key algorithms: block and
stream ciphers. What are they, and which is better?

Block Ciphers

A block cipher operates on blocks of data. When you give the algorithm a
chunk of data to encrypt or decrypt, it breaks the plaintext into blocks and
operates on each block independently (see Figure 2-10). Usually, blocks
are 8 or 16 bytes long.

Chapter 238

TE
AM
FL
Y

Team-Fly®

Suppose that your plaintext is 227 bytes long and the cipher you’re
using operates on 16-byte blocks. The algorithm grabs the first 16 bytes of
data, encrypts them using the key table, and produces 16 bytes of cipher-
text. Then it starts over, encrypting the next 16 bytes of plaintext. No mat-
ter which block it is working with, the cipher encrypts it by starting over
from scratch. The key table does not change from block to block.

After encrypting 14 blocks (224 bytes), the algorithm is left with 3 more
bytes. But your block cipher cannot operate on 3 bytes; it needs 16 bytes.
To encrypt the last 3 bytes, you must pad the data: add extra bytes to an
incomplete block to make it complete. Whoever decrypts the ciphertext
must be able to recognize (and ignore) the padding.

The most popular padding scheme determines the number of bytes to be
padded and repeats that value in the final bytes in the data. In our exam-
ple, the padding scheme must add 13 bytes to the plaintext so that it has
a full block. So it repeats the byte “13” in each of the final 13 otherwise
empty spaces. During decryption, you look at the last byte of decrypted

39Symmetric-Key Cryptography

Figure 2-10

A block cipher
grabs each block
of the input data
(usually 8 or 16
bytes) and uses
the key table to
produce a unique
block of output,
continuing until
all the blocks are
encrypted

data; this byte, a number from 1 to 16, indicates how many pad bytes have
been added. In this example, after decrypting, we would know that the last
13 bytes of data should be discarded (see Figure 2-11). (Each of the last 13
bytes should be the number 13, so as an extra check, we make sure that
each of them is 13.) If the length of the plaintext had been a multiple of 16,
there would have been no need to pad. Nevertheless, it makes sense to
always pad your data. Then, when decrypting, you know that the last byte
decrypted is indeed a pad byte. To do that, you tack on 16 bytes, each of
them the number 16.

Chapter 240

Figure 2-11

When the last
block of plaintext
ends in blank
bytes, use
padding to bring
it up to size

Remember the known-plaintext attack? If an algorithm is susceptible,
that doesn’t mean an attacker will automatically be able to break a mes-
sage; it’s necessary to find a plaintext/ciphertext pair first. The last block
of data might be that known plaintext, because it contains padding. Of
course, it’s easy to simply use an algorithm that is not susceptible to the
known-plaintext attack.

One problem with block ciphers is that if the same block of plaintext
appears in two places, it encrypts to the same ciphertext. In our printing
machinery company memo, for example, the phrase “slow third quarter”
may show up a number of times. Each time the first 16 bytes of that
phrase is encrypted, it will produce the same ciphertext, and an attacker
might identify this repeated pattern. To avoid having these kinds of copies
in the ciphertext, you can use feedback modes. A number of these modes
are discussed in the FAQ contained in the accompanying CD.

The most common feedback mode is cipher block chaining (CBC),
shown in Figure 2-12. In this scheme, you XOR the current block of plain-
text with the preceding block of ciphertext (see “Technical Note: XOR”
later in this chapter). For the first block of plaintext, there is no preceding
block of ciphertext, so you XOR with an initialization vector (IV). When
you decrypt the data, you copy a block of ciphertext, decrypt it, and XOR

the result with the preceding block of ciphertext (which you saved right
before you decrypted it). This technique ensures that any duplicate block
in the plaintext does not encrypt to the same ciphertext. That’s all it does.
It adds no other security. The encryption algorithm provides the security.

Stream Ciphers

To understand stream ciphers, the second type of symmetric-key algo-
rithm, you need to first understand the cryptographic technique called a
one-time pad, which is popular with spies. In one variation of this tech-
nique, you generate a bunch of random numbers, each from 0 to 25. Then
you print two copies of the series. That’s the “pad.” One copy stays at your
headquarters, and the spy takes the other copy out into the field.

To send a message back home, the spy encrypts each letter of the mes-
sage with a number on the pad. The first letter of the message is encrypted
with the first number on the pad, the second letter with the second number,
and so on. Encryption is simply a matter of adding a numeric value
assigned to the letter plus the number. Here’s how the numeric value is
assigned. If the plaintext letter is G and the number on the pad is 11, the
ciphertext letter is R (R is the eleventh letter after G, or G � 11 � R). If the
plaintext letter is Y and the number is 4, the ciphertext letter is C, or Y � 4
(Y, Z, A, B, C; when you reach the end of the alphabet, you start over at A).

41Symmetric-Key Cryptography

Figure 2-12

Cipher block
chaining. The
first block of
plaintext is
XOR’d with the
IV and then
encrypted. Each
successive block
is XOR’d with the
preceding block
of ciphertext

Chapter 242

Technical Note: XOR
The term XOR stands for “exclusive OR,” a type of bit manipulation.
The first concept to understand is an OR. An OR is a bit manipula-
tion that says, “Look at two bits. If one OR the other is set, set the
result.”

0 OR 0 = 0 (zero OR zero equals 0)
0 OR 1 = 1 (zero OR one equals 1)
1 OR 0 = 1 (one OR zero equals 1)
1 OR 1 = 1 (one OR one equals 1)

An exclusive OR says, “Look at two bits. If one is exclusively set,
OR if the other is exclusively set, set the result.” If both bits are set,
then there’s no exclusivity, so the result bit is not set.

0 XOR 0 = 0 (zero XOR zero equals 0)
0 XOR 1 = 1 (zero XOR one equals 1)
1 XOR 0 = 1 (one XOR zero equals 1)
1 XOR 1 = 0 (one XOR one equals 0)

XOR is a useful bit manipulation in cryptography because half of
the time the result is 1, and the other half of the time it’s 0. If one bit
is plaintext, and one bit is key stream, then the key stream some-
times changes the bit and sometimes doesn’t change the bit.

In grade school, we learned how to add, subtract, and multiply
using columns:

1,482 77 204
+ 319 - 5 * 8
1,801 72 1632

Similarly, we can perform XOR operations on longer numbers.
Computers, of course, see all numbers as binary values.

values as binary text values as hex text
0111 0100 0110 0101 0111 1000 0111 0100 0x74 65 78 74

XOR 1001 1011 0010 1100 0110 0011 1000 0100 0x9B 2C 63 84
1110 1111 0100 1001 0001 1011 1111 0000 0xEF 49 1B F0

continues

43Symmetric-Key Cryptography

The first row (the row that begins 0111 0100) in the preceding
table is the ASCII bit formation of the word “text.” ASCII gives us a
standard way to map characters to numbers. For example, lowercase
t is represented as the number 0x74 (binary 0111 0100), which is
decimal 116. Punctuation marks are also included; a comma, for
example, is 0x2C, which is decimal 44. You see 0111 0100 and so on,
but the computer sees the word “text.” Suppose that word “text”
is our plaintext. To encrypt it, we perform the steps the algorithm
prescribes, namely XOR it with the key stream. If the second row
(the row with the binary values beginning 1001 1011) is the key
stream and we perform the XOR operation, what do we get? We get
the bottom row (the row beginning 1110 1111)—that would be the
ciphertext.

What does this ciphertext say? It says “?9??” As it happens, the
first, third, and fourth characters are not standard characters (they
are numbers outside the ASCII range). The second is the character
9. So the algorithm converted the “e” in “text” to a “9”, but what
about the other characters? Because the numbers are not standard
character numbers, each computer or software package gets to
decide what they mean. One computer or software package might
print the ciphertext as “µ9←�”. Another computer or software pack-
age might print it as “□9□□”. Whichever you use, it looks like gib-
berish; it’s nothing like the plaintext.

If you start with the ciphertext and XOR it with the key stream,
what do you get? You get the plaintext.

values as binary text values as hex text
1110 1111 0100 1001 0001 1011 1111 0000 0xEF 49 1B F0

XOR 1001 1011 0010 1100 0110 0011 1000 0100 0x9B 2C 63 84
0111 0100 0110 0101 0111 1000 0111 0100 0x74 65 78 74

That’s another reason that the XOR operation is popular in cryp-
tography: It’s symmetric.

When the home office gets the encrypted message, the translator sim-
ply reverses the algorithm. If the ciphertext is R and the associated num-
ber in the pad is 11, compute R–11 � G. As long as the spy and the home
office use the same pad, the communication will be successful. Figure 2-13
shows an example of the one-time pad. Where does the pad come from?
Probably an RNG.

Chapter 244

Figure 2-13

A one-time pad

Figure 2-14

A stream cipher

A stream cipher is similar to a one-time pad. To encrypt data, the algo-
rithm generates a pad based on the key. The pad can be as big as it needs
to be. The algorithm will XOR the plaintext with the pad (see Figure 2-14
and the technical note on the XOR function). With the one-time pad, the
spy and the home office generate a pad (actually, probably many pads) in
advance. The stream cipher generates its pad on-the-fly, only when
needed. In cryptography circles, the “pad” is called a key stream. A true
pad would be random; a stream cipher produces pseudo-random values
and technically can’t be called a pad.

Most stream ciphers work this way. First, you use the key to build a key
table. Then to encrypt the data, you take one byte of plaintext, go to the
key table, somehow get a byte of key stream, and XOR it with the plain-
text byte. Next, you throw away the key stream byte and remix the key
table. Then you get the next byte of data and continue. The key table, and
hence the key stream, does not depend on the input data.

In the example of the one-time pad, the spy added numbers to letters to
encrypt the data and the home office subtracted them to decrypt. A
stream cipher uses the XOR operation because encrypting and decrypting
are the same operation. Only one program and not two exist.

Block Versus Stream: Which Is Better?

Stream ciphers are almost always faster and generally use far less code
than do block ciphers. The most common stream cipher, RC4, is probably
at least twice as fast as the fastest block cipher. RC4 can be written in per-
haps 30 lines of code. Most block ciphers need hundreds of lines of code.

On the other hand, with a block cipher, you can reuse keys. Remember
that the stream cipher is rather like a one-time pad. “One-time” implies
that you should use a pad only once (see “Crypto Blunders” on the accom-
panying CD for a story of multiple uses of one-time pads). Similarly, you
should use a stream cipher key only once. Generally, that’s not a problem,
but sometimes it will be necessary to encrypt many things using the same
key. For example, an e-commerce company may have a database of cus-
tomer information, including credit card numbers. Rather than encrypt
each entry with a different key (and hence manage hundreds or even
thousands of keys), the company can encrypt all of them with one key.
When one entry is needed, decrypt it with the one key. Key management
is much easier when there’s only one key to manage.

Another factor is standardization. Everyone has two algorithms—DES
and AES-both of which are block ciphers. For reasons of interoperability,
you may want an algorithm that is widely used. The entity on the
other end of your data link may or may not have RC4, but it’s almost a
guarantee that it has DES and AES. You choose a block cipher because it’s
a standard.

In other words, neither type is “better.” If you need to reuse keys, use a
block cipher. If you must guarantee interoperability, it’s best to use AES.
Otherwise, use a stream cipher. Table 2-2 lists some applications and the
type of cipher you might want to use with each one.

45Symmetric-Key Cryptography

Digital Encryption Standard
A computer can be programmed to perform any encryption algorithm. By
the 1970s, though, it was known that the old algorithms were not very
strong. They had weaknesses and were difficult to implement.

The advent of computers made it possible to throw out the old rules of
cryptography and create a new paradigm. Researchers at IBM decided to
develop a new algorithm for the computer age, and built on a scheme
called Lucifer, an algorithm invented by cryptographer Horst Feistel.
They also enlisted the help of the National Security Agency (NSA), the
agency charged with protecting the U.S. government’s secret data, a duty
that includes cryptography. The fruit of the group’s labor was DES.

DES is a block cipher that uses a 56-bit key—no more, no less—to build
a key table. Using the key table, DES performs bit manipulations on
plaintext. To decrypt ciphertext, it simply does everything in reverse.

Chapter 246

Application Cipher to Use Comments

Database Block Interoperability with other software
is not an issue, but you will need to
reuse keys.

E-mail AES Although each e-mail message has its
own key and you could use a stream
cipher, you gain interoperability with
all e-mail packages by using the
standard AES.

SSL (secure RC4 Speed is extremely important, each
connections on (stream cipher) connection can have a new key, and
the Web) virtually all Web browsers and servers

possess RC4.

File encryption Block Interoperability is not an issue, but
(storing your you can encrypt each file with the
files securely) same key and then protect that key

(see Chapter 3).

Table 2-2

Choosing an
Algorithm by
Application

After its introduction, DES became freely available and widely studied.
Throughout the 1980s, the consensus among cryptographers was that it
had no weaknesses. This meant that the fastest way to break a message
encrypted with DES was to use the brute-force attack. Because a 56-bit
key is a number between 0 and about 72 quadrillion, even the fastest com-
puters took years to break a single message.

By the 1990s, though, cryptographers knew that DES couldn’t last.
Computers were becoming faster and eventually would be fast enough to
mount a brute-force attack on a 56-bit key in a reasonable amount of time.
In addition, researchers discovered potential weaknesses that led them to
conclude that someday it might be possible to break the algorithm. The
brute-force attack was still the fastest attack, but those potential weak-
nesses were troubling.

In 1999, at the RSA Conference, the Electronic Frontier Foundation
broke a DES key in less than 24 hours. The world needed a replacement.

Triple DES
One widely used replacement for DES is Triple DES. The name says it
all: Triple DES performs the DES algorithm three times. That’s it. You
run your block of data through DES using a key, and then you encrypt
that result with another DES key. Then you do it a third time (see Fig-
ure 2-15).

You use three keys, each 56 bits. That’s essentially the same as using
one 168-bit key. You may be thinking, “If it takes 24 hours to break one
key, then shouldn’t it take 72 hours to break three keys?” Here’s the
answer. It takes 24 hours to break one key if you know you’ve broken it.
But with Triple DES, you don’t know you’ve stumbled onto the first key
until you combine it with the other two correct keys.

Think of it this way. Suppose that the three keys are called A, B, and
C, and each possible key value is numbered from 0 to 72 quadrillion.
Suppose also that the correct key combination is A � 1, B � 33,717, and
C � 1,419,222. An attacker could try value 0 with key A, value 0 with key
B, and value 0 with key C. That doesn’t produce the correct answer, so try
A � 1, B � 0, C � 0. As shown in Figure 2-16, the first key is correct. But
the value the attacker got from trying the three-key combination is not
the right value. The correct plaintext appears only when all three keys are
correct. So how can the attacker know that the first key is correct?

47Symmetric-Key Cryptography

Triple DES, however, presents two problems. First, cryptanalysts have
figured out a way to streamline the brute-force attack. You’d think it
would require a “168-bit” brute-force attack, but there are clever ways to
reduce it to the equivalent of a 108-bit brute-force attack. A key that is
equivalent to 108 bits is still secure (see Table 2-1 for worst-case estimates
of a 108-bit brute-force attack), but this “weakness” is troubling. Will more
research expose more cryptanalytic weaknesses? Will the security of
Triple DES be compromised even further?

The second problem is speed. DES takes a long time to encrypt or
decrypt data, and Triple DES is three times as slow. Some applications
need high-speed throughput of many megabytes worth of information.
Triple DES reduces the performance so much that some applications can-
not function.

For these two reasons, people needed a new algorithm.

Chapter 248

Figure 2-15

Triple DES is
simply DES run
on the data three
times

TE
AM
FL
Y

Team-Fly®

49Symmetric-Key Cryptography

Figure 2-16

To break Triple
DES, you must
know all three
keys

Commercial DES Replacements
In response to the key size and performance problems of Triple DES,
many cryptographers and commercial companies developed new block
ciphers. The most popular offerings were RC2 and RC5 from RSA Data
Security, IDEA from Ascom, Cast from Entrust, Safer from Cylink, and
Blowfish from Counterpane Systems.

All these algorithms were faster than Triple DES, and they were able
to operate with variable-sized and bigger keys. Whereas DES and Triple
DES keys require fixed-length keys, the new algorithms could be
made stronger. Recall that you can choose a key size that is big enough to
make your cryptographic system immune to the brute-force attack or at
least to make the brute-force attack unfeasible. At one time, a 56-bit key
was big enough. But when that was no longer secure enough, 64 bits was

a popular key size. Even though DES cannot increase its key size, the
commercial replacements can.

The various commercial DES replacements caught on to some degree,
and companies built products using the algorithms. But none became a
worldwide standard comparable to DES and Triple DES.

In response, the U.S. government, through the National Institute of
Standards and Technology (NIST), set about creating a new standard. The
idea was to name a particular algorithm as the U.S. government standard.
Once the U.S. government adopted a standard, the thinking went, the rest
of the world would almost certainly follow.

Advanced Encryption Standard

The NIST plan was formally announced on January 2, 1997, when the
agency invited anyone to submit an algorithm as the new standard, to be
known as AES. As a condition for entry into the AES process, developers
promised to give up any intellectual property rights to the selected algo-
rithm. Many individuals and companies responded, and on August 20,
1998, NIST named 15 candidates.

The next step was for the world to analyze the algorithms. The crite-
ria were security (no algorithmic weaknesses), performance (it had to be
fast on many platforms), and size (it couldn’t take up much space or use
much memory). Many of the original 15 algorithms did not last long.
Weaknesses were discovered, and some were shown to be simply too big
or too slow.

In August 1999, NIST trimmed the list to five candidates. For the next
year, researchers, cryptanalysts, and vendors of computer hardware and
software tested the algorithms to decide which they liked best. Many
papers were published, and volumes of statistics were released comparing
the finalists. Each had its strengths and weaknesses.

Finally, on October 2, 2000, NIST announced the winner: an algorithm
called Rijndael (commonly pronounced “Rhine-doll”) invented by two Bel-
gian researchers: Vincent Rijmen and Joan Daemen.

From now on, the AES algorithm is free for anyone to develop, use, or
sell. As with DES, it is expected that AES will become a worldwide stan-
dard. You can expect that within a short time, if someone has cryptogra-
phy, he or she has AES.

Chapter 250

Summary
If you want to encrypt something, follow these steps.

1. Select a symmetric algorithm and a PRNG. You should choose an
encryption scheme that is not susceptible to attacks on the
algorithm. It should also allow key sizes big enough to thwart a
brute-force attack. If you need to reuse your cryptographic keys,
choose a block cipher. If you need to guarantee interoperability with
other cryptographic programs or products, choose AES. Otherwise,
you might want to choose a stream cipher for performance reasons.

2. Collect your seed value and feed it to the PRNG. Make sure that your
seed contains enough entropy to thwart a brute-force attack. It’s best
to combine several seeds, including user input.

3. Using the PRNG, generate a key. Choose a key size that requires a
brute-force attack that is so time-consuming that it is unfeasible.
Currently, the most popular key size is 128 bits.

4. Apply the symmetric algorithm, which will work with the key to
encrypt your plaintext.

5. Save and protect your key. The next chapter talks about how to
protect keys.

To recover the data you encrypted, follow these steps.

1. Retrieve your key.

2. Apply the symmetric algorithm, which will work with the key to
decrypt your plaintext.

Real-World Example: Oracle Databases
How do people and companies use symmetric-key cryptography today?
Here is one example.

Most companies store volumes of sensitive information in databases.
A database is a software package that stores data in a systematic way
and enables users to easily and quickly find what they’re looking
for. For example, a company may have personnel files containing names,
addresses, salaries, and Social Security numbers of all employees.

51Symmetric-Key Cryptography

A hospital may keep medical records of hundreds of patients. An e-com-
merce company might store credit card numbers and customers’ purchas-
ing histories.

The owners of the databases may want to make sure that only the
appropriate people have access to the information. One way to protect the
data is to encrypt it. If attackers break into the database, they still can’t
read the sensitive material.

Oracle sells a database product, Oracle 8i, release 8.1.6, that comes
with an encryption package. If you are a developer using the database,
and you want to encrypt the elements before storing them, you generate
some random or pseudo-random bytes to be used as the key and then call
on the package to perform the encryption. The calls to the encryption
function are PL/SQL, which are standard database language conventions.
For instance, to encrypt the data, you would add a line of code that looks
something like this.

dbms_obfuscation_toolkit.DESEncrypt(input_string => plaintext,
key => keyData, encrypted_string => ciphertext);

And that’s it. Well, you also need to save the key somewhere (not in the
same location). The next chapter talks about how to do that. If your appli-
cation was using SQL, it would now have the opportunity to store the data
in the clear (plaintext) or encrypted (ciphertext). This line shows that you
are using DES, but Triple DES is also available. When your program
needs to retrieve data, you recall it from the database, recover your key,
and make something like the following call:

dbms_obfuscation_toolkit.DESDecrypt(input_string => ciphertext,
key => keyData, decrypted_string => plaintext);

Thanks to Mary Ann Davidson and Kristy Browder of Oracle for pro-
viding this example.

Chapter 252

Symmetric-Key
Management

Symmetric-key encryption can keep your secrets safe, but because you need
your keys to recover encrypted data, you must also keep them safe. The
process of keeping all your keys safe and available for use is known as key
management. This chapter is about managing symmetric keys.

In Chapter 2, “Symmetric-Key Cryptography,” Pao-Chi generated a
random or pseudo-random key, and used it to encrypt data. If he wants to
decrypt the data, he must use the same key. This means he has to either
memorize the key or store it somewhere. Memorizing it isn’t practical, so
he must store it so that he can recall it when he wants to, but no one else
can. Right now you’re probably asking, “If there’s some place Pao-Chi can
keep his key safe, why doesn’t he just put his sensitive information there
as well?” The answer is that it’s easier to protect a small key than many
megabytes worth of information. In fact, some of the key storage solu-
tions you’ll see in this chapter are small devices designed in part to pro-
tect keys. So the idea is to use symmetric-key crypto to protect the
megabytes of information and some other technique to protect the 16
bytes (or so) of keys.

CHAPTER 3

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Password-Based Encryption
The key used to encrypt the megabytes of information, or bulk data, is
generally known as the session key. A session is simply an instance of
encryption, possibly during an email exchange, a World Wide Web con-
nection, or a database storage. In Pao-Chi’s case, a session involves
encrypting a file before storing it on his hard drive. Some systems gener-
ate a new key for each session; others use the same key from session to
session. One way to store the session key securely is to encrypt it using a
symmetric-key algorithm. Someone who finds the session key has really
found the encrypted key. The attacker would have to break the encryption
to get the key that protects the megabytes of information. Of course, the
process of encrypting the session key itself needs a key. That is, the key
needs a key. There’s the session key and then the key encryption key, as
shown in Figure 3-1. In the crypto literature, not surprisingly, the latter is
often known as the KEK.

You may be thinking that if Pao-Chi uses a KEK, he now has to store
and protect it as well. Actually, he does not store the KEK, and therefore
does not need to protect it. When he needs a KEK to encrypt, Pao-Chi will
generate it, use it, and then throw it away. When he needs to decrypt the
data, he generates the KEK again, uses it, and throws it away. He is able
to generate the KEK a second time and produce the same value as before
because it is based on a password. Pao-Chi uses an RNG or PRNG to gen-

Chapter 354

Session key

Regular
encrypt
engine

Regular
encrypt
engine

Protected
key

To:
From:Sales

quarter

KEKFigure 3-1

A session key
protects data, and
a key encryption
key (KEK)
protects the
session key

erate a session key, he uses password-based encryption (PBE) to build the
KEK. It usually works like this (see Figure 3-2).

1. Enter the password.

2. Use an RNG or PRNG to generate a salt.

NOTE:
What’s a salt? We describe the salt and its purpose in a few paragraphs.

3. Using a mixing algorithm, blend the salt and password together. In
most cases, the mixing algorithm is a message digest. And that’s the
second time we’ve mentioned this tool—the message digest. The first
time was in discussing PRNGs. Remember, a digest is a blender,
taking recognizable data and mixing it up into an unrecognizable
blob. We’ll talk more about message digests in Chapter 5.

4. The result of step 3 is a bunch of bits that look random. Take as many
of those bits as needed for the KEK and use it with a symmetric-key
algorithm to encrypt the session key. When the session key has been
encrypted, throw away the KEK and the password. Save the salt.

5. When storing the now encrypted session key, be sure to store the salt
along with it. It is necessary to decrypt.

When it comes time to decrypt the data, here’s the process.

1. Enter the password.

2. Collect the salt. The same salt used to encrypt is required (that’s why
you saved it with the encrypted session key).

3. Using the same mixing algorithm used to encrypt, blend the salt and
password together. If one or more of the salt, password, or mixing
algorithm is different, the result will be a KEK; however, it will be the
wrong KEK. If all three elements are the same, the result is the
correct KEK.

4. Use this KEK from step 3 along with the appropriate symmetric-key
algorithm to decrypt the session key.

You probably have four questions.

55Symmetric-Key Management

Mixing Algorithms and KEK

Why use a mixing algorithm? Why not just use the password as the KEK?
A password does not have much entropy. Recall from Chapter 2 that

entropy is the measure of randomness. But a password is made up
entirely of keystrokes (characters associated with the keys on a key-
board), which are not sufficiently chaotic. Using a mixing algorithm on the
password (and salt) ensures that the KEK looks random.

Chapter 356

(1)

(2)

Password
+L14?h, H 7%

PRNG

KEK: 3F08CD55...

salt
74A3...

KEK

Session
Key

Encrypt
engine

Figure 3-2

In password-
based encryption
(PBE), (1) blend
the password and
the salt to form a
KEK and then (2)
use it to encrypt
the session key.
To decrypt the
data, use the
same password
and salt

The Necessity of Salt

Why is a salt needed in the first place?
The salt is there to prevent precomputations. If the password were the

only thing used to generate the KEK, an attacker could create a dictionary
of common passwords and their associated keys. Then a brute force attack
would not be necessary; the attacker would try only the precomputed keys
(logically enough, this is called a dictionary attack). With a salt, the
attacker must wait until seeing the salt before finding the KEK any par-
ticular password produces (see Figure 3-3).

57Symmetric-Key Management

Pass

eagle
landed

Pass

QWERTY

Key

2730
4005

Key

F2

Pass

eagle
landed

Pass

QWERTY

Key

?
?

Key

?

No Salt With Salt

The same passwords don't produce the same keys

eagle 273D1148F6
landed 40059EE748

QWERTY F230B69561

eagle + salt[1] 3B442CEA1A

eagle + salt[2] 8702B45CD5

eagle + salt[1,000,000] 5B10182CA4

Figure 3-3

Using a salt foils
a dictionary
attack

Storing Salt with Ciphertext

If the salt is stored with the ciphertext, then won’t the attacker be able to
see it? Wouldn’t it be safer to keep the salt secret?

As just explained, a salt’s only purpose is to prevent precomputations.
That’s worth repeating: the salt does not add security; it only prevents a
dictionary attack. Even though the salt is not secret, it achieves that goal.
Besides, if the salt is secret, how is it recovered when needed?

Reasons for Using Two Keys, a Session Key, and KEK

Wouldn’t it be easier to simply use PBE to encrypt the bulk data? Why is
it necessary to have two keys (the session key and the KEK)?

There are a couple of reasons to use a session key and a KEK. First,
suppose you need to share the data with other people and you want to
keep it stored encrypted. In that case, you generate one session key, and
everyone gets a copy of it. Then everyone protects his or her copy of the
session key using PBE. So rather than share a password (something
everyone would need for decrypting if you had used PBE to encrypt the
bulk data), you share the key (see Figure 3-4).

The second reason for using both keys is that it’s easier to break a pass-
word than to break a key (more on this soon), and attackers might have
easier access to the encrypted data than to the encrypted key. For
instance, suppose Pao-Chi’s data is on the network and the encrypted ses-
sion key (the value encrypted by PBE using the KEK) is on his own per-
sonal computer (or other storage facility). Suppose Ray, an attacker,
breaks into the network and steals the encrypted bulk data. To decrypt,
Ray would have to break the session key or else perform a second break
in (possibly into a more secure location) to find the encrypted session key
and then break the password. Alternatively, if Pao-Chi used PBE to pro-
tect the data, Ray can recover the information by breaking the password
(see Figure 3-5).

Of course, it is possible to use PBE to do the bulk encryption. In this
book we don’t discuss that option. From a programming point of view, it’s
not much more difficult to use a session key and then PBE to encrypt the
session key, so you might as well because of the reasons given.

Chapter 358

TE
AM
FL
Y

Team-Fly®

Programming Convenience

A PBE program will do its work, even with the wrong password. Suppose
the wrong password were entered, the program would have no way of
knowing it was an incorrect password. It would simply mix the “bad” value
with the salt and produce a KEK. It wouldn’t be the correct KEK, but the

59Symmetric-Key Management

Password Salt

Pao-Chi's password

PBE engine

KEK

KEK

Password Salt

Gwen's password

PBE engine

To:
From

sales
quarter

Session key

Figure 3-4

Using a session
key for bulk data
and protecting it
with PBE means
that users don’t
have to share
passwords

program wouldn’t know that; it just blindly follows instructions. It would
then use that KEK to decrypt the session key. That would work; some
value would come out as a result. It would be the wrong value, but there
would be something there. Then the program would use this supposed ses-
sion key to decrypt the ciphertext. The resulting data would be gibberish,
but only then would it be possible to see that something went wrong.

Chapter 360

To:
From:Sales

quarter

To:
From:Sales

quarter

Password

Salt

Encrypt
engine

Session
key

Ray
attacks
password

To:
From:Sales

?

Password Salt

Ray has to find the PBE
protected session key to
attack the password

Encrypt
engine

Ray
attacks
session key

Figure 3-5

If Pao-Chi uses
PBE to protect
bulk data, Ray
can recover it by
breaking the
password. If Pao-
Chi uses PBE to
protect the
session key, Ray
must find the
encrypted key

For this reason, it would have been more convenient if, when entering
the password, there were some way to know immediately whether it’s the
correct password or not. That would be better than decrypting the entire
bulk data before finding that out.

One solution is to use the KEK to encrypt the session key along with
something else, the “something else” being some recognizable value, such
as the salt. Then when decrypting, the program checks this recognizable
value first. If it’s correct, continue using the session key to decrypt the bulk
data. If not, the password was wrong and the process should start over.

The overall process looks like this. To encrypt bulk data:

1. Generate a random or pseudo-random session key. Use this key to
encrypt the data.

2. Enter the password, generate a salt, and mix the two together to
produce the KEK.

3. Encrypt the salt and session key using the KEK. Store the encrypted
data with the salt.

4. Store the encrypted session key, which is actually the session key and
the salt (see Figure 3-6).

To decrypt the data, follow these steps.

1. Collect the salt and password and mix the two together to produce
what is presumably the KEK.

2. Using this KEK, decrypt the session key. The result is really the
session key and the salt.

3. Check the decrypted salt. Is it correct?

a. If it is not correct, don’t bother using the generated session key to
decrypt the data; it’s not the correct value. The user probably
entered the wrong password. Go back to step 1.

b. If it is correct, use the session key to decrypt the data.

Instead of the salt, you can use a number of things as a check. For
example, it could be an eight-byte number, the first four bytes being a ran-
dom value and the second four, that random value plus 1. When decrypt-
ing, check the first eight bytes; if the second four bytes is the first four plus
1, it’s the correct password. This may be more palatable than the salt,
since if the salt is the check, there is now some known plaintext. Presum-
ably, the cipher is immune to a known-plaintext attack, but nonetheless,

61Symmetric-Key Management

some people might feel it is more secure without any known plaintext. Of
course, it is possible to use the wrong password and get a KEK that
decrypts the check into a different eight-byte value that by sheer coinci-
dence passes the test. The chances of this happening are so small, it will
probably never happen in a million years.

Another check could be an algorithm identifier. This would be some
sequence of bytes that represents the algorithm being used. Or it could be
a combination of some of these values. In the real world, you’ll probably
find that engineers come up with complex procedures that include mul-
tiple checks. In these schemes, maybe one check accidentally passes, but
not all of them.

Chapter 362

Session key

Session key?

= ?

salt?

Encrypt
engine

PBE Encrypt engine

Protected key
and salt

Protected key
and salt Decrypt

engine

Password Salt

KEK

KEK

Password Salt

Figure 3-6

Use a KEK to
encrypt the
session key along
with a
recognizable
value such as the
salt. Entering the
wrong password
produces the
wrong KEK/salt
combination

Breaking PBE

Our attacker (who we’re calling Ray) has two ways to break PBE. First, he
could break it like any symmetric-key encryption and use brute-force on
the KEK. Second, he could figure out what the password is.

Although the KEK is the result of mixing together the password and
salt, Ray doesn’t have to bother with those things; he could simply perform
a brute-force attack on the KEK, use it to decrypt the session key, and then
decrypt the data. This might be plausible if the session key is larger than
the KEK. In Chapter 2, though, we saw that if a key is large enough, that’s
not going to happen. Hence, Ray will probably try the second way, which
is to figure out what the password is. Once he has the password, he can
reconstruct the key-generating process and have the KEK.

How can Ray figure out what the password is? One way would be to try
every possible keystroke combination. This would be another flavor of the
brute-force attack. If Pao-Chi entered the password from the keyboard,
Ray could try every possible one-character password. Then he would try
every two-character combination (AA, AB, AC, AD, . . .), then three-char-
acter values, and so on. In this way, eight-character or less passwords (on
a keyboard with 96 possible values) would be approximately equivalent to
a 52-bit key. Ten-character passwords are equivalent to about 65-bit keys.

Another attack is for Ray to build up a dictionary of likely passwords,
such as every word in the English, German, French, and Spanish lan-
guages, along with common names, easy-to-type letter combinations, such
as “qwertyuiop.” He could add to that dictionary lists of common pass-
words that are available from hacker sites and bulletin boards (if you’ve
thought of a password, someone else probably thought of it also). When
confronted with PBE, he runs through the dictionary. For each entry, he
mixes it with the salt and generates an alleged KEK. He tries that KEK
on the chunk of PB-encrypted data. Did it produce the session key?
Because the original PBE probably has a check in it (such as the salt
encrypted along with the session key), it’s probably easy to determine. If
the check passes, that was the correct password and it produced the cor-
rect KEK, which in turn will properly decrypt the session key, which will
then decrypt the bulk data.

This dictionary attack tries fewer passwords than does the brute force
attack. Any password the dictionary attack tries, the brute force attack
also tries, but the brute-force attack tries many additional passwords that
the dictionary attack does not. As a result, the dictionary attack is faster
than the brute force attack.

63Symmetric-Key Management

Of course, if Pao-Chi comes up with a password not in Ray’s dictionary,
it will never succeed. If Ray is smart, he’ll probably start with a dictionary
attack and if that fails, move on to a modified brute-force attack.

Slowing Down an Attack on a Password

To check a password, Ray has to mix the salt and password the same way
Pao-Chi did. Pao-Chi can slow Ray down by making that a lengthy task.
His goal will be to make the process quick enough that it doesn’t make his
own encryption or decryption process too expensive, but slow enough to be
a drain on Ray. He can do this by repeating the mixing over and over.

First, mix the salt and password together. Then take the result of that
and run it through the blender again. Then take the result of that and run
it through the blender. And on and on, say 1,000 times.

The blender is probably pretty fast, the mixing is almost certainly
done with a message digest, and these algorithms are generally very fast,
so for Pao-Chi to do 1,000 iterations of the mixing process won’t be too
time-consuming. In fact entering a password is going to be far more time-
consuming than 1,000 mixings. So relatively speaking, for Pao-Chi, the
mixing takes up a very small portion of the total time. But Ray is going
to have to do 1,000 mixings for every password he tries. That can add up.

Let’s say Pao-Chi has an eight-character password. In an earlier section
we said that an eight-character password is equivalent to a 52-bit key. But
actually, Ray cannot try one password as quickly as one key. If he tries the
brute-force attack on a key, here’s the process (BFK stands for “brute-force
on the key”):

BFK1 Get a candidate key.

BFK2 Do key setup (recall the key table from Chapter 2).

BFK3 Decrypt some ciphertext, yielding some purported
plaintext.

BFK4 Check the plaintext.

But for each password Ray checks, on the other hand, here’s the process
(BFP stands for “brute-force on the password”):

BFP1 Get a candidate password.

BFP2 Perform the mixing to build the candidate key.

BFP3 Do key setup.

Chapter 364

BFB4 Decrypt the ciphertext, yielding the purported check and
session key.

BFB5 Perform the check.

How long it takes to do one BFK depends on four things. How long it
takes to do one BFP depends on those same four things, plus one more. If
step BFP2 is as long as the other four steps combined, that’s going to dou-
ble the amount of time to check one password. That’s like adding one bit
to your password. The eight-character password which was equivalent to
a 52-bit key is now more like a 53-bit key.

In our experiments, performing 1,000 iterations (doing step BFP2 1,000
times) is about 136 times slower than the other steps combined (more or
less, depending on the encryption algorithm; we used RC4, a very fast
algorithm). On one Pentium-based PC, step BFP2 took 4.36 milliseconds,
whereas checking one key took 0.032 milliseconds (a millisecond is “one
one-thousandth” of a second; Pao-Chi is going to pay this 4 millisecond
penalty when he encrypts or decrypts). Although Ray could check 31,000
keys per second, he could check only 230 passwords per second. The eight-
character password is now equivalent to a 59-bit key. The 10-character
password is more like a 72-bit key.

Incidentally, you may be thinking, “In a lot of places I’ve used pass-
words, there’s a limit to how many times I can enter the wrong password
before the program won’t work. So if I try too many wrong passwords even
if I later on do enter the correct password, the application won’t run. Can’t
I just make PBE work the same?”

It’s possible to write such a program, but the attacker will simply use a
different PBE program that mimics the original. That is, Pao-Chi used his
program to encrypt. Ray would simply obtain a copy of the ciphertext and
run it through another program that looks like Pao-Chi’s, except Ray’s
program puts no limits on the number of passwords allowed.

Good Passwords

In choosing a password, your goal is to choose one that doesn’t appear in
a dictionary and would thwart a brute-force attack. For example, the fol-
lowing password probably does not appear in a password dictionary:

14G:c*%3�wM*-l6g]_Bnp?� d86

65Symmetric-Key Management

Chapter 366

Editorial: The “Three-Try” Password
Limit, A Pain in the Neck
by Steve Burnett

Many programs, especially login programs, place a limit on the
number of wrong password tries they will accept before locking up.
Usually, the limit is three. Enforcing a limit is a good security
measure, but it’s very annoying that the limit is so low. Further-
more, a low limit does not add any significant security compared
to a larger limit.

Suppose you enter a password and the program denies access. You
check and see that you accidentally have the CAPS LOCK on. You fix
that and type in a password again. But this one didn’t work either.
What happened? Did you forget the password? Or did you simply
misspell (for instance, how many times have I typed in “teh” for “the”
or even “Bunrett” and that’s my own name!)? Did you accidentally
press a stray key? There’s no way to know since you can’t see what
you typed. You’ve made two tries and gotten it wrong both times; are
you going to try a third time? Probably not, because if you get it
wrong, you’ll be locked out. So it really isn’t it a “three-try” password
but a “two-try.”

Now what about attackers? If the password is so weak that you
need to limit intruders to no more than three tries, it’s too weak. The
security department should be talking to the employees about using
better passwords. What’s more, attackers may not even be trying the
password through the user interface. Instead, they’re probably grab-
bing information and trying the attack offline.

Given this, why not set the limit of password tries to, say, 10? That
would make things easier for the user and most likely wouldn’t give
attackers any significant assistance. “Three tries and you’re out” is
just a pain in the neck.

It’s a possible password, but attackers probably won’t get around to try-
ing it for a very long time. The problem with this password, of course, is
that it’s not easy to remember, and even if you could remember it (maybe
you have a photographic memory), it’s easy to mistype.

If you’re using PBE, you need a good password. What makes a good
password? The following list comes from an RSA Security manual. Other
sources might offer other guidelines, but this is a good start.

1. Use at least 10 characters.

2. Mix in uppercase and lowercase letters, numbers, spaces,
punctuation, and other symbols.

3. Avoid using a character more than twice.

4. Avoid using actual words.

5. Avoid using personal information, such as the name of a spouse, child,
parent, or friend, or your phone number, Social Security number,
license plate number, or birthday.

6. Do not write it down. Instead, memorize it.

Number 6 is the hardest if you follow recommendations 1 through 5. In
addition, if you have several applications, security experts recommend
that you use a different password for each one. What’s more, some appli-
cations enforce a policy that requires you to change your password peri-
odically.

Given all that, what’s the average user to do? So far, there are no easy
answers to the password dilemma. Later sections describe some alterna-
tives to passwords, along with ways to use passwords more effectively.
Unfortunately, these techniques require new hardware, and for some of
them the technology is years away from perfection or public acceptance.

Password Generators

Programs are available that will generate passwords for you. These pro-
grams work like PRNGs but produce keystrokes instead of numbers. For
example, the program may collect some seed bytes, including your mouse
movement and keystrokes. Then it spits out a password that probably
looks random. Most programs allow you to specify how long the password
will be, whether the password combines uppercase and lowercase letters,
or whether it should contain punctuation or other marks. You might get
results like this:

tiFXFCZcZ6

K6($xV]!h1

M?a84z9W,g

67Symmetric-Key Management

Chapter 368

Technical Note: You Never Know
Where Attackers Will Look Next
Do you think that you can choose a key or password that will force a
brute force attack to run to completion? For example, if the brute
force attack on the password begins with A, then B, and then so on
through the alphabet to AA, AB, and so on, you might think it would
be clever to choose ZZZZZZZZZZZZ as your password. After all,
that’s a long way away from the beginning of the list.

Unfortunately, brute force attacks usually don’t work that way.
First, most brute force attacks use more than one computer, and
each computer works with some of the possible key or password
space.

Here’s how it works. A computer that wants to be part of the
cracking process applies to a central “bureaucrat” computer. This
central computer keeps track of the keys or passwords that have
been searched. It generates a range of keys or passwords for the
“worker” computer to check, which then searches all the values in
that range. If the worker computer finds the key or password, it
reports the good news to the bureaucrat. But if the worker searches
its entire allotted range with no success, it goes back to the bureau-
crat to get another range.

How is a range determined? Probably not systematically. In other
words, the first range is not going to be A to ZZZ, the second range
from AAAA to ZZZZ, and so on. Instead, the ranges are probably
parceled out randomly. The first applicant gets something like
EV9A3LGP to FBMA111G, the second applicant gets W6MWC0O to
ARH7ZD2F, and so on.

Even if only one computer is involved in the brute force attack, it
operates as both a bureaucrat and a worker. As a result, you never
know which part of the space will be searched next.

TE
AM
FL
Y

Team-Fly®

These passwords were generated using the JavaScript Source password
generator (see http://javascript.internet.com/).

They are good passwords, but they’re harder to memorize. Still, if you
want a “random” password, one that will withstand a dictionary attack, a
program such as this one might be a good choice.

Make sure that you trust the program you choose. Imagine a malicious
password generator programmer. Suppose our attacker Ray creates a pro-
gram that produces what looks like random passwords. But actually the
program is limited to how many it can really create, say 10 million. Now
Ray simply looks at who buys the product, and then has a leg up on crack-
ing that customer’s passwords.

Hardware-Based Key Storage
We’ve just examined PBE as a possible way to store cryptographic keys.
Another storage place is on a hardware device. Some devices are tiny com-
puters called tokens. Others are larger, tamperproof boxes, generally
called crypto accelerators.

Tokens

A token is not a cell phone or a personal digital assistant (PDA) such as
Palm, iPaq, and so on, but rather is something even smaller that fits
inside your wallet or shirt pocket: a plastic “smart” card, a plastic “key,” a
small USB port attachment, or even a ring you wear on your finger.
(Smart cards and USB port attachments, the most common types of
tokens, are discussed in the following two sections.) A token contains a
small chip with a processor, an operating system of sorts, and limited
input/output, memory, and hard drive storage space. Some tokens are very
small or thin, are slow, have very little storage space, and do very little.
Others may have more power and can store as much information as a
1970s era PC. Figure 3-7 shows some tokens.

69Symmetric-Key Management

Chapter 370

Figure 3-7

Some tokens

Java ring

iKey 2000

Datakey

Smarty smart card and reader

RSA SecurID 3100 smart card

The advantage of using tokens is that the attacker does not have access
to them. If our attacker Ray is in Elbonia, he can probably use the inter-
net to access Pao-Chi’s computers’ hard drives and does not need to be in
his office to break in. (As you may know, Elbonia is a fictional country fea-
tured in the Dilbert comic strip by Scott Adams.) But Pao-Chi’s token is
not connected to the network (it’s in his wallet or on his key chain or fin-
ger), so it’s not visible. This arrangement thwarts a remote attack. When
Pao-Chi uses his token, it’s connected to his computer, which is ultimately
connected to the world, so for a brief while, his secrets are vulnerable. But
a few seconds of vulnerability is not as dangerous as the 24 hours a day
the network is vulnerable.

Even if Ray obtains Pao-Chi’s token, further protections are built-in.
Generally, a token performs functions (such as retrieving stored keys)
only when a correct password or personal identification number (PIN)
activates it. Often, a token locks itself if too many incorrect passwords are
entered. If someone tries to physically get at the storage space (as in
Chapter 1 with data recovery techniques), the token will erase itself—sort
of a “scorched earth” policy. This scorched earth thwarts an offline attack
on the password.

The problem with tokens is that they need a way to communicate with
the computer; once they can communicate with the computer, they can
communicate with users through the computer. For example, you commu-
nicate with the computer by using the keyboard and mouse. Sound sys-
tems communicate using a sound card. A token might use the serial or
USB port, or even the floppy drive. Some tokens use a reader to one of the
ports. It’s the reader that communicates with the computer. To use the
token, you insert it into the reader, something that’s generally easier than
inserting it into a port. Of course, this means that you must buy the
reader as well as the token and then install it.

Smart Cards

A smart card is simply a plastic card, similar to a credit card, that con-
tains a microprocessor. One of the goals of smart card vendors is to replace
the current version of the credit card. Just as credit cards with magnetic
strips replaced simpler embossed cards, the hope is that smart cards will
replace credit cards. But because smart cards contain small computers,
they will be able to do more than serve as credit cards.

We’ll talk more about smart cards throughout this book, but for now,
one of the things you can do with them is to store keys. When you need to

71Symmetric-Key Management

use a symmetric key, for example, you transfer it to the computer, which
uses it to encrypt or decrypt data. To transfer the key between card and
computer, though, you need a smart card reader. Several PC manufactur-
ers have announced that future laptops and keyboards will come with
built-in smart card readers.

The International Organization for Standardization (ISO) has published
several standards outlining the physical characteristics of smart cards,
including the dimensions and locations of the contacts, signals and trans-
mission, and more. Virtually all smart cards look alike because they are
built to standard. The idea is that all smart cards will be usable with a wide
variety of readers. So far, however, many smart cards and readers simply
don’t work together. Often, to use a particular manufacturer’s smart card,
you must use that firm’s reader. As more PC manufacturers release prod-
ucts with readers built in, this situation should change.

USB Tokens

The Universal Serial Bus port is an industry standard for attaching plug
and play devices. Other ports have such functionality (such as PCMCIA),
but the USB port is probably the most popular. Since 1998 or 1999, most
new PCs and laptops have come with USB ports as standard equipment.
If you have a device that connects to your computer through the USB port
(such as a camera downloading pictures or a printer), there’s no need to
attach and reboot. So long as the software to run the device is installed,
you simply insert the device and run it. When you’re done with one USB
device, take it out and insert a new one, or most likely, you can have sev-
eral attached to the same port.

Several companies have introduced cryptographic tokens that attach to
the USB port. Other companies with tokens that are not USB-ready have
made adapters to USB ports. These tokens are approximately 21/2 by
1/2 inches in size (about the size of a house key but a little thicker). They
have quite a bit more computing power and storage space than smart
cards. Hence, they will almost always be much faster, do more work, and
store more keys than a smart card.

Tokens as Password Storage Devices

In addition to your keys, tokens can hold passwords. Suppose you have
several places to log in: your network account, e-mail, various computer
accounts, electronic commerce accounts (such as an account with an

Chapter 372

online travel agent or bookstore), and so on. For each account, you’d like a
different password. In that way, if someone figures out one password (for
example, the online travel agent might know your password for that
account), he or she won’t have them all.

The solution is to use a token to generate big random passwords and
store those passwords. When you need to log in to an account, you hook up
the token and have it send the password. You don’t have to remember the
password, so it can be random and very long, perhaps 20 or 30 characters.

You probably have access to the token through a password, so if attack-
ers obtain your token and figure out that password, they’ve got all your
passwords. That is a danger, but using a token does help thwart a remote
attack. For example, suppose Ray, the attacker, goes to your online bank
account and logs in as you. Although he need not be at your computer to
do this—he can be in Elbonia—he does need to enter your password. A
long, random password is much more difficult to crack than passwords
you might otherwise use for your various accounts because they’re easier
to remember.

Crypto Accelerators

The larger hardware crypto devices are generally called crypto accelerators
(see Figure 3-8) because they usually have specialized chips that perform
cryptographic operations faster than general-purpose microprocessors.
Crypto accelerators can also store data more securely than can a regular
computer. The problem with, for example, your desktop PC is that the hard
drive is visible to the outside world.As you saw in Chapter 1, attackers can
probably read your computer’s hard drive, and even if you have firewalls
around your sensitive information, attackers can use tools, such as data
recovery software, to read that data as well. But a crypto accelerator is
built so that its storage space is not visible. There is very limited access to
it using normal channels, and if attackers try to pry open the cover to phys-
ically access the hard drive, the device erases itself. If you store your key on
such a box, it’s extremely unlikely that someone will be able to extract it.

Many crypto accelerators do not let the key leave the device. With a
token, if you want to encrypt 10 megabytes (MB) of data, you must get the
key from the token and let your PC do the encrypting. While the key is in
memory—and afterward, as you saw in Chapter 1 with memory recon-
struction attacks—it is vulnerable. With a crypto accelerator, you send the

73Symmetric-Key Management

Chapter 374

Figure 3-8

Some crypto
accelerators

Luna CA3

AXL 300

Cryptoswift PCI E-Commerce Accelerator

nShield key management and
acceleration

plaintext to the device, and it encrypts and returns the ciphertext. This
arrangement further limits the key’s vulnerability.

One problem with crypto accelerators is that they are connected to your
computer 24 hours a day. This is in contrast to tokens, which are con-
nected only for a few seconds at a time, limiting their vulnerability. Pre-
sumably, the crypto accelerator I/O is secure so that if attackers have
remote access to your computer, they still cannot get access to the accel-
erator. “Presumably,” however, may not be adequate security in some sit-
uations. That’s why most crypto accelerators work in conjunction with
tokens—that is, they don’t operate without a token inserted.

If you store your keys on the box, you can recover them by presenting
the correct token and entering the correct password. For attackers to
access your keys, they must somehow obtain your token (another token by
the same manufacturer won’t work, just as two credit cards don’t refer to
the same account) and the ability to use that token (usually a password).
And, of course, they must have physical contact with the accelerator (to
insert the token), again thwarting a remote attack.

Hardware Devices and Random Numbers

Tokens and crypto accelerators usually come with an RNG (see Chapter 2
for details about RNGs and PRNGs). You must be careful, though, because
some tokens don’t have true RNGs. Rather, they have PRNGs seeded at
the factory. Even if your device constantly collects seed material each time
it is used—a better approach than a PRNG seeded at the factory—it’s still
a PRNG.

Biometrics
A hardware device stores your keys securely, but it usually relinquishes
them when someone enters a password. Good passwords can be strong,
but in real life, not everyone uses good passwords.

Another way to authorize a device to unleash the key is through bio-
metrics, which uses your unique physical characteristic to verify your
identity. The most well-known biometric is the fingerprint. It’s common
knowledge that everyone, even an identical twin, has unique fingerprints.
If a machine could read fingerprints, it could determine whether the

75Symmetric-Key Management

appropriate person is requesting an operation. Such machines exist. (It’s
macabre, but some of these machines can even tell whether the finger
being used is actually attached to the body and whether the body is alive.)

Other biometrics include retina scans, voiceprints, and even DNA. Biomet-
rics companies are attempting to build hardware that can be programmed to
identify you by scanning your eye, voice, or DNA and then appropriately
release secure information or perform a cryptographic function.

Biometric devices are not currently in widespread use for a couple of
reasons. One is the cost of the devices, and the other is their reliability. A
number of concerns have been raised. Will the device return an erroneous
“positive ID” on someone who isn’t the identified subject? Will it always
return a positive ID on the subject? What if the subject has cut his or her
right thumb—will the fingerprint reader still function? Can it instead use
the left thumb? Another finger? For a voiceprint reader, what if the person
has a cold—will it still work? And so on. A password works virtually 100
percent of the time. If you enter the wrong password, access is denied.
With the correct password, you always get access. With biometrics, there
may be some errors.

The technology is advancing, and companies are building better and
cheaper readers. Someday, maybe a smart card will contain not only a chip
but also a fingerprint reader. Maybe your cell phone will have built-in
voice recognition.

Summary
After you’ve generated a symmetric key and used it to encrypt data, how
do you protect the key? One of the most common techniques is password-
based encryption. In PBE, you use a password and a salt to build the key
encryption key. You then use the KEK to encrypt the session key. Another
method of protecting your session key is to store it on a hardware device,
such as a token or crypto accelerator.

Real-World Examples
How do companies protect keys in the real world? One class of products
for protecting session keys is file encryption applications. These products

Chapter 376

encrypt the files on your hard drive using symmetric-key cryptography.
Protecting bulk data keys can be done in several ways.

Keon Desktop

RSA Security makes a family of products called Keon. One component is
Keon Desktop. Among the features of this product is file encryption. You
register directories with Keon, and it will encrypt all files in those direc-
tories (see Figures 3-9 and 3-10). When you open one of those files, Keon
will decrypt it. When you close it, Keon will encrypt it again. That means
if the file is on your hard drive, it is encrypted. It is decrypted only when
you want to see it.

77Symmetric-Key Management

Figure 3-9

Registering a
directory with
Keon. Once
registered, all
files in this
directory will be
automatically
encrypted when
not in use, and
decrypted when
accessed

Keon uses RC5 at 128 bits or DES at 56 bits to encrypt. It uses a PRNG
to generate the key. The seed is various machine states and user input.
Once the key has been used to encrypt the files, it’s necessary to store that
key. Keon stores it in the user’s Credential Store. If the user has a smart
card, Keon will use it as the Credential Store. If not, Keon will create a
virtual smart card on the user’s hard drive or on a floppy disk or both. The
keys on this virtual smart card are protected using PBE.

If you keep your Credential Store on a mobile medium (the smart card
or floppy), you can use Keon to encrypt or decrypt files from any computer
you work on (as long as it has Keon Desktop installed), whether it is your
office computer, home computer (for telecommuting), or a laptop on a busi-
ness trip.

To read your encrypted file, an attacker will have to either break the
encryption algorithm, create a substitute Credential Store (which would
entail finding the session key through a brute-force attack) or break your
Credential Store to obtain the bulk data key. The first two are highly
unlikely, so an attack, if it occurs, will probably be mounted against your
Credential Store. If you keep it on a smart card or floppy, the attacker will
have to steal it. And then it will still be necessary to either break the
smart card or break your password.

Chapter 378

Figure 3-10

After creating a
protected
directory, choose
the algorithm
you want to use
to encrypt the
files. The key
menu is for
choosing where
to store the
session key, on
a smart card
or a virtual
smart card

TE
AM
FL
Y

Team-Fly®

Other Products

If you search the Web, you will find dozens or even hundreds of applica-
tions out there that offer file encryption. Some are freeware, others are
shareware, and some are regular products.

One of the most commonly used file encryption programs is PGP. The
letters stand for Pretty Good Privacy. PGP was originally a freeware pro-
gram written by Phil Zimmerman using RSAREF, the cryptographic ref-
erence library produced by RSA Data Security. According to the
documentation, it has file encryption through PBE (it does not generate a
key and protect the key with PBE; it encrypts the file using PBE). It also
offers an advanced “enveloping” file encryption that uses a key on your
“key ring.” Once again, your key ring can be a number of devices, includ-
ing a PBE-protected file.

79Symmetric-Key Management

This page intentionally left blank.

The Key Distribution
Problem and Public-Key

Cryptography

Symmetric-key encryption can keep your secrets safe, but if you need to
share secret information with other people, you must also share the keys.
How can you securely send keys to other individuals? This chapter
describes some solutions, including the revolutionary concept of public-key
cryptography.

Chapters 2 and 3 describe how Pao-Chi (the sales rep on the road) can
keep secrets by encrypting his data and then safely storing the encrypting
key. But suppose he wants to share some of his secrets with other people?
For example, let’s say Pao-Chi has just met with Satomi, a potential cus-
tomer, and wants to discuss strategy with Gwen, the VP of sales and Pao-
Chi’s boss. Normally, Pao-Chi and Gwen could handle the conversation by
phone, but they need to send complex documents back and forth, and they
figure the best way to do that is through e-mail. Being a little paranoid,
they want to ensure the security of this exchange of sensitive data. After
all, Pao-Chi will likely be hooking up his laptop to Satomi’s phone lines or
Internet connection, and who knows what sort of sniffers are attached to
her company’s wires?

The simple solution is for Pao-Chi to encrypt any files he sends to
Gwen. In that way, if Satomi intercepts the message, all she sees is gib-
berish. The problem is that when the message gets to Gwen, she also sees

CHAPTER 4

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

only gibberish. To decrypt the message, Gwen needs the key. Pao-Chi has
the key, but how can he send it to Gwen? He can’t send it in another mes-
sage; if Satomi can intercept the data message, she can also intercept the
key message. And if Pao-Chi could find a channel to send the key securely,
he could simply send the secret via that route.

The problem facing Pao-Chi and Gwen is known as the key distribution
problem—namely, how can two or more people securely send keys over
unsecure lines? In more general terms, how can people securely send any
sensitive information over unsecure lines? Because we can encrypt the
data, though, we can reduce the general problem to the smaller problem
of securely sending the key. If you have 10MB of sensitive material, you
could try to figure out a way to send that bulk data securely, or you could
encrypt it using a 128-bit symmetric key and then try to come up with a
way to securely send the key. If you solve the key distribution problem,
you also solve the bulk data distribution problem (Figure 4-1).

Chapter 482

Figure 4-1

The key
distribution
problem: How can
Pao-Chi send
Gwen sensitive
information,
when Satomi
might be
eavesdropping?

Sharing Keys in Advance
In Chapter 3, you saw how Pao-Chi can encrypt bulk data with a session
key and then store that key securely. He can store that key using, for
example, PBE or a token. To solve the key distribution problem, Pao-Chi
and Gwen can get together in advance to generate a key, and then each of
them can store the key. To send secure messages to each other, they use
the key to encrypt the data.

So before Pao-Chi leaves on his trip, he stops by Gwen’s office with his
laptop. He generates a 128-bit key and stores it somehow—maybe using
PBE, maybe on a token. He then puts a copy of the key onto a floppy disk
and hands Gwen the disk. She inserts the disk into her computer, copies
the key, and stores it securely. Now the two parties share a key that they
can use whenever they want to send sensitive material. This key, by the
way, likely will not be the same key Pao-Chi uses to encrypt the files on
his hard drive. If it were, Gwen could read all his sensitive data. If that’s
not OK with Pao-Chi, he has the option of encrypting his data using a key
only he can access.

If the two of them had chosen to exchange the key online, Pao-Chi
would not have had to go to Gwen’s office in person. But their goal is to
send no sensitive data in the clear over unsecure lines, and that includes
the company network. Even if the network is secure from outsiders, that
doesn’t eliminate the possibility of an inside job. Another employee—
maybe the system administrator or simply someone who is adept at hack-
ing—might be able to intercept such a key exchange. So the safest way to
exchange the encrypting key in advance is to do so in person.

Another possibility is for Pao-Chi to generate the key, encrypt it using
PBE, and send the encrypted key to Gwen. Anyone intercepting the mes-
sage would not be able to decrypt it without the password. Of course,
Gwen needs the password, so Pao-Chi can give it to her by phone. In this
way, the sensitive data (the password) is never sent over the network
lines. But is the phone line secure? Maybe, maybe not. Still, whoever
wants to steal the key will have to break into both the network and the
phone system. Although this makes the attacker’s job more difficult, it
still means sending sensitive data over unsecure lines.

83The Key Distribution Problem and Public-Key Cryptography

Problems With This Scheme

Pao-Chi and Gwen now share a key. This scheme will work; if attackers
try to intercept their messages encrypted using that key, the attackers
will not be able to recover the information. But this solution does have its
problems.

Suppose the parties want to share keys with more than one person.
Pao-Chi is not the company’s only sales rep, and he may want to securely
send information to his sales colleagues as well as people in the engi-
neering, accounting, and shipping departments. To communicate securely
with all these people, Pao-Chi will have to visit their offices and perform
the key exchange. What’s more, Gwen will have to make similar visits (or
her colleagues will have to visit her—after all, she is the VP). Everyone
will have to exchange keys in person with everyone with whom they share
confidential information.

The logistics quickly become burdensome. Some colleagues may have
offices in other parts of the country or even in other countries. The com-
pany can’t send everyone on all the trips required to exchange keys.
Maybe the solution would be to gather all the employees at one location
and have a giant key exchange party. But what happens when the com-
pany hires someone new? Does it have yet another key exchange party?
Send the new employee on a worldwide trip to exchange keys?

Furthermore, as more people need to share keys, the number of
required meetings grows dramatically. When two people share a key,
there’s one meeting. When three people share keys, there are two meet-
ings; with four people, six meetings, and so on. In general, n people, must
make 1/2(n2 � n) key exchanges. If your company has 10 employees
involved in secure data sharing, that’s 1/2(100 � 10) key exchanges, or
1/2(90) � 45. For 20 employees, it’s 190 meetings. A company with 1,000
employees would need to perform 499,500 key exchanges.

One solution is for everyone in the company to share the same key. You
could have a “key master” who gives the key to all employees. The draw-
back is what happens when someone leaves the company. If the company
does not change the key, an unauthorized individual can now decrypt sen-
sitive materials. If, on the other hand, the company changes keys, the key
master will have to revisit everyone in the company.

A second problem with the shared secret key is that if attackers crack
one message, they crack them all. Because all messages between two peo-
ple are encrypted with the same key, finding the key for one message
means finding the key for all messages. It’s not likely that attackers will

Chapter 484

find the key if the correspondents use a 128-bit key and an algorithm with
no weaknesses. On the other hand, if it is possible to easily use a separate
key for each message, why not take that extra measure of precaution?
Although this is a drawback of the shared key approach, it’s trivial com-
pared with the pitfalls of trying to exchange keys in person.

Using a Trusted Third Party
If sharing keys in advance is not an option, Pao-Chi and Gwen can try
using a trusted third party (TTP). This is a variation on the key master
solution. In this scheme, the trusted third party—let’s call her Michelle—
shares a key with each individual in the company. Actually, the keys are
key-encrypting keys, or KEKs. Pao-Chi visits Michelle and asks for a KEK.
She generates one, stores it securely, and gives a copy to Pao-Chi. The two
of them now share a KEK. Gwen also visits Michelle, and the two of them
share a different KEK (see Figure 4-2).

When Pao-Chi wants to communicate with Gwen, he sends a message
to Michelle, requesting a session key he can use in his messages with
Gwen. To fulfill the request, Michelle generates a new session key and
sends it to Pao-Chi. She encrypts the new session key using the KEK she
shares with him, so anyone intercepting that message cannot identify this
new key. Michelle also sends this same new session key to Gwen, encrypt-
ing it using the KEK those two share (see Figure 4-2).

Pao-Chi and Gwen now share a key, and neither had to make a trip to
the other’s office. Anyone else wanting to share a key with any other
employee simply establishes a KEK with Michelle, who distributes the
key. In a trusted third party scheme, the correspondents are the first two
parties. In our example, Michelle is the third party. Just as important,
Michelle must be trusted because she has everyone’s keys. When Pao-Chi
and Gwen exchange encrypted messages, normally they are the only peo-
ple who can decrypt them. But now Michelle also has their session key, so
she can decrypt their messages. Pao-Chi and Gwen must trust Michelle
not to read their sensitive material or release their key to anyone else.

The trusted third party still has to exchange keys with all the employ-
ees in person. As you saw in the preceding section, that’s a daunting task.
To make things easier, you can create a hierarchy of trusted third parties.
Everyone goes to a local TTP, each of whom has established a key with
every other TTP. For all the TTPs to exchange keys is still a formidable

85The Key Distribution Problem and Public-Key Cryptography

project, but it is more manageable than having a single companywide
TTP. If two correspondents are in the same office, they can use the ser-
vices of a shared TTP. If they are in separate offices, each one communi-
cates with his or her own TTP. Then the two TTPs communicate with each
other to bridge the gap (see Figure 4-3).

Problems With This Scheme

The first problem is that the TTP can read all the messages. The whole
idea of encrypting messages is to limit their exposure to only the corre-

Chapter 486

Encrypt Encrypt

KEK with Michelle KEK with Michelle

GwenPao-Chi

Shared session KeyDecrypt Decrypt

Michelle

RNG
or PRNG

Session key

KEK with Pao-Chi KEK with Gwen

Figure 4-2

Michelle acts as a
trusted third
party,
distributing keys
between Pao-Chi
and Gwen

spondents. Now a third person has access. If the correspondents can live
with that, this scheme will work. Otherwise, they’d better look for another
solution.

The second problem is that when the TTP leaves the company it must
hire a new TTP and start the process over from the ground up. Otherwise,
the outgoing TTP can gain access to all sensitive materials.

An alternative is to contract the job of TTP to an outside company. In
this arrangement, the TTP is not an individual but a corporate entity. In
this case, you must trust that the company has checks in place that pre-
vent its employees from gaining access to the keys.

87The Key Distribution Problem and Public-Key Cryptography

Pao-Chi and Daniel’s session key

Alexander and Daniel’s KEK

Pao-Chi and
Daniel’s session key

Pao-Chi

KEK with Pao-Chi
Alexander

Daniel

Michelle

RNG
or

PRNG

Encrypt

Encrypt

KEK
with

Alexander

KEK with Michelle

Figure 4-3

TTP Michelle
(San Francisco)
shares keys with
TTP Alexander
(New York),
creating a
hierarchy that
serves Pao-Chi
and Daniel in the
two cities

Public-Key Cryptography and the
Digital Envelope

In the 1970s, researchers invented asymmetric-key cryptography, a new
way to securely send keys. This scheme uses two different keys. Although
they are related to each other—they are partners—they are significantly
different. The relationship is mathematical, and what one key encrypts
the other key decrypts. In symmetric crypto, the same key is used to
encrypt and decrypt (hence the word “symmetric”—the same on both
sides); if you use any other key to decrypt, the result is gibberish. But with
asymmetric crypto (see Figure 4-4), the key that’s used to encrypt the data
does not decrypt it; only its partner does (hence the word “asymmetric,”—
each side different).

An analogy is the asymmetric lockers often found in airports, train sta-
tions, skating rinks, and many other public places. To securely store your
belongings, you put them into the locker and lock it by inserting money.
Just as your house key locks your front door, the money locks the locker—
in a sense, your money is the key. After you lock the door, you receive
another key—perhaps an actual key that looks like your house key or car
key, or perhaps a piece of paper that contains a number. To reopen the
locker, you use the key or enter the number on a key pad (sort of like using
a temporary personal identification number or PIN).

Suppose thieves want to steal your belongings. To open the locker, they
need a key. The key you used to lock it was money. But if the thieves insert
more money into the locker, it won’t open. They can stuff money into it all
day long, and it still won’t open. The key that was used to lock the locker
will not unlock it. Only the second, different key will unlock the door.

Similarly, it’s possible to create a cryptographic algorithm in which one
key encrypts data and the other key decrypts it. Another term for this
model (the term we use in this book) is public-key cryptography. Because
both keys are needed to lock and unlock the data, one of them can be
made public without jeopardizing security. This key is known as the pub-
lic key. Its partner is called the private key. You encrypt data with the
public key and decrypt it with the private key. Just as thieves can know
what key was used to lock the asymmetric locker—can even have access
to that key—and still not be able to open the door, an attacker can have
access to a cryptographic public key and still not be able to decrypt the
data. Only the private key can be used to decrypt it, and if the owner of

Chapter 488

TE
AM
FL
Y

Team-Fly®

that key keeps it private (as the name implies), plaintext encrypted with
the public key will remain secure.

Let’s return to our sales rep example. If Gwen has a public and pri-
vate key pair, she makes the public key publicly available (what else are
you going to do with a key called “public”). She is the only one who has
access to the private key. Pao-Chi uses a symmetric algorithm with a
session key to encrypt his e-mail, and then he uses Gwen’s public key to

89The Key Distribution Problem and Public-Key Cryptography

Plaintext

Ciphertext

Ciphertext

Ciphertext

Plaintext

Gibberish

Encrypt

Decrypt

Encrypting key

Encrypting key

Decrypting key

Decrypt

Figure 4-4

In asymmetric
crypto, the
encrypting key
cannot be used to
decrypt; you must
use its partner

encrypt the session key. Then he sends both the encrypted message and
the encrypted session key (see Figure 4-5). This arrangement is similar
to password-based encryption, in which the session key is used to
encrypt the bulk data, and the KEK (based on the password) is used
to encrypt the session key. In PBE, only the owner of the password can
recover the session key and consequently decrypt the bulk data. In pub-
lic-key cryptography, only the owner of the private key can recover the
session key and decrypt the bulk data.

Chapter 490

Satomiseems
eager tobuy...

t^&j7
#*L4

:%DF
Encrypt

Encrypt

Session key

Public key

Encrypted
session key

Figure 4-5

You use a session
key with a
symmetric
algorithm to
encrypt the bulk
data and then
encrypt the
session key with
the recipient’s
public key

Now you’re probably asking, “Why does Pao-Chi use a session key with
a symmetric algorithm to encrypt the bulk data and then encrypt the ses-
sion key with the public key? Why doesn’t he simply encrypt the bulk data
with the public key?” The answer has to do with performance: Public-key
algorithms are slow, whereas symmetric-key crypto can encrypt bulk data
very quickly. Depending on the platform, some symmetric algorithms can
operate at speeds of 10MB, 20MB, 50MB (or even more) per second. In
contrast, a public-key algorithm operates at probably 20KB to 200KB per
second, depending on the algorithm, platform, and other factors. That’s too
slow for processing bulk data, but encrypting 128 bits (the probable size of
a symmetric key) would not take much time. So if Pao-Chi’s e-mail (the
plaintext) is a few megabytes, it’s more efficient to use this combination of
symmetric-key and public-key crypto.

You may ask, “Why not simply develop a public-key algorithm that can
encrypt as fast as the symmetric algorithms?” You’re welcome to try.

This process of encrypting bulk data using symmetric-key crypto, and
encrypting the symmetric key with a public-key algorithm, is called a dig-
ital envelope. The idea is that the symmetric key is wrapping the data in
an envelope of encryption, and the public key is wrapping the symmetric
key in an envelope (see Figure 4-6).

91The Key Distribution Problem and Public-Key Cryptography

Figure 4-6

A digital
envelope. The
session key wraps
the bulk data in
an envelope of
encryption, and
the public key
wraps the session
key in another
envelope

Notice the huge advantage of this method compared with a shared
secret (discussed in the section “Sharing Keys in Advance”). With a shared
secret scheme, Pao-Chi and Gwen have a key they use each time they
communicate. Each of them must have separate session keys to use when
communicating with anyone else. And they must keep all these keys
secure. Using a digital envelope, Pao-Chi and Gwen still have to keep a
separate key for each individual, but this time it’s a public key, which
doesn’t need to be protected. Furthermore, they probably don’t need to
store the public keys themselves; directories of public keys are readily
available. We talk about these directories in Chapter 6. For now, it’s suffi-
cient to know that you can leave the task of managing all those public
keys to someone else.

Security Issues
Suppose Pao-Chi sends an e-mail to Gwen using a digital envelope, and
Satomi indeed intercepts the message. Will Satomi be able to read it? The

bulk data was encrypted using a symmetric algorithm, so she needs the
session key. To decrypt the data she could try a brute force attack, but if
the key is 128 bits, that would take billions or even trillions of millennia
(as you saw in Chapter 2). But because the session key is right there, part
of the message itself, it seems she doesn’t need to try this attack—except
the session key is also encrypted. To decrypt the session key, she needs the
partner to the public key that was used to encrypt it because that’s the
only key that will decrypt it. That’s the private key, but only Gwen has
that.

Maybe Satomi can break the public-key algorithm or perform a brute
force attack to find the private key. Recall that there were two ways to
recover messages encrypted using a symmetric-key crypto: break the algo-
rithm or find the key using brute force. The same is true for public-key
crypto. If Satomi can figure out what the private key is by breaking the
algorithm or using brute force, she can decrypt the session key and use it
to decrypt the bulk data.

To determine the private key, Satomi must finds a 160-bit to 510-bit (or
possibly higher) number. If a brute force attack on a 128-bit value (the
symmetric key) is outside the realm of feasibility, then so is such an attack
on a 160-bit number. So a brute force attack on the 160-bit or 510-bit num-
ber is not a realistic option.

What about the algorithm? Can a public-key algorithm be broken? It
turns out that all public-key algorithms can be broken by determining
what the private key is, based on the public key. Remember that the pub-
lic and private keys are partners, that they’re related, and that this rela-
tionship is mathematical. Math computations can be used to derive the
private key from the public key.

Luckily, these math computations are time-consuming. As with sym-
metric-key crypto, the longer the public key, the longer it will take to
derive the private key from it. If the keys are long enough, solving the
math problem would take as much time as a brute force attack on a 96-bit
to 128-bit key. In the section titled “Key Sizes,” we talk about key sizes for
public-key algorithms.

Breaking a Public-Key Algorithm

In Chapter 2, we say that you should use only symmetric algorithms with
no weaknesses that the fastest way to break them should be a brute force
attack. Why, then, are we now telling you to use public-key algorithms

Chapter 492

that can be broken? For these algorithms, the brute force attack is not the
fastest attack. Why the change of heart?

The answer is simple: No one has been able to develop a public-key
algorithm that has no weaknesses. For all public-key algorithms, there
are techniques that will break them faster than brute force. Think of these
techniques as shortcuts. But most users are willing to live with the short-
cuts for two reasons. First, cryptographers have performed a tremendous
amount of research quantifying the time required by the shortcuts. Even
though an algorithm is susceptible to an attack faster than brute force,
the research shows it still takes a long time. For most people, that amount
of time is sufficient security. Second, people are willing to use algorithms
that suffer from shortcuts because these algorithms are the best way to
solve the key distribution problem.

For people who don’t trust public-key cryptography, the only recourse is
to use a shared secret scheme for key distribution. Otherwise, until some-
one comes up with a public-key algorithm with no shortcuts, we’ll have to
live with them.

Actually, though, having the shortcuts is not too bad. Using brute force,
an attacker might get lucky and find the key in one of the first few tries,
theoretically reducing the time of a successful attack to almost zero. In
contrast, cryptographers know how long they can expect it will take to
break a public-key algorithm using a shortcut. These attacks usually
must run their entire course before coming up with the answer, almost
never hitting on a lucky early answer, so researchers have established a
more concrete minimum attack time.

Some History of Public-Key Cryptography
In the mid-1970s, Stanford University graduate student Whitfield Diffie
and professor Martin Hellman investigated cryptography in general and
the key distribution problem in particular. The two came up with a
scheme whereby two people could create a shared secret key by exchang-
ing public information. They could communicate over public lines, sending
information back and forth in a form readable by eavesdroppers, at the
same time generating a secret value not made public. The two correspon-
dents would then be able to use that secret value as a symmetric session
key (discussed in more detail soon). The name given to this scheme is
Diffie-Hellman, or DH.

93The Key Distribution Problem and Public-Key Cryptography

DH solves a problem-sharing a key—but it’s not encryption. That does
not make it unusable; in fact, DH is in use to this day. But it was not the
“ultimate” algorithm, one that could be used for encryption. Diffie and
Hellman published their result in 1976. That paper outlined the idea of
public-key cryptography (one key encrypts, the other decrypts), pointed
out that the authors did not yet have such an algorithm, and described
what they had so far.

Ron Rivest, a professor at MIT, was intrigued by Diffie and Hellman’s
idea of public-key cryptography and decided to create the ultimate algo-
rithm. He recruited two colleagues—Adi Shamir and Len Adleman—to
work on the problem. In 1977, the trio developed an algorithm that could
indeed encrypt data. They published the algorithm in 1978, and it became
known as RSA, the initials of its inventors.

In 1985, working independently, two men—Neal Koblitz of the Univer-
sity of Washington and Victor Miller of IBM’s Watson Research Center—
proposed that an obscure branch of math called elliptic curves could be
used to perform public-key cryptography. By the late 1990s, this class of
algorithms had begun to gain momentum.

Since 1977 (and 1985), many researchers have invented many public-
key algorithms. To this day, however, the most commonly used public-key
algorithm for solving the key distribution problem is RSA. In second place
is DH, followed by elliptic curves. We talk about these algorithms in the
following sections.

How Public-Key Cryptography Works
It’s easy to imagine symmetric-key crypto. Using the key, you follow a
step-by-step procedure to scramble the outgoing data. To decrypt it, you
perform the steps in reverse. If the last thing the encryptor did was to
rotate a word, the first thing the decryptor does is to rotate the ciphertext
word in the other direction by the same amount (see Figure 4-7). If the key
used to encrypt the data is the key used to decrypt it, the rotation number
will be the same. (If the key is wrong, there is a chance that particular
rotation may still be correct, but almost all the rest of the operations down
the line, maybe an XOR here or an AND there, will be wrong.)

But with public-key cryptography, such a procedure won’t work. You
can’t simply reverse the steps. Why not? The quick answer has to do with
math. Whereas symmetric-key crypto simply operates on the data as bits

Chapter 494

95The Key Distribution Problem and Public-Key Cryptography

Who Invented Public-Key
Cryptography?
Because they published the first papers on the subject, Whitfield
Diffie and Martin Hellman, along with Ron Rivest, Adi Shamir, and
Len Adleman, are generally credited with inventing public-key cryp-
tography in the mid 1970s. Another researcher, Ralph Merkle, also
deserves credit for his pioneering work.

Yet British and U.S. information security organizations claim that
they developed these techniques in the 1960s and 1970s. Did they?

The Code Book, Simon Singh’s history of crypto, gives ample evi-
dence that James Ellis of the British Communications Electronic
Security Group (CESG) proposed the idea of asymmetric encryption
in the 1960s. Apparently, he was inspired after reading an anony-
mous paper written at Bell Labs during World War II. Ellis had
difficulty finding an algorithm that would work. In 1973, mathe-
matician Clifford Cocks joined the CESG. Ellis described the concept
to him, and within a few minutes Cocks had devised a solution that
was essentially the algorithm known today as RSA. In 1974, Mal-
colm Williamson, another Ellis colleague, described yet another algo-
rithm, this one similar to the one we call Diffie-Hellman. Because
this work was secret (the CESG is a secret organization, called by
some people a spy group), it was never published, and the authors
did not receive credit until years later.

The U.S. National Security Agency (NSA) also claims to have
invented public-key crypto in the 1960s. Whitfield Diffie has
remarked that part of his inspiration for public-key crypto was hear-
ing about the secure phone system at the NSA. Although Diffie did
not know how the NSA had solved the key distribution problem, he
explains that because he knew it was possible, he figured he could
come up with the solution. The NSA system—which, it was later
learned, used public-key crypto—was up and running by the mid-
1970s, perhaps indicating that years of study preceded deployment.
In addition to the NSA phone system, a document with the exciting
title “National Security Action Memorandum 160” outlines a pro-
posal for installing “permissive links” onto nuclear weapons. Appar-
ently, this memo was submitted to President John F. Kennedy; it

continued

and manipulates them using computer operations, public-key crypto oper-
ates on the data as numbers and plays with the numbers (see Figure 4-8).
And the math is one-way: It’s easy in one direction but not in the other
direction. In fact, the foundation of any good public-key algorithm is a one-
way function, the class of math problems on which public-key crypto is
built. Actually, public-key one-way functions are more accurately
described as one-way with a trap door. To the rest of the world the func-
tions are one-way, but the private key operates as a trap door that allows
the owner to recover the original data (see Figure 4-9). There are true one-
way functions, and we talk about some of them in Chapter 5.

Chapter 496

14 2F 38 86

14 2F 38 860C 28 5E 71

0C 28 5E 71

Rotate right 7 Rotate left 7

Encrypt Decrypt

Last step First step

Figure 4-7

In symmetric-key
crypto, generally
the last thing
done in
encrypting is the
first thing done
(in reverse) in
decrypting

bears his signature. Along with NSAM 160 is the “Weisner Memo-
randum,” which includes more details about permissive links. It can
be inferred that the authors proposed equipping nuclear arms with
cryptographic switches. Bombs could be activated only with the cor-
rect codes, with a form of public-key crypto guaranteeing correct
codes (two principles referred to as authentication and nonrepudia-
tion; see Chapter 5).

What about the former Soviet Union or the People’s Republic of
China? Did these nations have public-key algorithms before 1976?
Or how about Hungary or Japan—or any other government? If they
did, they’re not saying.

In this book, we don’t describe the full details of the math behind the
various algorithms; you can find that in the RSA Labs FAQ on the accom-
panying CD. But in the following sections we talk about the three most
widely used algorithms for solving the key distribution problem: RSA,
DH, and ECDH (Elliptic Curve Diffie-Hellman). We tell you the names of
the one-way functions and outline the problems.

97The Key Distribution Problem and Public-Key Cryptography

Four bytes

Four bytes

Four bytes

A number

A number

Four letters

ASCII

ASCII

A number

A number

Algorithm

Algorithm

0x14 0x2F 0x38 0x86

338,638,982

1,963,012,242

0x75 0x01 0x30 0x92

Goal

0x47 0x6F 0x61 0x6C

1,198,481,772

2,652,352,547

0x9E 0x17 0xB0 0x23

↕ #

Figure 4-8

Public-key crypto
treats all data as
numbers and
performs
mathematical
operations on
them

The RSA Algorithm

The RSA algorithm encrypts data. If you feed your plaintext to the algo-
rithm along with the public key, you get ciphertext as a result. With the
digital envelope, the plaintext is the session key. It’s certainly possible to
use RSA to encrypt data other than a session key, but RSA is not as fast
as the symmetric algorithms. For example, RC4 (probably the fastest sym-
metric algorithm in wide use today) will encrypt data at a rate 700 times
faster than 1,024-bit RSA (1,024 bits is the most commonly used RSA key
size). RC5 (one of the fastest block ciphers) is about 500 times faster.

NOTE:
Incidentally, the R in RC4 and RC5 is the same R as in RSA.

So the best way to use RSA is to create a digital envelope. For example,
Pao-Chi can generate a random or pseudo-random 128-bit RC4 key, use it
to encrypt his e-mail message to Gwen, and then use Gwen’s RSA public
key to encrypt the RC4 key. Encrypting the RC4 key (16 bytes) will take
only a few milliseconds on most platforms. Pao-Chi’s message to Gwen
consists of two parts: the encrypted session key and the encrypted bulk
data (see Figure 4-10). Gwen separates the two components, uses her RSA
private key to decrypt the session key, and then uses that decrypted RC4
key to decrypt the bulk data.

Chapter 498

Figure 4-9

A one-way
function with a
trap door.
Performing
operations in one
direction is easy,
but reversing
the steps is
difficult unless
you know the
secret trap door

TE
AM
FL
Y

Team-Fly®

An RSA public key consists of two numbers: a modulus and a public
exponent. The private key is made up of the same modulus and a private
exponent (see Figure 4-11). The modulus, incidentally, is the product of
two very large prime numbers. (A prime number, or prime, cannot be
evenly divided; for example, 3, 5, 7, 13, and 17 are primes.) In the crypto-
graphic literature, these numbers are usually given the romantic names
n, e, and d, where n is the modulus, e is the public exponent, and d is the
private exponent. Equally poetic are the names for the two primes that
make up the modulus: p and q.

When you generate an RSA key pair (or rather, when the program
you’re running generates an RSA key pair), you decide on a public expo-
nent e, find two large primes p and q that work with the e you’ve chosen,
multiply p and q to get the modulus n, and finally compute your private

99The Key Distribution Problem and Public-Key Cryptography

Figure 4-10

In Pao-Chi’s
message, the
encrypted session
key comes first
and the encrypted
bulk data follows

exponent d based on e, p, and q. Then you throw away p and q (see Figure
4-12). Incidentally, finding large primes is easy using the Fermat test (in
the 1600s, Pierre de Fermat discovered interesting things about numbers,
one of which led to a test of primality). Furthermore, researchers have
shown in the Prime Number Theorem that there are more primes of 512
bits or fewer than there are atoms in the known universe. This means
that we’ll never “run out” of primes, and the probability that two people
will pick the same prime are so small that we can safely assume it will
never happen.

Suppose that Satomi, our attacker, wants to determine Gwen’s private
key. If Satomi knows the key, she can open Pao-Chi’s digital envelope. She
must figure out n and d. Because the public key is, well, public, she knows

Chapter 4100

Figure 4-11

A 1,024-bit RSA
key pair. The
number n is the
modulus, e is the
public exponent,
and d is the
private exponent

n because it’s part of the public key. So really, all she has to do is figure out
d. It turns out that d is simply the inverse of e modulo �(n). Satomi knows
what e is, so all she has to do is find �(n) and perform a modular inverse
function. That’s very easy to do using the Extended Euclidean Algorithm.

NOTE:
Here’s an interesting bit of history. Euclid published his algorithm in
about 400 BCE, but researchers have concluded that he didn’t invent it.
It’s believed that the algorithm had been around for about 200 years
before Euclid presented it. Who was the true inventor? No one knows, but
there is a lesson to be learned from this anonymous mathematician: If
you get a good idea, publish!

By the way, �(n) is known as Euler’s phi-function (� is the Greek letter
phi, pronounced “fee”). Leonhard Euler (pronounced “Oiler”) was an 18th-
century mathematician who noticed some interesting things about num-
bers. For example, if n is the product of those two primes p and q, then
�(n) is (p � 1)(q � 1). That’s “the quantity p minus 1 times the quantity q
minus 1” (see the FAQ on the accompanying CD for more details).

101The Key Distribution Problem and Public-Key Cryptography

(1) Choose a public
exponent

(2) Find p , q

(3) Multiply to get n

(4) Find d

(5) Destroy p , q

3 17 65,537

PRNG
Fermat
test

p , q

p , q

n = p qx

Extended
Euclid

d

Not all primes work with
the public exponent you
choose; you may have to
reject some primes
before finding two
compatible numbers

e p q, ,

Figure 4-12

Generating an
RSA public and
private key pair

So Satomi’s problem, which began as “find d” and was reduced to “find
�(n),” has now been further reduced to “find p and q.” She knows n and
knows that p � q � n, so all she has to do is factor n, which is the hard
problem at the foundation of the RSA algorithm.

In other words, in RSA, the one-way function is multiplication. That’s
right, multiplication. You’re probably thinking, “That’s not one-way. To
reverse multiplication, all you have to do is divide.” That’s true—if you
know what to divide by. But if someone multiplies two numbers and tells
you the result, can you determine the original two numbers? That’s known
as factoring, and it happens to be difficult.

Suppose n is 35. What are p and q? That’s easy—they’re 5 and 7
because 5 � 7 � 35. The numbers 5 and 7 are the prime factors of 35.
When you break 35 into its prime factors, you’re factoring.

Now suppose n is 893. Factor that. (The answer is given in the next
paragraph.) If you factored 893, you probably discovered that it was a lit-
tle more time-consuming than factoring 35. The longer the number, the
more time it takes to factor it. Researchers have written computer pro-
grams to factor numbers. For those programs, factoring 893 would be triv-
ial. But just as with humans, it takes these programs longer to factor
bigger numbers. You can pick a number so big that the amount of time it
would take to factor, even for the fastest computers, would be prohibitive.

Remember Satomi’s problem? If she finds p and q, she can compute �(n).
With �(n) and e, she can determine d. When she has d, she can open Pao-
Chi’s digital envelope. Because p � q � n and because she knows what n is
(remember, that’s part of the public key), all she has to do is factor n—and
that’s how factoring can break RSA. (The answer from the preceding para-
graph is 19 and 47.) Because the modulus (that’s n) is the number Satomi
needs to factor, we’ll say that the size of the modulus is the size of the RSA
key. Hence, an RSA key that uses a modulus of 1,024 bits is a 1,024-bit key.

No one has been able to factor big numbers in a reasonable amount of
time. How big is big? Currently, the most commonly used RSA key size is
1,024 bits. The record for factoring (as of December 2000) is 512 bits. In
that case, p and q were each 256 bits long. It took a team using 292 off-the-
shelf computers a little more than five months to do the job. With a brute
force attack, each time you add a bit to the key size, you double the time
it takes to break. But with the technique used by the current factoring
champions, each time you add a bit to the number, you don’t quite double
the time to factor. Each added bit makes the program run about 1.035 to
1.036 times longer. So if a 512-bit key is broken in five months, a 1,024-bit
key can be broken in about 3 to 30 million years (see Figure 4-13).

Chapter 4102

You may wonder why the modulus has to be the product of two primes.
Why can’t the modulus itself be a prime number? The reason is that for a
prime number p, �(p) is (p � 1). Because your modulus is public, if the
modulus were p, a prime number, any attacker would be able to find �(p);
it’s simple subtraction. Armed with �(p), an attacker can easily find d.

Incidentally, Satomi has a couple of brute force opportunities. First, she
could try to find d by trying every value it could possibly be. Fortunately,
d is a number as big as the modulus. For a 1,024-bit RSA private key, d is
1,024 bits long (maybe a bit or two smaller). No, brute force on d is not an
option. A second possibility is to find p or q. Satomi could get a number b
(call it b for brute force candidate) and then compute n � b (n divided by
b). If that doesn’t work (b does not divide n evenly; there is a remainder),
she tries another b. She keeps trying until she finds a b that works (one
that divides n evenly). That b will be one of the factors of n. And the
answer to n � b is the other factor. Satomi would then have p and q. But
the factors of n are half the size of the modulus (see “Technical Note: Mul-
tiPrime RSA”). For a 1,024-bit RSA key, p and q are 512 bits each. So
Satomi would be trying a brute force attack on a 512-bit number, and

103The Key Distribution Problem and Public-Key Cryptography

Figure 4-13

In a popular
1,024-bit RSA
key, the modulus
is 1,024 bits, built
by multiplying
two 512-bit
primes

Chapter 4104

Technical Note: MultiPrime RSA
Faster performance is always a goal of programmers, so anything
that would speed up the RSA algorithm would be welcome. The first
speed improvement came in 1982 from Belgian researchers Jean-
Jacques Quisquater and C. Couvreur. They showed that it’s possible
to make private key operations (opening a digital envelope) faster if
you keep the p and q around, by using what is known as the Chinese
Remainder Theorem (CRT). This theorem dates to the fourth century
and originated in, as the name implies, China. It’s a result of
research into how to count columns and columns of soldiers more
quickly.

Remember that an RSA private key is made up of the two num-
bers n and d, where n is built by multiplying two primes, p and q.
When you have your d, you throw away p and q. According to the
theorem, if you don’t throw away your p and q, and if, while gener-
ating your key pair, you make a few other calculations and save a
few more values, the private key operations you perform can run
almost three times faster. The fundamental reason is that p and q
are smaller than n (there’s more to it than that, but at its founda-
tion, that is the reason). Because p and q must be kept private, this
technique will not help public key operations. But, as you’ll see in
the section “Performance,” RSA public key operations are already
rather fast. Recently, people have been looking into using three or
more primes to make up n. Here’s why.

When you multiply two numbers, if you add the sizes of those two
numbers you get the size of the result. For example, if you multiply
a 512-bit number by a 512-bit number, you get a 1,024-bit number
because 512 � 512 � 1,024 (it could end up being 1,023 bits, but let’s
not quibble). Actually, you could multiply a 612-bit number by a 412-
bit number to get a 1,024-bit result, but for security reasons, it’s bet-
ter to have the numbers the same size or very close. Virtually all
programs that generate RSA key pairs find two 512-bit primes and
multiply them to make n.

If you want a 1,024-bit number as a result of multiplying three
smaller numbers, how big should they be? One possibility is 341,
341, and 342 bits. If p and q are each 512 bits, and if private key
operations are faster because they are smaller than n (which is

continued

that’s out of the question. Actually, because p and q are primes, they are
odd, so the least significant bit is set; and because they are 512 bits long,
the most significant bit is also set, so Satomi would know at least 2 of the
512 bits. So it’s not brute force on 512 bits but rather on 510—but that’s
not much better.

The DH Algorithm

The Diffie-Hellman algorithm is not used for encryption, so how can it
solve the key distribution problem? After all, don’t you have to encrypt the
session key to create a digital envelope?

With DH, you don’t generate a symmetric session key and distribute it
using public-key technology; instead, you use public-key technology to

105The Key Distribution Problem and Public-Key Cryptography

1,024 bits), will operations improve even more if p, q, and r (let’s call
our third prime r) are smaller still?

The answer is yes. The more primes that make up the modulus,
the faster the private key operations run. It’s all because of the Chi-
nese Remainder Theorem.

The problem is that the more primes that make up the modulus,
the easier it is to factor. More precisely, if “too many” primes make
up the modulus, it’s easier. How many is too many? That depends on
the size of the modulus. The bigger the modulus, the safer it is to
use more primes. Using three primes to build a 1,024-bit modulus
will not help an attacker; it will take just as long to factor as does a
two-prime number. But should you use four primes to generate a
1,024-bit modulus? That may be too dangerous. If your modulus is
2,048 bits, four primes is safe, but five might not be.

Actually, that issue is still under contention. How many primes is
it safe to use at various sizes of moduli? Although there is disagree-
ment in some areas, it is widely believed that using three primes is
safe for a 1,024-bit modulus. Research continues on the topic.

So if you hear about MultiPrime RSA, you’ll know that it has to do
with making private key operations faster by using more than two
primes to build a modulus.

generate the symmetric session key. Each corresponding party possesses
a secret value and a public value. If you combine a private value with the
other public value, each individual will generate the same secret value
(see Figure 4-14).

Chapter 4106

Figure 4-14

With Diffie-
Hellman, you
combine your
private value
with the other
party’s public
value to create a
secret. The other
party combines
his or her private
value with your
public value and
creates the same
secret

Here’s how Pao-Chi and Gwen would make it work. Gwen has a DH key
pair; the public key is (obviously) publicly available, and she keeps her
private key someplace where only she has access. Inside Gwen’s public
key is enough information for Pao-Chi to generate his own temporary DH
key pair. Now both of them have a DH key pair (see Figure 4-15). For each
of the key pairs, the public and private keys are related. But Pao-Chi’s and
Gwen’s key pairs themselves are also related. Pao-Chi uses his private
key and Gwen’s public key together to generate a number, called a secret
value.

To encrypt the bulk data, Pao-Chi needs a session key. Instead of using
an RNG or PRNG to generate the key, he uses the secret value result from
the DH computations. For Gwen to read the message, though, she needs

the session key. Since Pao-Chi used the DH secret value as his session key,
that means Gwen needs the secret value. She can generate the secret
value using her private key and Pao-Chi’s temporary public key, which he
sends along with the message (see Figure 4-16).

107The Key Distribution Problem and Public-Key Cryptography

Figure 4-15

Pao-Chi
generates a
temporary DH
key pair using the
information from
Gwen’s public
key. Now both
parties have
related key pairs,
and each can
create the same
secret

Figure 4-16

Pao-Chi’s
message has
his public value
first followed by
the encrypted
bulk data

The Diffie-Hellman algorithm does not encrypt data; instead, it gener-
ates a secret. Two parties can generate the same secret and then use it to
build a session key for use in a symmetric algorithm. This procedure is
called key agreement. Two parties are agreeing on a key to use. Another
name found in the literature is key exchange. That description is not as
accurate, but some people use it. It means that two parties perform an
exchange, the result of which is a shared key.

But if Pao-Chi and Gwen can generate the secret, why can’t Satomi?
Satomi knows Gwen’s public key and, if she’s eavesdropping, Pao-Chi’s
temporary public key. If she puts those two keys together, what does she
have? Nothing useful. The secret appears only when combining a public
and a private value (each from a different person). Satomi needs one of the
private keys—not both, just one.

A DH public key consists of a generator, a modulus, and public value.
The private key is the same modulus along with a private value. As with
RSA, cryptographers exercise their creativity to give these numbers more
melodious names: g, p, y, and x. The generator is g, the modulus is p, the
public value is y, and the private value is x (see Figure 4-17). Here, p is a
prime number; note that it’s not the product of two or more prime num-
bers but rather is itself a prime. You generate a key pair by finding the
prime p first, then a generator g that works well with your p, and then a
random or pseudo-random x. If you combine those numbers using modu-
lar exponentiation (see Figure 4-18), you get y.

y � gx mod p

We have said that there is a way to break all public-key algorithms.
That includes DH. Satomi can break DH by deriving one of the private
keys from its public partner. Because Satomi needs only one of the pri-
vate keys, she’ll probably go after Gwen’s, which has been out there
longer (remember, Pao-Chi generates his temporary private key only
when he sends the message). Gwen’s public key consists of y, g, and p. All
Satomi has to do is find x. In the preceding equation, Satomi knows all
the values except one. High school algebra describes this as “one equation
in one unknown.” That’s solvable, right?

Yes, it’s solvable. It’s known as the discrete log problem (finally, a more
interesting name), and computer programs will solve it. But the longer the
p, the more time the computer programs will take—in fact, the same time
as it would take to factor. As it happens, the factoring problem and the dis-
crete log problem are related. It’s commonly believed that if you solve one
you solve them both. So in use, p should be 1,024 bits long.

Chapter 4108

TE
AM
FL
Y

Team-Fly®

109The Key Distribution Problem and Public-Key Cryptography

Figure 4-17

A 1,024-bit DH
key pair. The
number p is the
modulus, g is the
generator, y is the
public value, and
x is the private
value

With RSA, you find two 512-bit primes and multiply them to get a
1,024-bit modulus. With DH, you find one 1,024-bit prime and use it as the
modulus.

NOTE:
“Discrete log” doesn’t refer to a felled tree that’s good at keeping secrets
(that would be a “discreet log”). The word “discrete” means that we’re
working with the math of integers only—no fractions or decimal points—
and the word “log” is short for “logarithm.”

With RSA, you can’t use a single prime as the modulus; you must mul-
tiply two primes. But with DH, you use a single prime as the modulus.
Why is it that single-prime RSA can be broken but single-prime DH can-
not? The answer is that the two algorithms do different things. RSA
encrypts data, whereas DH performs key agreement. With RSA, you use
a value called d that is dependent on �(n). With DH, you don’t use d, and
you don’t mess around with �(n).

So Satomi will need a few million years to break Gwen’s private key by
going the discrete log route. What about brute force—would that work?
The private key is really just x, a random or pseudo-random number that
can be as long as Gwen wants it to be. If she wants it to be 160 bits, she can
make it 160 bits. Then Satomi won’t be able to mount a brute force attack
on it. Gwen could make x even longer, but the longer it is, the longer it will

Chapter 4110

Figure 4-18

Generating a DH
public and
private key pair

take her to perform her calculations. So for performance reasons, she
wants it as short as possible, and for security reasons, she wants it as long
as possible. Today, 160 bits is probably the most common size of x.

The ECDH Algorithm

The first thing to know about Elliptic Curve Diffie-Hellman is what an
elliptic curve (EC) is, and that’s shown in Figure 4-19. This curve is not the
only form an EC can take, but it’s a common one. Actually, it’s not even a
cryptographic EC, but when cryptographers talk about EC, they generally
show a picture similar to Figure 4-19.

111The Key Distribution Problem and Public-Key Cryptography

Figure 4-19

An elliptic curve.
This also shows
EC addition

Elliptic curves date to the 1800s. They are actually a form of the Weier-
strass equation (a “smooth” Weierstrass equation, to be a little more pre-
cise). Karl Weierstrass was a 19th-century mathematician who did
pioneering work on number theory. Elliptic curves played a role in the
proof of Fermat’s Last Theorem and are also involved in factoring.

Cryptographers use only a few of the many flavors of ECs. The curves
used by cryptographers fall into two main categories, generally called
“odd” and “even.” Another way to categorize the types of curves used in
crypto is Fp, F2 Polynomial, and F2 Optimal Normal (see Figure 4-20).
These latter categories can be broken down to even more classes of curves.

Chapter 4112

Figure 4-20

Classes of elliptic
curves used by
cryptographers

A cryptographic EC is discrete (only integers; no fractions or decimal
points). All numbers fall within a certain range. The bigger the range, the
more secure the curve; the smaller the range, the faster the computations.

An elliptic curve has points; a point is an x,y-coordinate. For example,
in Figure 4-19, the point labeled P3 could also be described as (3,8). The x-
coordinate is 3, so you start at the origin and go to the right 3 units (the
unit—inches, millimeters, or something else—depends on the scale). Then

you use the y-coordinate to go up 8 units. The point P2 could be (�6, 1):
left 6 units (the negative in �6 means left) and up 1 unit. As the figure
shows, you can add points on an EC. Notice that it’s not an intuitive sense
of “adding.” You find two points you want to add, draw a line through
them, and see where that line intersects the EC. That point is not the solu-
tion; the negative of that point is the solution. Why isn’t P3 the sum of P1
and P2? Here’s why. If you added P1 and P2 and got P3, then what would
P3 � P2 be? It would be P1. But what would P3 � P2 be? It would also be
P1. You can’t have P3 � P2 � P3 � P2 (unless P2 were zero, and it’s not).
So there’s a different set of rules for addition.

The graphical form of elliptic curves (the curve itself, the points, the
addition rules, and more) can be described with mathematical equations.
You don’t deal with pictures; instead you deal only with numbers and
equations. And if you’re dealing with only numbers and equations, you can
write computer programs to do the work. If you have programs that
manipulate numbers, maybe you can get crypto. All you need now is a one-
way function (with a trap door).

The one-way function is called scalar multiplication: You add a point to
itself some number of times. We have a point, generally called P0 (that’s a
capital P and a zero; the point is “P � zero”). Add it to itself: P0 � P0. Fig-
ure 4-19 shows the addition of two distinct points, but there is a way, via
another strange rule, to add a point to itself. The special thing about ellip-
tic curves is that if you add a point on the curve to another (or the same)
point on the curve, the result is also a point on the curve. If you have an
elliptic curve and a point or two on that curve, when you add a point fol-
lowing the special rules you will get another point on that curve—guar-
anteed. If you have a curve and one or two points on that curve, and the
result of adding is not on the curve, it is not an elliptic curve.

So the answer to P0 � P0 is another point; let’s call it P1. Now add P0
to that result; let’s call it P2. P1 � P0 � P2. What you’ve actually done is
to find P0 � P0 � P0. Another way of saying that is 3 � P0. You’re multi-
plying 3, a scalar (the mathematical term for a single number), by P0, a
point (a point cannot be described using a single number; you need two
numbers: the x-coordinate and the y-coordinate). You could compute any
such scalar multiplication. What’s 120 � P0? Why, that’s P0 added to itself
120 times. What’s d � P0? That’s P0 added to itself d times. The result of
any scalar multiplication is another point on the curve.

There are shortcuts. If you want to find 120 � P0, you don’t actually
have to do 120 additions; instead, you can use a multiplication program.
We just wanted to show you how scalar multiplication is defined.

113The Key Distribution Problem and Public-Key Cryptography

We said that scalar multiplication is a one-way function. Here’s how it
works. Suppose you find an elliptic curve (that’s not hard to do) and a point
on that curve. Cryptographers have again demonstrated their lyrical side by
calling the curve E and the point P. You now generate a random or pseudo-
random scalar called d. Now you multiply, finding d � P. The answer is
some point on the curve; let’s call it Q. Now you show the world your curve
and those two points; E, P, and Q are publicly available, so the challenge is
to find d. That is, if dP � Q inside E, and if you know E, P, and Q, your task
is to find d. As with Diffie-Hellman, you have one equation in one unknown.

This is known as the elliptic curve discrete log problem, and, as long as
the curve is big enough, no one has found a way to solve it in a reasonable
amount of time. Recall that in cryptography, elliptic curves are defined
over a specific range. The technical term for this range is field. In the
three kinds of curves we’ve mentioned—Fp, F2 polynomial, and F2 opti-
mal normal—the F stands for “field.” The p in Fp stands for “prime num-
ber.” That’s a lowercase p, not to be confused with the uppercase P used as
the point in the description of the EC discrete log problem (cryptogra-
phers sure know how to choose names, don’t they?). The 2 in F2 is indeed
2. Actually, it would be more accurate to say F2m.

If you want to work with an Fp curve, you find a big prime p, and all
your calculations will use integers from 0 to p � 1. If you want to work in
F2m, choose a size m and all your calculations will use integers from 0 to
2m � 1. For more security, you should use a bigger range. But the bigger
the range, the slower your computations will be. The most common size is
160 bits to 170 bits.

Here’s how Pao-Chi and Gwen would use elliptic curve cryptography
(ECC). Gwen generates an EC called E. She finds a point, P, on that curve.
Then she generates a random or pseudo-random scalar d and finds Q � d
� P. Her public key is E, P, and Q (see Figure 4-21). Her private key is the
same curve E coupled with the random or pseudo-random d, which is most
likely the same size as the range of the curve.

To send Gwen a message, Pao-Chi gets her public key. It contains
enough information for Pao-Chi to generate his own temporary ECDH key
pair. Now both correspondents have an ECDH key pair. For each of the key
pairs, the public and private keys are related. But Pao-Chi’s and Gwen’s
key pairs themselves are related as well. Pao-Chi uses his private key and
Gwen’s public key together to generate a secret point on the curve. He uses
that secret value somehow as a session key. Because a point is a pair of
numbers x and y, the two correspondents will have to decide in advance
which bits from those numbers to use as the key. The most common ECDH
applications use x), so they just throw away the y (see Figure 4-22).

Chapter 4114

115The Key Distribution Problem and Public-Key Cryptography

Figure 4-21

A 160-bit F2 EC
key pair. The
numbers under E
describe an
elliptic curve
(composed of 2m

field, a, b, order,
and cofactor), and
P and Q are two
points on the
curve related by
d, a scalar

To read the message, Gwen needs the session key. She gets it by com-
bining her private key with Pao-Chi’s temporary public key (he sends his
temporary public key along with the encrypted message).

This sounds just like Diffie-Hellman. In that scheme, two people com-
bine public and private keys in a special way to generate a shared secret.
In this scheme, the same thing is happening. The difference is the under-
lying math, and that explains the name Elliptic Curve Diffie-Hellman.

To read Pao-Chi’s intercepted message, Satomi needs one of the private
keys, knowing both of the public keys will not do the trick. To break
Gwen’s private key (probably Satomi’s first choice), Satomi must figure
out d. That would require her to solve the EC discrete log problem, some-
thing that would take a few million years, so Satomi might try a brute
force attack. The problem is that d is the same size as the underlying field.
Gwen probably chose a 160-bit or 170-bit EC, meaning that d is also 160
bits to 170 bits, so brute force won’t work either.

Remember that RSA and DH were based on related problems, and
that’s why the key sizes are the same. But with ECC, you use a different

Chapter 4116

Figure 4-22

Pao-Chi combines
his temporary
private key with
Gwen’s public
key to get a
secret point

key size because the underlying problems are different. And solving the
EC discrete log problem is harder than solving the factoring or discrete
log problem.

By the way, it’s possible to use ECC to do encryption. However, in the
real world, it’s not used very much for security and performance reasons.
Recall that as you increase the key size, you slow down the computations.
And for ECES (elliptic curve encryption scheme) or ECRSA to achieve the
level of security of regular RSA, you must use bigger keys. The keys need
to be so big that you take too big a hit in performance.

Comparing the Algorithms
The three algorithms we’ve discussed can be used to solve the key distribu-
tion problem. Which one is the best? There’s probably no answer to that
question because each has its advantages and disadvantages.A more appro-
priate question might be, “Which algorithm works best in which situation?”
When you’re evaluating each approach, it’s a good idea to look at five areas:
security, key size, performance, transmission size, and interoperability.

Security

Is one of the algorithms more secure than the others? There’s no truly
objective answer. It depends on what you think is important.

ECC is based on the EC discrete log problem, which is “harder”; does
this mean it’s more secure than RSA, which is based on factoring, or DH,
which is based on the discrete log problem? Not necessarily.

Thousands of mathematicians have been studying the factoring prob-
lem for many years (most intently since 1978). Some of them think that if
a solution could have been found, it would have been found by now. On the
other hand, it took about 300 years to come up with a proof of Fermat’s
Last Theorem, so maybe the ultimate factoring solution simply has not
yet been found. Considering the enormous bank of research available to
build on, finding a solution may become easier over time.

ECC is newer and less well understood. Far fewer researchers have
been attacking it, and for a shorter time. Some people think that more
time and effort are needed to develop a better sense of security. Further-
more, despite the “lag” in research, some classes of curves have been found

117The Key Distribution Problem and Public-Key Cryptography

to be susceptible to cryptanalysis. Of the many flavors of elliptic curves,
not all of them are used in crypto. For some flavors, it was known early
that they contained more weaknesses than others and that there were
ways to break them faster than security requirements allowed. Such
curves have never been proposed for use in crypto. Other flavors that were
proposed for such use were later shown to possess weaknesses. All the
weaknesses found so far lie in the F2 area. At this point, it’s believed that
no application has ever been deployed in the real world with a weak EC.
But because some curves have fallen, some cryptographers are not confi-
dent in F2 ECC, and others do not trust any curve at all—Fp or F2.

Some people prefer RSA because DH and ECDH are susceptible to the
man-in-the-middle attack. In our sales rep example, the potential
attacker is a woman in the middle, Satomi. She could intercept all mes-
sages between Pao-Chi and Gwen, establishing DH or ECDH keys with
each of them. Pao-Chi would think he’s computing a shared secret key
with Gwen but would really be computing one with Satomi. Similarly,
Gwen would compute a shared secret key with Satomi, thinking she was
talking with Pao-Chi. Then if Pao-Chi sent a message to Gwen, only
Satomi would be able to decrypt it. She would decrypt it, store the mes-
sage, reencrypt it with the key she established with Gwen, and send it on
(see Figure 4-23). The man-in-the-middle attack is easily thwarted by
using authentication along with the key exchange (Chapter 5 discusses
authentication), and most protocols include authentication anyway. So for
some people, this attack is no real disadvantage.

Another issue is each correspondent’s ability to contribute to the key.
With RSA, only the initiator of the contact has any say in what the session
key will be. With DH or ECDH, both parties contribute to generating the
session key. Each correspondent performs some operations and sends the
result to the other; the final secret depends on each individual’s contribu-
tion. For some people, this arrangement sounds better than trusting
someone else entirely to generate a good key. For others, it’s not a great
feature. After all, they argue, another party who would do a bad job of gen-
erating a session key probably wouldn’t do any better with the key
exchange.

So, the choice of algorithm is a matter of your own feeling of security. At
this time, no honest cryptographer can make a definitive statement about
which algorithm is more secure.

Chapter 4118

TE
AM
FL
Y

Team-Fly®

119The Key Distribution Problem and Public-Key Cryptography

Figure 4-23

The man-in-the-
middle attack

Key Sizes

The bigger the key, the greater the level of security and the slower any
public-key algorithm will run. You want the algorithm to run as fast as
possible but maintain a particular level of security. The question is, how
low can you go before you jeopardize security? The conventional wisdom is
that a 1,024-bit RSA or DH key is equivalent in security to a 160-bit ECC
key. There is a little contention on that issue, but research continues. In
this book, when making comparisons, we look at 1,024-bit RSA or DH, and
160-bit ECC. With RSA, the modulus is made up of three primes; with DH,
the private value is 160 bits.

In April 2000, RSA Labs published a paper that analyzed how long it
would take to break the RSA algorithm at various key sizes if an attacker
had $10 million to throw at the problem. Table 4-1 summarizes the
research; the symmetric key and ECC key columns are there for compar-
ison. With ECC, you could probably get the same results with smaller key

sizes. However, the assumption in the report is that the public key algo-
rithm should use a key size at least twice as long as the symmetric key
(regardless of performance) for security reasons.

The table says that with $10 million, an attacker could buy 105 spe-
cially made computers to crack a 56-bit symmetric key, a 112-bit ECC key,
or a 430-bit RSA key in a few minutes. Actually, that $10 million would
probably buy more than 105 machines, but 105 is all it would take. With
the same amount of money, at the next key level the attacker could buy
4,300 machines specially built to solve the problem; at the next key level,
114, and at the next level, 0.16.

Why does the money buy fewer machines as the key size increases? The
reason is that the amount of required memory increases. The base com-
puter is the same, but to break bigger keys, the attacker needs more mem-
ory (120 terabytes, or about 120 trillion bytes, in the case of a 1,620-bit
RSA key), and buying memory would eat up the budget. In fact, the
attacker will probably need more than $10 million to break a 1,620-bit
RSA key because that amount of money would only buy 0.16, or about 1/6,
of a machine.

Performance

If no algorithm wins on security, you might think that you should choose
the fastest one. But there is no simple answer there. Comparing the per-

Chapter 4120

Symmetric ECC RSA
Key Key Key Time Number Amount
(Size (Size (Size to of of
in Bits) in Bits) in Bits) Break Machines Memory

56 112 430 Less than 105 Trivial
5 minutes

80 160 760 600 months 4,300 4GB

96 192 1,020 3 million years 114 170GB

128 256 1,620 1016 years 0.16 120TB

Table 4-1

Time to Break
Keys of Various
Sizes with $10
Million to Spend

formance of the public key operations (initiating the contact, or creating
the digital envelope) shows that RSA is significantly faster than ECC,
which in turn is faster than DH. For the private key operations (receiving
the contact or opening the digital envelope), ECC is somewhat faster than
DH, and both are faster than RSA.

For many machines, though, the difference in performance is negligible.
The two times might be 0.5 milliseconds and 9 milliseconds. Even though
one algorithm may be 18 times faster, there’s no discernible difference
between times that are that fast. But if the processor performing the
action is a slow device, such as a smart card, a Palm device, or other hand-
held device, the difference might be 0.5 seconds versus 9 seconds. Or
maybe one of the correspondents is a server that must make many con-
nections, maybe several per second. Then the comparison might be 111
per second versus 2,000 per second.

Another factor with ECC is whether you use acceleration tables to
speed the private key operations. If you do, you must store extra values in
addition to your key. Those extra values amount to about 20,000 bytes. If
the device is a server, that’s no problem—but will a smart card or hand-
held device have that kind of storage space?

So the most suitable algorithm depends on which is more important—
public-key or private-key operations—in your application. Table 4-2 lists
estimates from RSA Security Engineering on the relative performance of
the two algorithms. The baseline is an RSA public-key operation, which is
1 unit. As shown in the table, if a particular computer can create an RSA
digital envelope in 1 millisecond, it would take that same computer
13 milliseconds to open it. Or it would take that same computer 18 mil-
liseconds to initiate an ECDH exchange and 2 milliseconds to receive one
using acceleration tables.

121The Key Distribution Problem and Public-Key Cryptography

ECC with
RSA DH ECC Acceleration

Public key (initiate contact) 1 32 18

Private key (receive message) 13 16 6 2

Combined 14 48 24 20

Table 4-2

Estimated
Relative
Performance of
the Public-Key
Algorithms

Transmission Size

What if the amount of money it costs or the time it takes to transmit bits
across the wire (or in the air) is significant? It turns out that the algo-
rithms differ in the size of the transmission. With RSA and DH, trans-
mission size is the same as the key size. With ECC, you send twice the key
size. So using a 1,024-bit RSA or DH key pair means that each time you
send a digital envelope, you’re adding 1,024 bits to the message. With a
160-bit ECC key, you’re adding 320 bits.

Interoperability

With symmetric-key crypto, if you want to make sure that someone else
can decrypt your ciphertext, you should use DES, Triple DES, or AES. Any
correspondents who have crypto will have those algorithms. You may
want to use RC4 or RC5 because they’re faster, but to ensure interoper-
ability, you might choose the algorithm you know everyone has.

Can the same be said in the public-key world? For the most part, yes.
RSA is almost ubiquitous and has become the de facto standard. If you
send an RSA digital envelope, the recipient will almost certainly be able
to read it, whether or not your correspondent uses the same application
you do. With DH, there’s a good chance that the other party will have the
necessary code, but it’s not as widespread. ECC is even less prevalent
than DH. Most applications using ECC today are closed, meaning that
they talk only to themselves. The vast majority of those are in the United
States. You will find very little ECC used in Europe.

Another problem with ECC and interoperability is that the flavors of
curves (Fp and F2) are not interoperable. If you have code that does Fp
and your correspondent has code that does F2, you can’t talk to each other.
In the future, the interoperability issue may go away for ECC if more
people adopt it and the world settles on a single class. But until that time,
your best bet is to use RSA.

Protecting Private Keys
Throughout this chapter, we emphasize the importance of keeping a pri-
vate key private. How do you do that? The quick answer is that most of the

Chapter 4122

techniques mentioned in Chapter 3 for protecting session keys apply to
private keys.

For example, suppose you want a key pair. You’ll most likely run a pro-
gram that generates it for you. You make the public key available to the
world, and you store the private key on your computer. Of course, simply
storing data on your computer is not safe, so you’ll probably store it
encrypted, using password-based encryption. When you run the program
that uses the private key (for example, when you receive some encrypted
e-mail), it loads the data. You enter your password, the program uses it to
decrypt the key, and now you can open the envelope.

You can also store the private key on a smart card or other token. The
card will generate the key pair and return the public key for you to dis-
tribute, but it probably won’t allow the private key to leave the device. To
open an envelope, you give the token the encrypted session key (if you’re
using RSA) or the sender’s temporary public key (if you’re using DH or
ECDH). The token performs the private key operation and returns the
session key to you. For servers, crypto accelerators might be used. They
behave the same way as tokens except that they’re much faster.

Using the Digital Envelope for Key Recovery
If you lose your car key, you can often call a dealer in the area who can
make a new one. If you lose your house key, you can call a locksmith who
can create a new one. If you lose a cryptographic key, there’s no one to call.
It’s gone. That’s why many companies implement a key recovery plan.

When Pao-Chi generates a symmetric key to encrypt his files or gener-
ates a public/private key pair to be used for key distribution, he stores the
symmetric and private keys in such a way that only he can recover them.
If he has a key recovery plan, though, he also creates copies of the keys
and stores them in such a way that someone else can recover them. In
addition, it is possible to store them so that it takes more than one person
to recover the keys. In that way, no one single individual can surrepti-
tiously recover the keys and examine Pao-Chi’s secret information.

The most common form of key recovery is the RSA digital envelope. Pao-
Chi has a software program that encrypts his files. It generates a sym-
metric session key and uses that key to encrypt each file. He then stores
that key securely, possibly using PBE or a token. At the time the session
key is generated, he also encrypts it using the key recovery RSA public key

123The Key Distribution Problem and Public-Key Cryptography

(see Figure 4-24). This arrangement is essentially a digital envelope. If
Pao-Chi loses his key, the owner of the key recovery private key can open
the digital envelope and retrieve Pao-Chi’s encrypting session key.

There are three basic entities that can act as a key recovery agent:

� A trusted third party

� A group of trustees, each holding a portion of the key

� A group of trustees using a threshold scheme

Chapter 4124

Figure 4-24

Pao-Chi encrypts
his session key
with the key
recovery public
key, storing that
digital envelope
for emergencies

Key Recovery via a Trusted Third Party

Earlier in this chapter in the section titled “Using a Trusted Third Party,”
you met Michelle, a TTP who creates session keys for Gwen and Pao-Chi.
Now Michelle is going to be their key recovery agent. Michelle generates
her RSA key pair and distributes the public key to each individual who
will participate in the key recovery program. Pao-Chi’s software, for exam-
ple, can have that public key built-in. When he generates his keys (the ses-
sion key or public/private key pair), he encrypts them with this public key.
He could send this digital envelope to Michelle, but he probably prefers to
keep it himself. In that way, Michelle cannot open the envelope without
his knowledge. Michelle is a trusted third party, but Pao-Chi’s trust in her
has some limit. Hence, he will probably store the digital envelope on a
floppy disk and keep the disk in his locked desk drawer. Then if Pao-Chi
forgets a password, loses his smart card, has a hard drive failure, and so
on, and needs to recover a key, he takes the digital envelope to Michelle.
She opens it using her RSA private key and gives Pao-Chi the output,
namely his key. After he uses the key, Pao-Chi again protects the key.

The advantage of this system is that recovering the key is easy. The dis-
advantage is that Michelle has access to all the keys. It is possible for her
to recover keys without anyone’s knowledge. Another disadvantage is that
Pao-Chi must depend on Michelle. What does he do when she is away on
vacation? What does the company do if she leaves for another job? In that
case, the company will have to get a new TTP, generate a new key recov-
ery key pair, distribute the new public key, and have everyone create new
digital envelopes with all their keys.

125The Key Distribution Problem and Public-Key Cryptography

The Difference Between Key
Recovery and Key Escrow
Many elements of cryptography go by different names. There’s “sym-
metric-key” crypto, which is also known as “secret-key” crypto.
“Asymmetric-key” crypto also goes by the name of “public-key”
crypto, and the terms “message digest” and “hash” (see Chapter 5)
are often interchangeable. Now we come to an area of crypto-key
recovery and key escrow—in which two terms appear to describe the
same thing but are actually significantly different.

Key recovery and key escrow are not the same thing. Key recovery
is a method that’s implemented to restore keys that get lost. Key
escrow is the practice of giving keys to a third party so that the third
party can read sensitive material on demand. “Key escrow” is almost
always used to describe a way for governments to obtain keys in
order to collect evidence for investigations.

Consider the analogy of your house key. With key recovery, if you
lose your key, you hire a locksmith to create a new one. With key
escrow, the day you buy the house, you surrender a copy of the key
to the police so that they can enter your house when they want to,
possibly without your knowledge.

This book is not concerned with the political or practical implica-
tions of key escrow. It is our intention only to point out the difference
between the two terms. The actual techniques used to implement
key recovery and proposed key escrow plans are often the same. So
for the rest of this chapter, we describe key recovery schemes.

Key Recovery via a Group of Trustees

Some companies and individuals do not like the idea of one person having
access to all keys. In such situations, a better scheme is to break the key
into parts and distribute them among several individuals. Suppose those
individuals are the company’s TTPs—Michelle and Alexander—and
Gwen, the VP of sales. Now Pao-Chi’s software comes preloaded with
three public keys. Each of his keys is broken into three parts, and three
digital envelopes are created. For example, Pao-Chi has a 128-bit sym-
metric key that he uses to encrypt the files on his hard drive; this key is
separated into three blocks of five bytes, five bytes, and six bytes.
Michelle’s public key protects five of the bytes, Alexander’s protects
another five, and Gwen’s protects the last six. Now if Pao-Chi needs to
recover his key, all three trustees must gather to reconstruct the data.

The advantage here is that no one individual can recover keys secretly.
For keys to be recovered surreptitiously, all three trustees would have to
agree to subvert the system, a scenario less likely to occur than if only one
individual possessed the ability to recover keys.

The scheme as described here has a problem. Because each trustee has
a portion of the key, it would be possible for an individual to recover the
known portion and then perform a brute force attack on the rest. Gwen
has the largest portion—six bytes (48 bits)—so her task would be equiva-
lent to breaking an 80-bit key. Such an attack is not likely, but it would be
better if that avenue were closed.

One way around this problem is to create a 384-bit value and split that
into three 128-bit components. Each trustee knows 128 bits but is missing
256 bits of the total value. The 384-bit value is actually used to derive the
key. That is, Pao-Chi generates a 384-bit value and uses it as a seed for a
PRNG. The PRNG produces the session key. Each trustee gets a portion of
the 384-bit value. To recover the key, you must put all three of the
trustees’ components together and re-create the PRNG (see Figure 4-25).

This splitting of the secret into multiple digital envelopes has the
advantage of preventing one individual from wielding too much power.
But it has the disadvantage of being more difficult to implement and also
carries all the disadvantages of the TTP approach: If one trustee is on
vacation, the key is still lost. Furthermore, if one trustee leaves the com-
pany, the key recovery process must start over from scratch, new pub-
lic/private key pairs have to be generated and public keys distributed, and
all employees must create new digital envelopes.

Chapter 4126

Key Recovery via Threshold Schemes

Probably the most common key recovery method involves threshold
schemes, also called secret sharing or secret splitting. A secret, such as a
key, is split into several shares, some number of which must be combined
to recover the secret. For example, a secret can be split into 6 shares, any
3 of which can be combined to reproduce the value. Or the secret can be
split among 10 shares, any 4 of which can recover the item, or 12 shares
with a threshold of 11, or 5 shares with a threshold of 5, or 100 shares with
a threshold of 2. Almost any reasonable share and recovery count is possi-
ble (as long as the threshold is less than or equal to the share count). For
key recovery, the secret is an RSA private key.

If Pao-Chi’s company implements a threshold scheme, it might work
like this. The company decides how many shares there will be, how many
are needed to implement key recovery, and who the trustees will be. Sup-
pose the policy is for six trustees and three shares needed. The trustees
are a system or network administrator, the HR director, and representa-
tives from several departments. Say the sys admin is Warren, the HR

127The Key Distribution Problem and Public-Key Cryptography

Figure 4-25

Pao-Chi creates a
128-bit session
key using a 384-
bit seed value and
splits the 384-bit
value into three
portions,
encrypting each
portion with one
trustee’s public
key. Recovering
the session key
means recovering
the 384-bit value
and recreating
the PRNG

director is Maria, Gwen represents sales and marketing, the shipping
department sends Daniel, Julia comes from engineering, and Michelle is
the key recovery administrator.

To start the process, all the trustees gather to generate and collect
shares. First, an RSA key pair is generated. Then the threshold program
splits the private key into six shares, with each trustee getting one share
(see Figure 4-26). The program generating the shares takes as input the
private key, the number of shares (six), and the threshold count (three)
and produces as output six shares. It’s up to the trustees to protect their
shares, although the company probably has a policy that defines the pro-
cedure. They can simply use PBE on the shares and store them on floppy
disks, or they can store them on smart cards or other tokens. After the
shares are generated and distributed, the public key is distributed and
the private key is destroyed.

Chapter 4128

Figure 4-26

An RSA key pair
is generated, and
each trustee gets
one share of the
private key, which
is then destroyed

Now employees can copy their keys (symmetric encryption keys, key
exchange or digital enveloping keys) and encrypt them using the key
recovery public key.

Suppose Pao-Chi encrypts sensitive files on his hard drive and keeps
the key on a token. Furthermore, suppose he participates in the key recov-
ery and has created a digital envelope of his session key using the key
recovery public key. He keeps that digital envelope on a floppy in his desk
drawer. Now suppose he loses his token. How can he recover his data?

TE
AM
FL
Y

Team-Fly®

To recover the data, Pao-Chi takes the floppy containing the digital
envelope to Michelle, the key recovery administrator. If Michelle is out that
day, he could take it to Warren, the system administrator, or Gwen, the VP
of sales, or any of the other trustees. The trustee he visits must then find
two other trustees. The combination of trustees might be Warren, Daniel
and Julia, or Maria, Daniel, and Julia. Maybe it would be Warren,
Maria, and Gwen, or if Michelle were there that day it could be Michelle,
Gwen and Daniel. It doesn’t matter; the scheme needs three trustees.

The three trustees give their shares to the program running the
threshold algorithm, and the program combines them to produce the
secret, which in this case is an RSA private key. Now that the private
key is reconstructed, Pao-Chi’s digital envelope can be opened. The
result is the session key he needs to decrypt the data on his hard drive
(see Figure 4-27).

129The Key Distribution Problem and Public-Key Cryptography

Figure 4-27

Three trustees
combine their
shares to
reproduce the
key recovery
private key

The threshold scheme has many advantages over the key recovery pro-
grams described earlier, and it eliminates some of the disadvantages.
First, no one person can recover keys; it takes a group acting together.
Anyone attempting to be dishonest must find some co-conspirators. Sec-
ond, if one of the trustees is unavailable, it’s still possible to perform the
operation. Third, if one of the trustees leaves the company, the secret is
still safe, and there’s no need to restart the key recovery process from the
beginning.

A disadvantage is that if one trustee leaves the company, his or her
share is still valid. By itself, this share can’t do anything, but if a thresh-
old number of people leave the company, this group of unauthorized peo-
ple would have the power to recover the company’s secrets. For example,
suppose that Warren, Maria, and Julia leave the company, either all at
once or over a period of time. They might form their own company, start
working for another firm, or work for different companies. If the three of
them decide to steal their former employer’s secrets, they could re-create
the key recovery private key.

Of course, that private key won’t do them any good without the digital
envelopes protecting the session keys of all the employees. So if they want
to steal secrets, they still have to find the floppy disks or tokens storing
the encrypted session keys. But a company that wants to eliminate such
an attack would generate a new key pair and restart the key recovery pro-
gram from scratch. Fortunately, with a threshold scheme, this step is not
necessary every time a trustee leaves but only when several of them leave.

How a Threshold Scheme Works

One of the first threshold algorithms was developed in 1979 by Adi
Shamir (the S in RSA). It’s probably the easiest to understand.

Consider the case of a key recovery scheme that uses three shares with
a threshold of two—that is, three shares are created, any two of which can
recover the secret. You can think of the secret as a point on an (x, y) graph.
Any point on the graph can be represented by two numbers: the x-coordi-
nate and the y-coordinate. In Figure 4-28, the secret is the point (0, S). For
the Shamir algorithm, the secret is always a point on the y-axis. So let’s
consider the secret a number, call it S, and then use the point (0, S).

Now you generate a random or pseudo-random line that runs through
that point. Next, you find three random or pseudo-random points on that
line. In Figure 4-28, these points—the shares—are labeled S1, S2, and S3.

Chapter 4130

To recover the secret, you take two of the points and find the line that
runs through them. You might recall from high school algebra that any
two points uniquely define a line. With the line just created, you next
determine where it crosses the y-axis. That’s the secret. It doesn’t matter
which points are used: S1 and S2, or S1 and S3, or S2 and S3. Each pair
of points generates the same line. If your scheme uses more than three
shares, you simply find additional random or pseudo-random points on
the line. To create a line, however, you need at least two points. One point
is not enough because an infinite number of lines can run through any
single point. Which one is the correct line? It’s impossible to tell, and that’s
why one share alone won’t recover the secret.

If you use a threshold of three, instead of a line, the algorithm gener-
ates a parabola (a curve of degree 2) that intersects the y-axis at the
secret. Any three points on a parabola uniquely define it, so any three
shares (points on the parabola) can re-create the curve. With the curve, if
you find the point where it intersects the y-axis, you find the secret. For
any threshold count, then, you simply generate a random curve of the
appropriate degree (the degree of the curve will be 1 less than the thresh-
old count) that intersects the y-axis at the secret. Each share will be a ran-
dom point on that curve. Of course, a program executing the Shamir
algorithm will not do this graphically; instead, it will do all the work using
math equations.

131The Key Distribution Problem and Public-Key Cryptography

Figure 4-28

The Shamir
threshold scheme

Summary
To solve the key distribution problem, you can use public-key cryptogra-
phy. With the RSA algorithm, the data encrypted by the public key can be
decrypted only by the private key. To securely transmit the session key,
you can use a digital envelope. With Diffie-Hellman or Elliptic Curve
Diffie-Hellman, you can use public-key technology to generate a shared
secret. Only the correspondents can create this secret value, which can
then be used as a session key.

Each of the three algorithms has its advantages and disadvantages, so
it’s not really possible to say that one or the other is better. But any one
algorithm may be better suited for a specific application.

It’s possible to lose cryptographic keys by forgetting a PBE password,
losing the token where they’re stored, and so on. In addition, a company
may want to be able to recover material encrypted by an employee who,
for example, has left the firm. For these reasons, many organizations
implement a key recovery plan. Generally, key recovery involves the use
of an RSA digital envelope, encrypting keys with a recovery agent’s pub-
lic key. The key recovery agent might be an individual or a group of
trustees. Threshold schemes offer an attractive means of implementing
key recovery with checks and balances. With a threshold algorithm (also
known as secret sharing or secret splitting), a secret such as an RSA pri-
vate key is split into a number of shares. To recover the secret, a minimum
number of shares must be collected. This method prevents one individual
from obtaining keys surreptitiously, while making it possible to recon-
struct the keys even if one or more trustees is absent.

Chapter 4132

133The Key Distribution Problem and Public-Key Cryptography

Real-World Example
The S/MIME (Secure/Multipurpose Internet Mail Extensions) standard
specifies a way to encrypt e-mail. MIME is a widely adopted e-mail stan-
dard, and S/MIME is an extension that adds encryption.

S/MIME solves the key distribution problem by using RSA digital
envelopes. If your e-mail package is S/MIME-enabled, you can create a
digital envelope. All you need to do is get your correspondent’s public key
and flip the switch to encrypt the message.

If you send e-mail through Netscape Communicator, for example, you
can use S/MIME. Here’s how. First, launch the Netscape browser. Click
the Security button and then click Messenger (along the left-hand col-
umn). You’ll get a window that looks like the one in Figure 4-29. Click the
option Encrypt Mail Messages, When It Is Possible. (The signing options
are the topic of Chapter 5.) To encrypt a message, you need to select your
correspondent’s public key, which you’ll find inside a certificate. If you
don’t already have the certificate, you can search for it in a directory (see
Figure 4-30). To get to this menu, click Security Info. Under Certificates
(along the left-hand column in the resulting window), click People. Then
click Search Directory. After you select the public key, any e-mail you send
to that individual will be encrypted using a digital envelope.

If you use Microsoft Outlook 98, click Tools, then Options, and then the
Security tab. You’ll see a window that looks like the one in Figure 4-31. As
with the Communicator program, there is an option to encrypt outgoing
messages. Again, you’ll need the other party’s public key to do that.

Chapter 6 talks about certificates and their directories. For now, you
can see that applications today are using public key cryptography to solve
the key distribution problem.

Chapter 4134

Figure 4-30

A Netscape
Communicator
menu for finding
a public key to
use when
creating the
digital envelope

Figure 4-29

Netscape
Communicator’s
menu for
encrypting e-mail
using S/MIME

135The Key Distribution Problem and Public-Key Cryptography

Figure 4-31

The S/MIME
menu in
Microsoft
Outlook 98

This page intentionally left blank.

The Digital Signature

Public-key cryptography helps to solve the key distribution problem. It also
addresses two other cryptography issues: authentication and nonrepudia-
tion. Authentication allows someone in the electronic world to confirm data
and identities, and nonrepudiation prevents people from going back on
their electronic word. One way to implement these features is to use a dig-
ital signature.

When you use the RSA algorithm, it means that anything encrypted
with the public key can be decrypted only with the private key. What
would happen if you encrypted plaintext with a private key? Is that pos-
sible? And if so, which key would you use to decrypt? It turns out that RSA
works from private to public as well as public to private. So you can
encrypt data using the private key, and in that case, only the public key
can be used to decrypt the data (see Figure 5-1).

You may ask, “What good is that?” After all, if you encrypt data with
your private key, anyone can read it because your public key, which is pub-
licly available, can be used to decrypt it. It’s true that using RSA in this
direction does not let you keep secrets, but it is a way to vouch for the con-
tents of a message. If a public key properly decrypts data, then it must
have been encrypted with the private key. In the crypto community, this
technique is conventionally called a digital signature. If we didn’t “all”
agree to call it a digital signature, it wouldn’t be, it would be just an inter-
esting exercise in math and computer science. But the crypto community

CHAPTER 5

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

called it such, the rest of the computer community (hardware and soft-
ware vendors) have agreed to this nomenclature, and governments are
starting to come on board. At the state and national level, laws are being
passed that declare a digital signature as a legally binding way to sign
documents. This means that anything you encrypt with your private key
is a digital signature. So you shouldn’t go around encrypting things with
your private key unless you’re willing to vouch for them.

The Uniqueness of a Digital Signature
Suppose Pao-Chi sells four printing presses to Satomi and must now com-
municate the sale to the home office. He sends a message to Daniel in the
shipping office:

Daniel, I sold 4 presses to Satomi. Ship immediately.

Chapter 5138

Figure 5-1

If you encrypt
plaintext with an
RSA private key,
you can use the
public key to
decrypt it

TE
AM
FL
Y

Team-Fly®

Pao-Chi can send this e-mail using a digital envelope (see Chapter 4),
and only Daniel can read it. But how can Daniel know that this message
really came from Pao-Chi and not someone posing as him? For all Daniel
knows, Satomi sent that message, maybe she’s trying to get four printing
presses shipped to her for free. In the paper world, you can look at the sig-
nature on a document. Generally, everyone has a unique way of writing
his or her name, a way that is supposed to be hard to forge. If Pao-Chi and
Daniel have corresponded by paper in the past, Daniel can probably spot
the difference between Pao-Chi’s signature and a fake, but with e-mail,
there’s no such signature.

Pao-Chi could encrypt the plaintext (his e-mail) using his RSA private
key, producing ciphertext. Daniel could then use Pao-Chi’s public key on
the ciphertext. If the result of that decryption were gibberish, Daniel
would know it was not encrypted using Pao-Chi’s private key and would
figure Pao-Chi did not send it (see Figure 5-2). Sure, it’s possible that the
message came from Pao-Chi and that he actually encrypted it using some
key other than his private key. But why would he do that? What would he
accomplish? No—he’s trying to prove to Daniel that he did indeed send
the e-mail and that the contents have not been altered along the way.
Daniel can safely conclude that Pao-Chi did not send that message.

139The Digital Signature

Figure 5-2

If Pao-Chi’s
public key
produces
gibberish, it
means the
ciphertext was
not encrypted
with his
private key

If, on the other hand, using Pao-Chi’s public key produces a reasonable
message, it must be that his private key was used to encrypt the plaintext.
Is it possible that someone other than Pao-Chi produced a chunk of data
that looks like ciphertext and, when “decrypted” with Pao-Chi’s public key,
produces a reasonable message (see Figure 5-3)? As far as we know, no one
has yet been able to do that. So we say there is only one way to produce

Chapter 5140

Figure 5-3

(A) Pao-Chi’s
digital signature
is encrypted
using his private
key and verified
by decrypting
with his public
key. (B) If the
plaintext is
encrypted using a
different key, can
the resulting
ciphertext be
decrypted with
Pao-Chi’s public
key? (C) Is it
possible to
perform some
operation on the
plaintext,
possibly using
Pao-Chi’s public
key as a guide,
and produce
correct
ciphertext?

the ciphertext: Start with the plaintext, and encrypt it with the private
key. Because the message was encrypted using Pao-Chi’s private key and
because we’re assuming that Pao-Chi is the only person with access to his
private key, it must have come from him. Because it must have come from
him, we can call the ciphertext a digital signature. A signature is a way of
vouching for the contents of a message—of saying, “Yes, I’m the one who
wrote it.” In addition, a digital signature lets you check that the data has
not been altered.

Digital signatures depend on two fundamental assumptions: first, that
the private key is safe and only the owner of the key has access to it, and
second, that the only way to produce a digital signature is to use the pri-
vate key. The first assumption has no technical answer except that keys
must be protected (for details, see Chapter 3). But the second assumption
can be examined from a mathematical point of view. Is it possible to show
that a signature is unique?

Figure 5-3a shows the path that data takes to become a digital signa-
ture and to be verified. Is it possible to send data on another path that
ends up at the same place? An attacker might want to start with the
plaintext, encrypt it with a key other than the true private key, and still
produce the correct ciphertext (Figure 5-3b). Or maybe the attacker would
try to perform some other operation on the plaintext (not regular RSA
encryption), possibly using the public key as a guide, and still produce the
correct ciphertext (Figure 5-3c). If that were possible, a digital signature
would not be unique. If it were not unique, it would not be possible to
claim that the owner of the private key is vouching for the plaintext.

The best that cryptographers can say is that no one knows of any such
successful attack. The literature contains phrases such as “computation-
ally infeasible,” “it is believed to be true,” and “for some classes of signa-
tures, it is possible to prove certain security properties.” But no one has
completely proven signature uniqueness for any signature scheme.
Researchers have spent countless hours trying to come up with alterna-
tive paths to break uniqueness, and no one has yet come close.

Message Digests
Because public-key crypto is slow (see Chapter 4), it’s not a good idea to
encrypt the entire plaintext. Imagine creating an e-mail message,
encrypting it using the sender’s private key, then encrypting the result

141The Digital Signature

with a session key (so that eavesdroppers cannot read it), and then
encrypting the session key with the recipient’s public key. Such a proce-
dure wouldn’t be very efficient, and performance would suffer. So instead
of encrypting the entire plaintext with the private key, the best method is
to encrypt a representative of the data.

The representative of data in cryptography is a message digest, a con-
cept we’ve mentioned in earlier chapters without defining in detail. We
said we would talk about it later, and this is finally the time to describe
the details. So for the moment, we’re going to take a detour from digital
signatures to explain message digests.

Probably the best way to begin a description of what a message digest
is would be to give two examples. Here are two messages and their asso-
ciated SHA-1 digests (SHA-1 is generally pronounced “shaw one”).

message 1:
Daniel, I sold 4 presses to Satomi. Ship immediately.

SHA-1 digest:
46 73 a5 85 89 ba 86 58 44 ac 5b e8 48 7a cd 12
63 f8 c1 5a

message 2:
Daniel, I sold 5 presses to Satomi. Ship immediately.

SHA-1 digest:
2c db 78 38 87 7e d3 1e 29 18 49 a0 61 b7 41 81
3c b6 90 7a

The first thing you notice about these digest samples is that even
though the messages are 53 bytes long (each character, including spaces
and punctuation marks, is 1 byte), the digests are only 20 bytes. The word
“digest” means to condense or to reduce and sure enough, we’ve taken a
53-character message and condensed it to 20 bytes. No matter what you
give to SHA-1, the result will be 20 bytes. Is your data 10,000 characters?
The result of SHA-1 will be 20 bytes. Do you have a 200MB message?
SHA-1 will produce a 20-byte digest. Even if your message is smaller than
20 bytes, the result of SHA-1 will be 20 bytes.

The second thing to notice about the digests is that they “look random.”
The bytes appear to be gibberish—a bunch of bits thrown together hap-
hazardly. In fact, you could test the results of digests for randomness
(recall that discussion in Chapter 2). Tests of randomness need plenty of
input, so you could digest lots of different things, string them all together,
and see what the tests say. It turns out that the product of message digests
passes tests of randomness. Of course, a digest is not truly random. If you
digest the same thing twice using the same algorithm, even on two differ-
ent computers using two different software packages (assuming they’ve

Chapter 5142

both implemented the algorithm correctly), you’ll always get the same
result. So the output of a message digest algorithm is pseudo-random. This
is why message digests are often the foundation of PRNGs and PBE.

The third thing about the digests is that even though our sample mes-
sage 2 is almost identical to message 1 (there’s really only a 1-bit differ-
ence between the two), the digests are dramatically different. That’s a
quality of a good digest algorithm: If you change the input, you change the
output. Two messages that are very similar will produce two digests that
are not even close.

So what is a message digest? It’s an algorithm that takes any length of
input and mixes the input to produce a fixed-length, pseudo-random out-
put. Another word you’ll often see used for message digest is hash. In fact,
the algorithm name SHA-1 stands for Secure Hash Algorithm. (The orig-
inal SHA was shown to be weak, so the designers improved it and called
the updated version SHA-1 or SHA1.) The word “hash” can mean a jum-
ble or hodgepodge, which aptly describes the result of a message digest.

Other properties of good digest algorithms aren’t as easy to see. First,
you can’t reconstruct the message from the digest. Here’s a suggestion.
Have a friend create a message, digest it, and give you the result. Now try
to figure out the message. If your friend used a good digest algorithm, that
won’t be possible. Sure, you could do a brute force attack by trying every
possible message, digesting it, and seeing whether it matches. If you did
that, you would eventually find it. But your friend’s message is one of a
virtually infinite number of possible messages. In Chapter 2, you saw how
long it would take to find a 128-bit value; imagine how long it would take
to find a message that could be of any possible length? For good algo-
rithms, no one has yet been able to figure out the message from only the
digest. In other words, it’s a one-way function. Remember that Chapter 4
talked about one-way functions with trap doors. A message digest has no
trap door.

Another property of a good digest algorithm is that you can’t find any
message that produces a particular digest. You’ve seen that you can’t find
the message your friend used to produce the digest, but can you find any
message that will produce the value? No one has yet come up with a
method that can find a message that will produce a given digest.

The last property is that you can’t find two messages that produce the
same digest. Here, you’re not looking for a particular digest but rather two
messages that produce the same result, whatever that result may be.
Again, with good algorithms, no one has yet been able to do that. The
brute force attack would be to digest a message, save the message and

143The Digital Signature

result in a table, digest another message, compare it to the first one, and
save the result in the table, and then digest another message, compare it
to all previously saved values, and so on. Figure 5-4 illustrates these prop-
erties with a challenge: Find the message, or any message, and produce
the given digest.

Chapter 5144

Figure 5-4

Can you find the
message we used
to produce this
digest (or any
message that will
produce it)? If so,
you will have
found a collision
in SHA-1

NOTE:
By the way, you probably already know this, but for the sake of complete-
ness, let’s say it. A “message” is not necessarily a communication between
two people. Any data you give to a digest algorithm is a message, even if
it’s not in human-readable form. Each byte of input is simply a byte of
input, whether or not the byte is an ASCII character.

Collisions

When an algorithm violates one of the last two properties discussed in the
preceding section, the result is a collision, the technical term to describe
a situation in which two messages produce the same digest. A collision
occurs when a second message produces the same digest as a previous
message, or when two messages—any two messages—produce the same
digest whatever that digest is. If two messages collide, they meet at the
digest.

Although the number of possible messages is virtually infinite, the num-
ber of possible digests is finite. With SHA-1, the number of possible digests
is 2160. Clearly, there will be many messages that produce any one digest.
To show that, let’s use the time-honored mathematical tool known as the
pigeonhole principle. Suppose you had a cabinet of pigeonholes (see Figure
5-5). Each pigeonhole corresponds to a digest. The zeroth pigeonhole is for
the digest 00 00 . . . 00, the first is for 00 00 . . . 01, and so on,
until you reach the last pigeonhole, the place for FF FF . . . FF.

Now you start digesting messages. After you digest a message, place
the message into the pigeonhole of the digest it produces. For example, the
digest of the 1-byte message 00 is

5b a9 3c 9d b0 cf f9 3f 52 b5 21 d7 42 0e 43 f6
ed a2 78 4f

So you place message 00 into pigeonhole 5B A9 . . . 4F. The digest of
message 01 is

bf 8b 45 30 d8 d2 46 dd 74 ac 53 a1 34 71 bb a1
79 41 df f7

Message 01 goes into pigeonhole BF 8B . . . F7.
Suppose you keep digesting messages, the next message being the

preceding message plus 1. The sequence of messages is 00, 01,
02, . . ., FF, 01 00, 01 01, . . ., FF FF, 01 00 00, and so
on. Suppose you did this for 2160 messages. The last message in the
sequence would be

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF

145The Digital Signature

Now suppose that each message produced a different digest. (For all we
know, there were messages that produced the same digest, but for the
sake of argument, let’s say each message produced a different digest.) You
had 2160 pigeonholes and 2160 messages, each message going into a differ-
ent pigeonhole. This means that all pigeonholes are now occupied. Now
consider Pao-Chi’s message to Daniel (ordering four presses for Satomi).
This 424-bit message is not a message you’ve already examined. So far in
this pigeonhole exercise, if you’ve operated on a message, it’s been 160 or
fewer bits. To place Pao-Chi’s message into a pigeonhole, you would place

Chapter 5146

Figure 5-5

The pigeonhole
principle says
that sooner or
later some
messages will
collide in the
same digest

it into 46 73 . . . 5a. But that pigeonhole, like all the others, is
already occupied. Which message it contains doesn’t matter; you simply
know it’s occupied. You have a collision.

Now consider that “all possible messages” includes messages of any
size.

Collisions exist, but no one can find a collision on demand (for some
digest algorithms, no one has found any collision, even by accident). The
worst possible scenario for a digest algorithm would be if someone could
take any message and produce a similar message that produces the same
digest. Figure 5-6 shows an example of that. One message mentions
$1,000,000, and the second message mentions $1,500,000. If someone
changes only the 5, the digests will not match. But what if someone could
change the 5, change a few other things here and there, maybe add a
phrase or two, and get the same digest?

147The Digital Signature

Figure 5-6

If a digest
algorithm were
predictable
enough that an
attacker could
change a message
slightly and
produce the same
digest, the
algorithm would
be broken

The Three Important Digest Algorithms

There are many digest algorithms, but three have dominated the market:
MD2, MD5, and SHA-1.

MD2

Ron Rivest created a digest algorithm and named it MD. Then he thought
he could do better and so developed the next generation, MD2. Because
MD2 produces a 128-bit (16-byte) digest, it has 2128 possible digest values.
MD2 has been widely used, but over the years, analysts found flaws with
it. Eventually, a few collisions were discovered. Nobody was able to find
collisions on demand with any arbitrary message, but certain classes of
messages produced collisions. Hence, MD2 isn’t used very much anymore
except on old certificates created before MD2 lost favor (Chapter 6
describes certificates). Most of those old certificates have probably expired
or will expire soon. No good cryptographer would recommend using MD2
in new applications.

MD5

Rivest wanted a faster digest, and when MD2 began to show weaknesses,
he also wanted one that was stronger. He started creating new digests.
MD3 was a bust, and when he showed MD4 to the world it was quickly
shown to be weak. (Despite that weakness, at least one application used
it. See “Crypto Blunders” on the accompanying CD for that story.) MD5
was more successful.

MD5, a lot faster and much stronger than MD2, became the dominant
algorithm and is still in common use. Like MD2, MD5 is a 16-byte digest.
Over the years, research has led to potential weaknesses. MD5 isn’t bro-
ken, and no one has found collisions; rather, some of the internals of the
algorithm are vulnerable. If a component or two were missing from the
algorithm, it would be broken. But because those components are there,
the algorithm survives.

Some people say that it doesn’t matter that the algorithm would be
weak if certain pieces were missing; the pieces are there, so it’s not weak.
Others say that you don’t break an algorithm all at once; you break it
piece by piece. Now that there are only a few pieces (maybe one or two)
preventing a total collapse, they argue, it would be better to move on to
another algorithm.

Chapter 5148

TE
AM
FL
Y

Team-Fly®

SHA-1

The SHA-1 algorithm looks a lot like MD5 (Ron Rivest played a role in the
design of SHA-1). SHA-1 contains stronger internals than MD5, and it
produces a longer digest (160 bits compared with 128 bits). Size alone
makes it stronger. SHA-1 has survived cryptanalysis and comes highly
recommended by the crypto community. In development are SHA-1 vari-
ants that produce 192-bit and 256-bit digests.

A Representative of Larger Data

If you’re looking for something to produce a representative of a larger
amount of data, it’s easy to see that a message digest does that job fairly
well. First, the output of a digest algorithm is usually smaller than the
data itself, and no matter how big the data gets, the digest as a represen-
tative will always be the same size. If someone tries to surreptitiously
change the original message, the new, fake message will not produce the
same digest. If the digest produced by the algorithm does not represent
the data, you know that something went wrong (see Figure 5-7). Maybe
the data has been altered, maybe the digest is wrong. You might not know
what exactly happened, but you do know something happened.

Here’s how an application can check a digest. Pao-Chi is sending Daniel
some data, such as an e-mail or a contract; for this example, it’s the mes-
sage about selling four units to Satomi. Before Pao-Chi sends the mes-
sage, he digests it. Now he sends the data and the digest. When Daniel
gets the data, he also digests it. If his digest matches Pao-Chi’s, he knows
the data has not been changed in transit. If Satomi had intercepted and
altered the message, the digest that Daniel produced would not have
matched the digest Pao-Chi produced. Daniel would know that something
happened and would not trust the data.

Your immediate response might be, “If Satomi could alter the data, she
could alter the digest.” That’s true, but there are two ways to prevent that.
One is to use a digital signature, a topic we’ll return to shortly. For now,
let’s look at the second way: a keyed digest. The most common keyed
digest is called HMAC.

HMAC

MAC stands for message authentication checksum (or message authenti-
cation code), and H stands for hash or hash-based function, so an HMAC

149The Digital Signature

Chapter 5150

Figure 5-7

If the data does
not match the
digest, you know
that something
went wrong

(pronounced “aitch mac”) is a hash-based message authentication algo-
rithm. A checksum is an algorithm that checks data by summing it. Sup-
pose you had a column of numbers (say, in an accountant’s ledger). If the
correct numbers are there, the sum of the column is a specific value. Later,
to check that the ledger is still correct, you don’t compare each number
individually; rather, you find the sum of the column. If the second sum
matches the first sum, the check passes. Of course, if someone can change
one number, it’s easy also to change the sum at the bottom of the ledger so
that it matches the change in the single number. It would also be easy to
change another number in the column to offset the first change. A MAC is
a way to detect changes in the data or in the sum. To detect changes in the
data, a MAC can be based on a digest, block cipher, or stream cipher (see
Chapter 2). To detect changes in the actual checksum, the MAC uses a key.

Most HMACs work this way. Two parties share a secret key (Chapter 4
shows how that’s done), and then each digest the key and message. The
digest depends on the message and the key, so an attacker would have to
know what the key is to alter the message and attach a correct checksum.
For example, suppose Pao-Chi sends Daniel message 1 shown earlier (the
message instructing him to ship four units to Satomi). Pao-Chi uses an
HMAC so that Daniel can verify that the data did not change. Using a key
exchange algorithm (RSA, DH, ECDH), the two agree on a 128-bit key.
Pao-Chi uses SHA-1 to digest the key and message as one chunk of data.
The result is as follows. (The two vertical lines || indicate concatenation;
see also Figure 5-8.)

Pao-Chi’s HMAC result (SHA-1 digest of key || message 1):
60 c4 65 a8 a4 9d 35 6a 68 36 f8 f0 56 3d d2 7f
7e 26 35 b2

NOTE:
We haven’t told you what the key is, so you can’t verify that the result we
present is the actual result of an HMAC. If you want to know what the
key is, you can figure it out. Put together a chunk of data—a key candi-
date followed by the message—and then digest it. Is it the same result
given here? No? Try another key, and another, and so on until you find
the correct one. It’s a 128-bit key.

Now Pao-Chi sends Daniel the message and the HMAC result together.
Suppose that Satomi intercepts the transmission and tries to get Daniel

151The Digital Signature

to ship five presses instead of four by substituting message 2 for Pao-
Chi’s. After replacing the message, she sends it to Daniel. If she failed to
replace the HMAC result, Daniel would digest the key and fake message
and get the following (see Figure 5-9).

Daniel’s HMAC result (SHA1 digest of key || message 2):
a8 32 3b 8d f3 6b 3e e1 08 bb 6b 0b f0 cc a5 5b
26 d4 d1 41

Chapter 5152

Figure 5-8

The HMAC
algorithm digests
the key and the
data (in that
order) to produce
a value

Figure 5-9

Daniel digests the
correct key but
the wrong
message, so he
knows that
something is
wrong

The digested message is not the same as Pao-Chi’s. (Daniel knows what
Pao-Chi got for an HMAC; that’s part of the message.) So Daniel knows
that what Pao-Chi digested and what he digested are not the same. Some-
thing—maybe the key, maybe the actual message, maybe even the HMAC
value—was changed. Daniel doesn’t know exactly what was changed, but
that doesn’t matter. He knows something went wrong. He contacts Pao-
Chi again, and they start over.

Another possibility is for Satomi to substitute message 2 for message 1
and substitute the HMAC. But the problem is that Satomi can’t know
what the correct HMAC value should be. To demonstrate this, suppose
Satomi substitutes six presses for four presses. Here’s the SHA-1 digest.

Daniel, I sold 6 presses to Satomi. Ship immediately.
SHA-1 digest:

66 05 40 8c 24 6e 05 f8 00 20 f4 72 14 08 bc 22
53 b2 eb d2

If Satomi substitutes this digest, Daniel will still know something is
wrong because that’s not the value he’s going to get. He’s not digesting the
message; rather, he’s digesting the key and the message. So what should
Satomi use?

Data Integrity

We’ve described a message digest as the foundation of a pseudo-random
number generator or password-based encryption, and now as a represen-
tative of a larger message. Another use for a message digest is to check
data integrity, which is the term used to describe what the HMAC does. If
you’re concerned that the information may be altered, you send the data
along with a check. If the message was altered, the check will also be dif-
ferent. Of course, you must ensure that the check value cannot be altered
to match any changes in the message.

If the check value shows no alterations, the data has been shown to
have integrity. “Integrity” is a word for honest, sound, and steadfast. When
used in relationship to data, it may seem pretentious, but it does describe
data that you can count on, at least in terms of its authenticity.

153The Digital Signature

Back to Digital Signatures
In our example, the HMAC seems to serve as a signature. Daniel can
know that the data came from Pao-Chi and that no one tampered with it
in transit. But HMAC has some shortcomings. The first is the statement,
“Daniel can know that the data came from Pao-Chi.” Maybe he can know
it came from Pao-Chi, but can anyone else? After all, to verify that the
data came from Pao-Chi, the recipient must know what the key is to cre-
ate the appropriate HMAC. Daniel knows what the shared secret key is,
but no one else does. Daniel could write a bogus message (say, setting the
number of presses to eight) and create the correct HMAC. So from anyone
else’s point of view, the message may have come from Pao-Chi or Daniel;
no one else can know for sure who “signed” it. The second drawback is that
for someone other than Pao-Chi or Daniel to verify the “signature,” the
correspondents must reveal the secret key. Now this third party has
access to the key and can also create messages that appear genuine.

Usually, HMACs are used only to verify that contents have not been
altered in transit. They are meant to be used as an on-the-fly check and
not as a permanent record. For that reason, you need another way to cre-
ate unique, verifiable signatures, and that way is to encrypt the digest
with the signer’s private RSA key.

It works like this. Pao-Chi digests the message and then encrypts the
digest with his private key. He sends Daniel the message along with the
encrypted digest, which serves as the signature. Daniel separates the two
components and digests the message he received. He has a message in his
possession and knows the digest that will produce it (he just computed it).
He must determine whether the message he now has is the same message
Pao-Chi sent. If Daniel knew what Pao-Chi computed as a digest, he could
make that determination. Well, he has Pao-Chi’s digest—it’s the signa-
ture. So Daniel uses Pao-Chi’s public key to decrypt the signature. That’s
the value Pao-Chi signed (see Figure 5-10). Is it the same answer Daniel
got? If it is, he knows that the data was not altered in transit and that
Pao-Chi is vouching for the contents.

Notice something powerful about the digital signature: Each chunk of
data has its own signature. This means that no single digital signature is
associated with an individual or key pair. Each signature is unique to the
data signed and the keys used. When an individual signs two messages
with the same key, the signatures will be different. Moreover, when two
people with different keys sign the same data, they will produce different
signatures. As a result, someone cannot take a valid signature and append

Chapter 5154

it to the bottom of a different message, something that makes it much
more difficult to forge a signature.

Think of it this way. Two people (a sender and a receiver) each have a
copy of a message. Are they really copies or was the receiver’s copy altered
in transit? To find out, they digest the two messages and compare them.
If the digests are the same, both parties know that the two versions
match. If the digests don’t match, something went wrong. How do you
know that the sender’s digest was not altered? You know that because it

155The Digital Signature

Figure 5-10

The RSA
signature

was encrypted with the sender’s private key. How do you know that it was
encrypted with the sender’s private key? You know it because the public
key decrypts it.

In addition, you can make a couple of other checks. In the real world,
there will almost certainly be some digest algorithm identifier bytes (dis-
cussed in the next paragraph) and some pad bytes in addition to the
digest. A signer will encrypt a block of data that is the padding, the digest
algorithm identifier, and the digest. That encrypted value is the signature.
Figure 5-11 shows an example. Using the appropriate public key, that sig-
nature decrypts to the padded value. The verifier checks not only for the
digest but also the pad bytes and the SHA-1 algorithm identifier. (Techni-
cally, the program the verifier runs will make these checks.) Having three
checks makes it harder to spoof.

The algorithm identifier bytes prevent an attacker from substituting an
alternative digest algorithm. Suppose that Satomi looks at Pao-Chi’s mes-
sage and its correct digest. She then finds a second message and digests it
using a different algorithm. Further suppose that this second algorithm on
the second message produces the same digest as the first algorithm on the
first message. If the signature were the encryption of the digest only, that
one signature would look as if it also came from the second algorithm. But
if you tie a signature to a digest and the algorithm, you thwart such an
attack. On the one hand, it doesn’t seem likely that someone would ever be
able to generate the same digest from a different algorithm. On the other
hand, might MD2 be broken completely someday? It doesn’t cost anything
to make the second check, so you might as well use it.

Trying to Cheat
Two people-Satomi and Pao-Chi-might try to cheat. Here’s how they can
try.

First, suppose that Satomi intercepts the message and replaces “4”
with “5.” She figures she’ll pay Pao-Chi for four units but Daniel will send
her five, and she’ll get an extra press for free. In this scheme, when Daniel
gets the e-mail, he digests it and gets the following value. (Using the same
algorithm Pao-Chi used-SHA-1-that information is part of the e-mail
although not part of the message digested.)

2c db 78 38 87 7e d3 1e 29 18 49 a0 61 b7 41 81
3c b6 90 7a

Chapter 5156

157The Digital Signature

Figure 5-11

A digested
message and the
RSA signature.
The private key
used for this
example is listed
in Chapter 4

Daniel must find out whether that value is the same one Pao-Chi got
when he digested the message he sent. To find out, Daniel uses Pao-Chi’s
public key to decrypt the signature. After decryption, he gets a chunk of
data. Does this data have the correct padding? He sees that the padding
is correct, so he just throws that away. The next bytes are the identifying
marks indicating that the algorithm is SHA-1; that’s correct. Finally, he
has the digest.

46 73 a5 85 89 ba 86 58 44 ac 5b e8 48 7a cd 12
63 f8 c1 5a

Daniel compares the digest value in the decrypted signature to his
digest value (the value he just computed from the purported message) and
sees that they are different. Something’s not right. What went wrong?
Daniel doesn’t know exactly what caused the discrepancy, but he knows
that the message he received is not the same message Pao-Chi sent.
Because Daniel doesn’t trust the message, he ignores it, asking Pao-Chi to
try again. Meanwhile, Daniel doesn’t send Satomi anything and she
doesn’t get her extra unit.

Now let’s look at Pao-Chi’s attempt at cheating. Suppose he made a
mistake and quoted Satomi a price for two units. He got paid for two but
told Daniel to ship four. He doesn’t want to take the heat for the error, so
he claims he wrote “2” instead of “4” in his e-mail. He figures he can shift
the blame to Daniel or maybe just technology—some gremlin on the Inter-
net that garbled the message.

Daniel points out that the signature attached to his e-mail matches the
message with the number of presses to ship at four. Because that’s Pao-
Chi’s signature and because each signature is unique to a message and
private key, Daniel claims that Pao-Chi vouched for the information and
can’t back out now.

To counter this, Pao-Chi could claim that the signature was forged. To
forge a signature would mean that someone was able to create a blob of
data, through other means, that was the same as a signature. This would
mean that some unknown forger had broken the RSA algorithm. That is
highly unlikely (see Chapter 4). No, Pao-Chi signed the message, and he
can’t claim otherwise.

Or Pao-Chi could try another approach, claiming that someone stole his
private key. Maybe it was protected on his hard drive using PBE, and
someone cracked his password. Maybe it was stored on a smart card or
other token, and someone broke that device or was able to log on as Pao-
Chi (possibly by breaking a password). If that really is the case, Pao-Chi

Chapter 5158

TE
AM
FL
Y

Team-Fly®

did a poor job of protecting his private key, and he will still be in trouble.
We return to this subject later in this chapter in the section “Protecting
Private Keys.”

Implementing Authentication, Data Integrity, and
Nonrepudiation

When Daniel checks to make sure that the data has come from Pao-Chi
and not someone posing as him, it’s called authentication. He authenti-
cates Pao-Chi’s identity. When Daniel examines the message to make sure
it has not been altered in transit, that’s called data integrity checking. And
when Pao-Chi can’t go back on his signature, that’s called nonrepudiation.
In addition to privacy, these are the main areas in which cryptography
benefits those who use it.

Symmetric-key encryption provides privacy in that the sensitive data
looks like gibberish to unauthorized eyes. Public-key technology solves the
key distribution problem. A message digest—either a keyed digest such as
HMAC or a digital signature—ensures data integrity in that what the
sender sends is what the receiver receives. A digital signature also offers
authentication in that the other entity in the data exchange is shown to
be the entity it claims to be and the data is verified to have come from that
entity. A digital signature also provides nonrepudiation in that a signer
cannot later disavow any knowledge of the message.

Understanding the Algorithms
You can use the RSA algorithm to sign, but Diffie-Hellman can be used
only to perform key exchange and not digital signatures. As discussed in
Chapter 4, Diffie and Hellman proposed the idea of the ultimate public
key algorithm. It would be one that could be used to encrypt data. The dig-
ital signature is the reason that such an algorithm would be the ultimate
algorithm. In an interview, Whitfield Diffie explained that when he heard
about the NSA’s secure phone system, he was less concerned with the key
exchange problem than with authentication—that is, verifying that you
are talking to the person you think you are talking to.

159The Digital Signature

At Stanford, cryptographer Taher El Gamal came up with a way to
extend DH so that it could be used to sign as well as encrypt. But his idea
never really caught on, possibly because RSA existed, and possibly
because David Kravitz invented a digital signature algorithm for the U.S.
government, and with the backing of an entity as powerful as the U.S. gov-
ernment, his algorithm became popular. Kravitz (or someone in the U.S.
government) gave the new algorithm the lyrical name “Digital Signature
Algorithm,” known to this day as DSA. Like DH, DSA is based on the dis-
crete log problem. It became the official U.S. government signature algo-
rithm and probably is second only to RSA in use today. Kravitz was
working for the NSA when he developed DSA, and it is based on work by
El Gamal and Claus Schnorr, another cryptographer.

Finally, just as elliptic curve math can be adapted to solve the key dis-
tribution problem, it can be adapted to create signatures. There are a
number of possibilities, but the most common way to use ECC to create
signatures is called ECDSA. This approach does essentially the same
thing as DSA but with elliptic curves.

NOTE:
Kravitz received a patent for DSA, but the U.S. government owns it
because the inventor was working for the NSA at the time. The patent is
in the public domain and can be used freely. Claus Schnorr invented a
signature algorithm that is very similar to DSA. His patent on that algo-
rithm predates Kravitz’s. If you want the whole story, consult a patent
attorney.

Many signature algorithms have been proposed over the years, but only
RSA, DSA, and ECDSA have shown any long-lasting success in finding
adopters. Let’s look at these three algorithms in more detail.

RSA

We show RSA in detail in Chapter 4. It’s the algorithm that is used to
encrypt a digest with a private key to produce a digital signature. To forge
an RSA signature, someone must find the private key. Lacking a private
key, no one has been able to produce a chunk of data, call it a digital sig-
nature, and have it be verified.

Chapter 5160

DSA

To this point, we’ve described a digital signature as the private-key
encryption of a digest. Now we come to DSA, which does not encrypt data.
Although DSA uses the digest of the data, it does not encrypt the digest.
Your first thought is likely to be, “If it can’t encrypt data, how can it pro-
duce a digital signature?” Remember that DH cannot be used to encrypt
data but can be used to solve the key distribution problem. Similarly, even
though DSA cannot be used to encrypt data, it can be used to create a dig-
ital signature. A digital signature is a chunk of data that comes from the
message and the private key. Only that particular message coupled with
that particular private key will produce that particular signature. If you
accomplish that by encrypting the digest, great. If you accomplish that in
some other way, that’s fine, too.

With DSA, the signer digests the message with SHA-1 and treats that
digest as a number (it’s a big number: 160 bits long). Another number sent
to the algorithm is a random or pseudo-random value, usually called k.
The last input is the private key. The algorithm then performs some math-
ematical operations, one of which is modular exponentiation, the same
function at the heart of DH and RSA. The output is two numbers, usually
called r and s. These two numbers are the signature.

The verifier computes the SHA-1 digest of the message. Is it the same
digest that the signer produced? The verifier does not have that digest
available but does have r and s. Using the digest as a number, along with
the public key and the s, the verifier performs some mathematical opera-
tions. The result of the computations is a number called v. If v is the same
as r, the signature is verified (see Figure 5-12).

At its most basic, DSA computes the same number in two different
ways. In Diffie-Hellman, two parties can generate the same secret value
even though each one is using different input. The same thing is happen-
ing here with DSA. Two parties produce the same number using different
input. The two sets of input are related. Well, they should be related; if
something breaks down, the final answers will differ.

Each side has three inputs. The signer has the digest, k, and the private
key. The verifier has the digest, s, and the public key. The digests are
related; they should be the same thing. If that relationship breaks down-
say, the signed data is not the same as the data being verified and the two
parties produce different digests—the final answer from each individual
will differ. The k and s are related (they’re not the same number, but
they’re related). If the signature is wrong, the s will be wrong and the two

161The Digital Signature

Chapter 5162

Figure 5-12

Producing and
verifying a DSA
signature

players will produce different final answers. The private key and the pub-
lic key are also related; they are partners related mathematically. If that
relationship is not there—if the public key used to verify is not the part-
ner to the private key used to sign—the two agents will produce different
final answers.

The security of DSA lies in the discrete log problem, the same problem
that gives DH its security. So the size of DSA keys will be the same as that
of DH keys. As always, you can find more detailed information in the RSA
Labs FAQ on the accompanying CD.

ECDSA

This algorithm looks a lot like DSA. The signer has three inputs: the
digest, k, and the private key. The output is r and s. The verifier has the
digest, s, and the public key. The output is v. If v and r are the same, the
signature is verified; if they’re not the same, something went wrong. What
went wrong? Was it the wrong digest? The wrong public key? Was the sig-
nature mangled in transmission? You probably can’t know exactly what
happened, but you do know that something went wrong. The math under-
lying ECDSA is elliptic curves, so key size is the same as with ECDH.

Comparing the Algorithms
Of the three algorithms that produce digital signatures, which one is
the best? As we say in Chapter 4 regarding the key distribution prob-
lem, there’s probably no single answer to that question. Each has its
advantages and disadvantages. A more appropriate question might be,
“Which algorithm works best in which situation?” Remember that all
three of them are in use today because different problems call for dif-
ferent solutions.

Security

Everything we say in Chapter 4 on the security of the three algorithms
applies here as well (the security of Diffie-Hellman and DSA are pretty

163The Digital Signature

much the same). There’s no objective answer to the question of which algo-
rithm is the most secure. It depends on what each individual feels is
important.

One other factor with digital signatures, though, may be the concept of
message recovery. With RSA, a signature verification recovers the message,
but with DSA and ECDSA, a signature verification simply compares two
numbers. Technically, RSA recovers the digest of the message instead of
the message itself; that’s really one level of indirection. DSA and ECDSA
find a number based on the digest; that’s two levels of indirection. Earlier
in this chapter in “The Uniqueness of a Digital Signature,” we mention
that the crypto literature on digital signatures contains statements such
as, “For some classes of signatures it is possible to prove certain security
properties.” Message recovery is one of those security properties. When you
perform an RSA verification operation, you get to see what the signer pro-
duced; you recover the message digest because you’re decrypting it. With
DSA and ECDSA, you don’t see what the signer produced. Instead, you
generate a number, and if that number is equal to another number, you fig-
ure you produced the same thing that the signer produced.

Think of it this way. DSA and ECDSA produce surrogate numbers, let’s
call them the signer’s surrogate and the verifier’s surrogate. If the two
numbers match, the signature is verified. With RSA, there is no surrogate;
the verifier actually compares the signer’s value.

Because DSA and ECDSA compare surrogates and not originals, it
opens an avenue of attack not possible with RSA. An attacker could try to
produce the appropriate surrogate number without the correct original
key or data. That is, an attacker does not have to find a digest collision to
substitute messages, but can try to find a DSA collision. But before you
think that makes RSA much stronger than the other two, remember that
no one has been able to create such an attack or even to come close. Still,
although the probability of such an attack on DSA or ECDSA is extremely
low, it’s lower still with RSA.

Performance

In Chapter 4, you saw that no algorithm wins the performance race
hands-down. Of the several factors, each algorithm compares favorably
with the others in one way but unfavorably in another. The same is true
with signatures. RSA performance does not change, but DSA and ECDSA
are slightly more time-consuming than their DH counterparts.

Chapter 5164

If you want a faster signature scheme, you should go with ECC. But
often, making a connection means that each party has to do two or more
verifications; each one must verify a signature and then verify one or
more certificates (Chapter 6 talks about certificates). If you have a fast
signer (a server, for example) but a slow verifier (a hand-held device or
smart card for example), you may get bogged down in verification. Again,
each application may have different needs, and even though one algo-
rithm may satisfy one application’s needs better than another algorithm,
the next application may find a different algorithm more suitable.

Table 5-1 shows some performance comparisons. The numbers are rel-
ative; if RSA public-key operations (such as verification) take one unit of
time (whatever that unit may be) on a particular machine, the other oper-
ations will take the amounts of time shown.

165The Digital Signature

Transmission Size

DSA and ECDSA signatures are about 340 bits, regardless of key size. An
RSA signature is the same size as the key. So if you use a 1,024-bit RSA
key pair, each time you send a digital signature you add 1,024 bits to the
message. Again, if transmission size is important, you may want to look at
DSA or ECDSA.

Interoperability

The story’s the same with signatures as with key distribution. RSA is
almost ubiquitous and has become the de facto standard. DSA was pro-
moted by the U.S. government and has become a part of most crypto-
graphic packages. So if you sign using RSA or DSA, other parties will

RSA DSA ECC ECC with Acceleration

Private key (sign) 13 17 7 2

Public key (verify) 1 33 19

Combined 14 50 26 21

Table 5-1

Estimated
Relative
Performance of
the Public-Key
Algorithms (in
Relative Time
Units)

almost certainly be able to verify it, whether or not they use the same
application you do. ECC is less prevalent.

Protecting Private Keys
Chapter 3 shows how to protect symmetric keys, and Chapter 4 explains
that you protect a private key in a similar way. Tokens such as smart
cards add a dimension to protection, but for the most part, the way you
protect one key is the way you protect any key. Many protocols (discussed
in Chapters 7 and 8) require that you have two keys: a digital envelope (or
key exchange key) and a separate signing key. So you’ll likely have to pro-
tect two private keys.

But if you lose your private key, there are ways to revoke, or cancel, the
public key affiliated with it. If Pao-Chi claims that someone obtained his
private key and is signing under his name, he can have his public key
revoked. After the effective date of the revocation, any signatures verified
with Pao-Chi’s public key are invalid because the public key is invalid.
Now Pao-Chi has to generate a new key pair, this time protecting the pri-
vate key more diligently. Chapter 6 talks about revoking keys.

For now, note that if attackers steal your signing key, they can do a lot
more damage than if they steal other types of keys because your signing
key lets them pose as you. By stealing your digital envelope or key
exchange private key, attackers can get at secrets, but they cannot act on
your behalf. If you don’t protect your signing key or don’t protect it well
enough, you’re making yourself much more vulnerable.

Introduction to Certificates
Throughout Chapters 4 and 5, we’ve talked about other individuals using
someone else’s public key. To send a secure message to Gwen, Pao-Chi
found her public key and created a digital envelope. To verify Pao-Chi’s
message, Daniel acquired Pao-Chi’s public key and verified the digital sig-
nature. But how can anyone truly know whether a public key belongs to
the purported individual?

Pao-Chi has in his possession a public key, which is purportedly
Gwen’s. The key works; he is able to create a digital envelope. But what if

Chapter 5166

Satomi somehow substituted her public key for Gwen’s? While Pao-Chi
was out to lunch, Satomi may have broken into his laptop, found a file
called “Gwen’s public key” and edited it so that this file contained her pub-
lic key, not Gwen’s. Then when Pao-Chi sends the digital envelope, Satomi
will be able to intercept and read it. Gwen won’t be able to open it because
she does not have access to the private key partner to the public key used.

Suppose the company Pao-Chi and Daniel work for has a centralized
directory where everyone’s public key is stored. When Daniel wants to ver-
ify Pao-Chi’s signature, he goes to the directory and find’s Pao-Chi’s key.
But what if Satomi broke into that directory and replaced Pao-Chi’s pub-
lic key with hers? Now she can send a fake message to Daniel with a valid
digital signature. Daniel will think it came from Pao-Chi because he ver-
ifies the signature against what he thinks is Pao-Chi’s public key.

The most common way to know whether or not a public key does belong
to the purported entity is through a digital certificate. A digital certificate
binds a name to a public key. An analogy would be a passport, which binds
a photo to a name and number. A passport is supposed to be produced in
such a way that it is detectable if someone takes an existing passport and
replaces the true photo with an imposter’s photo. It may be a valid pass-
port, but not for the person in the photo. Immigration officials will not
honor that passport.

A digital certificate is produced in such a way that it is detectable if
someone takes an existing certificate and replaces the public key or name
with an imposter’s. Anyone examining that certificate will know that
something is wrong. Maybe the name or public key is wrong , so you don’t
trust that name/key pair combination.

Here’s how it works. Take a name and public key. Consider those two
things to be a message, and sign the message. The certificate is the name,
public key, and signature (see Figure 5-13). The only thing left to deter-
mine is who will sign the certificate. Signing is almost always done by a
certificate authority, also known as a CA. More on that later.

Gwen originally generated her key pair, protected the private key, and
contacted her CA requesting a certificate. Depending on the CA’s policy,
Gwen may be required to show up in person. The CA verifies Gwen is who
she claims to be by examining her passport, driver’s license, company ID
badge, or whatever method the CA uses to determine identity. Then Gwen
uses her private key to sign something (the certificate request, probably).
In that way, the CA knows that Gwen does indeed have access to the pri-
vate key partner to the public key presented, and that the public key has
not been replaced. The CA combines Gwen’s name and public key into a

167The Digital Signature

message and signs that message using its private key. Gwen now has a
certificate and distributes it. So when Pao-Chi collects Gwen’s public key,
what he’s really collecting is her certificate.

Now suppose Satomi tries to replace Gwen’s public key with her own.
She finds the file on Pao-Chi’s laptop holding Gwen’s public key and sub-
stitutes the keys. But when Pao-Chi loads the key, he’s not loading just the
key, he’s loading the certificate. He can extract the public key from the cer-
tificate if he wants, but before he does that, he verifies that the certificate
is valid using the CA’s public key. Because the message has been altered,
the signature does not verify and Pao-Chi does not trust that public key.
Therefore, he will not create a digital envelope using that public key, and
Satomi will not be able to read any private communications.

Of course, that scenario assumes that Pao-Chi has the CA’s public key
and that he can trust no one has replaced it with an imposter’s. Because
he can extract it from the CA’s certificate, Pao-Chi knows he has the true
CA public key. Just as Gwen’s public key can be wrapped in a certificate,
so can the CA’s. Who signed the CA’s certificate? Probably another CA.
This could go on forever.

Chapter 5168

Figure 5-13

A certificate is
the name, public
key and signature

TE
AM
FL
Y

Team-Fly®

But it has to stop somewhere and that somewhere is the root. A root
will sign a CA’s certificate, and the root key is distributed outside the cer-
tificate hierarchy. Maybe the root is built into software; maybe Pao-Chi
will have to enter it himself. Of course, if Satomi is able to substitute the
root public key with one of her own, she can subvert the whole system. So
Pao-Chi needs to protect the root key as he does his symmetric key and his
own private keys.

Key Recovery
As discussed in Chapter 4, it’s possible to set up a scheme to restore keys
that someone loses by forgetting a password or losing a token. However,
it’s probably not a good idea to apply a key recovery plan to signing keys.
If a signing key can be obtained by someone other than the owner (even if
that is a trusted third party or a committee of trustees), that would make
it possible to nullify nonrepudiation. Anyway, if someone loses a signing
key, it’s no great problem; any existing signatures are still valid because
only the public key is needed to verify. For new signatures, you simply
generate a new key pair and distribute the new public key. For this rea-
son, many protocols specify that participants have separate signing and
key exchange keys. As you will see in Chapters 6 and 7, it is possible to
define a key as signing only or key encrypting (with the RSA digital enve-
lope) or as key exchange only (with the Diffie-Hellman protocol).

Summary
To verify that a message came from the purported sender, you can use
public-key cryptography. A private key is used to sign the data, and the
public key is used to verify it. The only known way to produce a valid sig-
nature is to use the private key. Also, a signature is unique to a message;
each message and private key combination will produce a different signa-
ture. So if a public key verifies a message, it must be that the associated
private key signed that message. Three main algorithms are used as sig-
nature schemes: RSA, DSA, and ECDSA. Each algorithm has its advan-
tages and disadvantages, and it’s not really possible to say that one or the

169The Digital Signature

other is better. Each algorithm may be better suited for different applica-
tions.

For performance reasons, you don’t sign the data but rather sign a rep-
resentative of the data called a message digest. Also known as a hash, a
message digest is the foundation of most PRNGs and PBE implementa-
tions. A keyed digest, such as HMAC, is also used to check data integrity.

Real-World Example
As discussed in Chapter 4, S/MIME uses public-key cryptography to solve
the key distribution problem. As you’ve probably already surmised,
S/MIME uses digital signatures as well. To implement a digital signature,
follow these steps. First, launch Netscape Navigator, click the Security
button, and then click Messenger (along the left-hand side of the security
window). In Chapter 4, you saw the Encrypt choice checked. Notice the
two Sign choices as well. If you select these menu items, when you send e-
mail or post to newsgroups your message will be signed using your private
key.

Before you can sign, you need a key pair. The browser has a module
that generates a key pair for you, or, if you have a token (such as a smart
card), you can specify that it be used to generate the key pair and store the
private key. In the security window, click Yours under Certificates. The
resulting window displays a button labeled Get A Certificate. This is the
starting point for generating a key pair and getting a certificate. (Chapter
6 discusses certificates.)

With Microsoft Outlook, click Tools and then Options. In the resulting
window, click the Security tab. You saw the Encrypt choice in Chapter 4.
Here, notice the Sign option. Again, you need a key pair and a certificate.
Start the process by clicking the Get A Digital ID button at the bottom of
the window.

Chapter 5170

Public-Key
Infrastructures and the

X.509 Standard

As you learned in Chapter 4, public-key cryptography gives you not only a
powerful mechanism for encryption but also a way to identify and authen-
ticate other individuals and devices. Before you can use this technology
effectively, however, you must deal with one drawback. Just as with sym-
metric-key cryptography, key management and distribution are an issue
with public-key crypto. Instead of confidentiality, the paramount issue for
public-key crypto is the integrity and ownership of a public key.

For end users and relying parties (relying parties are those who verify
the authenticity of an end user’s certificate) to use this technology, they
must provide their public keys to one another. The problem is that, like
any other data, a public key is susceptible to manipulation while it is in
transit. If an unknown third party can substitute a different public key for
the valid one, the attacker could forge digital signatures and allow
encrypted messages to be disclosed to unintended parties. That’s why it’s
crucial to assure users that the key is authentic and that it came from (or
was received by) the intended party.

Within a small population of trusted users, this task is not very diffi-
cult. An end user could distribute the public key by simply hand-deliver-
ing it on disk to a recipient, an approach known as manual public-key

CHAPTER 6

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

distribution. For larger groups of individuals, however, this task is much
more difficult, especially when the people are geographically dispersed.
Manual distribution becomes impractical and leaves room for security
holes. For that reason, a better solution has been developed: public-key
certificates. Public-key certificates provide a systematic, scalable, uni-
form, and easily controllable approach to public-key distribution.

A public-key certificate (PKC) is a tamperproof set of data that attests
to the binding of a public key to an end user. To provide this binding, a set
of trusted third parties vouches for the user’s identity. The third parties,
called certification authorities (CAs), issue certificates to the user that
contain the user’s name, public key, and other identifying information.
Digitally signed by the CA, these certificates can now be transferred and
stored.

This chapter covers the necessary technology needed to understand
and use a public-key infrastructure (PKI). First, we describe the X.509
standard and the structure of an X.509 public-key certificate. Then we
explain how the PKI components work as a collaborative process to let
you create, distribute, manage, and revoke certificates.

Public-Key Certificates
Public-key certificates are a secure means of distributing public keys to
relying parties within a network. In many ways, PKCs are analogous to a
driver’s license. Both a driver’s license and a PKC are certified by a
trusted third party, which affirms the user’s identity and privileges. In its
most basic form, a certificate contains a public key, the identity of the indi-
vidual it belongs to, and the name of the party that is attesting to the
validity of these facts.

Various certificates are in use. Some of them, such as Pretty Good Pri-
vacy (PGP), are proprietary. Other popular certificates are application-
specific, such as SET and Internet Protocol Security (IPSec) certificates.
The most widely accepted certificate format is the International Telecom-
munication Union’s X.509 Version 3. The original X.509 standard was
published in 1988 as part of the X.500 directory recommendations. Since
then, it has been revised twice—in 1993 and again in 1995. RFC2459, a
profile for the X.509 standard, was published in 1999 by the Internet Engi-
neering Task Force (IETF). Although RFC2459 is targeted to the Internet
community, a number of its useful components can be applied in an enter-

Chapter 6172

prise environment. Therefore, we provide references to some of its recom-
mendations where appropriate. Figure 6-1 illustrates the structure of an
X.509 certificate.

173Public-Key Infrastructures and the X.509 Standard

Version

Certificate Serial Number

Signature Algorithm Identifier

Issuer Name

Validity (Not Before/Not After)

Subject Name

Subject Public Key Information

Issuer Unique Identifier

Subject Unique Identifier

Extensions

Signature All
Versions

V.1

V.2
V.3

Figure 6-1

X.509 certificate
structure

All versions of X.509 certificates contain the following fields:

� Version This field differentiates among successive versions of the
certificate, such as Version 1, Version 2, and Version 3. The Version
field also allows for possible future versions.

� Certificate Serial Number This field contains an integer value
unique to each certificate; it is generated by the CA.

� Signature Algorithm Identifier This field indicates the identifier
of the algorithm used to sign the certificate along with any associated
parameters.

� Issuer Name This field identifies the distinguished name (DN) of
the CA that created and signed this certificate.

� Validity (Not Before/After) This field contains two date/time
values—Not Valid Before and Not Valid After—which define the
period that this certificate can be considered valid unless otherwise
revoked. The entry can use the following formats: UTC time
(yymmddhhmmssz) or generalized time (yyyymmddhhmmssz).

� Subject Name This field identifies the DN of the end entity to
whom this certificate refers, that is, the subject who holds the
corresponding private key. This field must have an entry unless an
alternative name is used in the Version 3 extensions.

� Subject Public Key Information This field contains the value of
the subject’s public key as well as the algorithm identifier and any
associated parameters of the algorithm for which this key is used.
This field must always have an entry.

Unique Identifiers

Version 2 and 3 certificates may contain unique identifiers that pertain to
the subject and issuer. These fields are designed to handle the possibility
of reuse of these names over time. RFC2459 recommends that names not
be reused for different entities and that Internet certificates not use
unique identifiers. This means that CAs conforming to this profile should
not generate certificates with unique identifiers. Nevertheless, applica-
tions conforming to this profile should be capable of parsing unique iden-
tifiers and making comparisons.

� Issuer Unique Identifier This optional field contains a unique
identifier that is used to render unambiguous the X.500 name of the
CA in cases when the same name has been reused by different
entities over time. This field can be used only in Version 2 and
Version 3 certificates, and its use is not recommended according to
RFC2459.

� Subject Unique Identifier This optional field contains a unique
identifier that is used to render unambiguous the X.500 name of the
certificate owner when the same name has been reused by different
entities over time. This field can be used only in Version 2 and Version
3 certificates, and its use is not recommended according to RFC2459.

Chapter 6174

Standard Version 3 Certificate Extensions

After the release of Version 2, it was apparent that the certificate profile
still contained deficiencies. For this reason, a set of extensions was created
to append to the Version 3 format of the certificate. These extensions cover
key and policy information, subject and issuer attributes, and certification
path constraints.

The information contained in extension fields can be marked as either
critical or noncritical. An extension field has three parts: extension type,
extension criticality, and extension value. The extension criticality tells a
certificate-using application whether it can ignore an extension type. If
this extension is set to critical and the application does not recognize the
extension type, the application should reject the certificate. On the other
hand, if the extension criticality is set to noncritical and the application
does not recognize the extension type, it is safe for the application to
ignore the extension and to use the certificate.

The following standard certificate extension fields are available only in
Version 3 certificates:

� Authority Key Identifier This extension is used to differentiate
between multiple certificate signing keys of the same CA. The CA
provides a unique key identifier or provides a pointer to another
certificate, which can certify the issuer’s key. The RFC2459 mandates
the use of this field for any certificate that is not self-signed.

� Subject Key Identifier This extension is used to differentiate
between multiple certificate signing keys of the same certificate
owner. The owner provides a unique key identifier or provides a
pointer to another certificate that can certify the issuer’s key.
RFC2459 mandates the use of this field for any CA signing certificate
and also recommends it for end entities.

� Key Usage This extension is used to define restrictions on the
operations that can be performed by the public key within this
certificate. Such operations include digital signature, certificate
signing, certificate revocation list (CRL) signing, key enciphering, data
enciphering, and Diffie-Hellman key agreement. This field can also be
flagged as critical or noncritical. If it is flagged critical, it can be used
only for its intended use; otherwise, it will be considered in violation
of the CA’s policy. RFC2459 recommends a flag of critical when this
field is used.

175Public-Key Infrastructures and the X.509 Standard

� Extended Key Usage This extension can be used in addition to or
in place of the Key Usage extension to define one or more uses of the
public key that is certified within this certificate. This extension
enables the certificate to interoperate with various protocols and
applications (such as, Transport Layer Security [TLS] server
authentication, client authentication, time stamping, and others).
RFC2459 states that this field may be flagged critical or noncritical.

� CRL Distribution Point This extension indicates a uniform
resource identifier (URI) to locate the CRL structure where revocation
information associated with this certificate resides. RFC2459
recommends that this field be flagged noncritical, although it
also recommends that CAs and applications support this extension.

� Private Key Usage Period Similar to the Validity field of the
certificate, this extension indicates the time frame of use for the
private key associated with the public key in this certificate. In the
absence of this extension, the validity period of use for the private key
is that of the associated public key. RFC2459 recommends against the
use of this extension.

� Certificate Policies This extension identifies the policies and
optional qualifier information that the CA associates with the
certificate. If this extension is marked critical, the processing
application must adhere to at least one of the policies indicated, or
the certificate is not to be used. To promote interoperability, RFC2459
recommends against the use of policy identifiers, but it does specify
two possible qualifiers: the certification practice statement (CPS)
qualifier and the user notice qualifier. The CPS qualifier contains a
pointer to a CPS that applies to this certificate. The notice reference
qualifier can be made up of a notice reference or an explicit notice (or
both), which can in turn provide a text message of the policy required
for this certificate.

� Policy Mappings This extension is used only when the subject of
the certificate is also a CA. It indicates one or more policy object
identifiers (OIDs) within the issuing CA’s domain that are considered
to be equivalent to another policy within the subject CA’s domain.

� Subject Alternative Name This extension indicates one or more
alternative name forms associated with the owner of this certificate.
Use of this field enables support within various applications that
employ their own name forms, such as various e-mail products,
electronic data interchange (EDI), and IPSec. RFC2459 specifies that

Chapter 6176

if no DN is specified in the subject field of a certificate, it must have
one or more alternative names and this extension must be flagged
critical.

� Issuer Alternative Name This extension indicates one or more
alternative name forms associated with the issuer of this certificate.
As with the Subject Alternative Name extension, use of this field
enables support within various applications.

� Subject Directory Attributes This extension can be used to
convey any X.500 directory attribute values for the subject of this
certificate. It provides additional identifying information about the
subject that is not conveyed in the name fields (that is, the subject’s
phone number or position within a company). RFC2459 recommends
against the use of this extension at this time. However, if it is used,
RFC2459 mandates the use of a noncritical flag to maintain
interoperability.

� Basic Constraints This extension indicates whether the subject
may act as a CA, providing a way to restrict end users from acting as
CAs. If this field is present, a certification path length may also be
specified. The certification path length limits the certifying powers of
the new authority (for example, whether Verisign could allow RSA
Inc. to act as a CA but at the same time not allow RSA Inc. to create
new CAs). RFC2459 mandates that this extension be present and
marked critical for all CA certificates.

� Name Constraints This extension, to be used only within CA
certificates, specifies the namespace within which all subject names
must be located for any subsequent certificate that is part of this
certificate path. RFC2459 mandates that this extension be marked
critical.

� Policy Constraints This extension, to be used only within CA
certificates, specifies policy path validation by requiring policy
identifiers or prohibiting policy mappings (or both). RFC2459 simply
states that this extension may be marked critical or noncritical.

Entity Names

In a public-key certificate, entity names for both the issuer and the sub-
ject must be unique. Version 1 and 2 certificates use the X.500 DN nam-
ing convention.

177Public-Key Infrastructures and the X.509 Standard

Distinguished names were originally intended to identify entities
within an X.500 directory tree. A relative distinguished name (RDN) is the
path from one node to a subordinate node. The entire DN traverses a path
from the root of the tree to an end node that represents a particular entity.
A goal of the directory is to provide an infrastructure to uniquely name
every communications entity everywhere (hence the “distinguished” in
“distinguished name”). As a result of the directory’s goals, names in X.509
certificates are perhaps more complex than one might like (compared
with, for example, e-mail addresses). Nevertheless, for business applica-
tions, DNs are worth the complexity because they are closely coupled with
legal name registration procedures, something not offered by simple
names such as e-mail addresses. A distinguished name is composed of one
or more RDNs, and each RDN is composed of one or more attribute-value
assertions (AVAs). Each AVA consists of an attribute identifier and its cor-
responding value information, for example, “CountryName � US” or
“CommonName � Jeff Hamilton”.

X.509 Version 3 certificates grant greater flexibility with names, no
longer restricting us solely to X.500 name forms. Entities can be identified
by one or more names using various name forms. The following name
forms are recognized by the X.509 standard:

� Internet e-mail address

� Internet domain name (any official DNS name)

� X.400 e-mail address

� X.500 directory name

� EDI party name

� Web URI, of which a uniform resource locator (URL) is a subtype

� Internet IP address (for use in associating public-key pairs with
Internet connection endpoints).

Alternative names provide more flexibility to relying parties and appli-
cations that may not have any connections to the end user’s X.500 direc-
tory. For example, a standard e-mail application could use a certificate
that provides not only an X.500 name form but also a standard e-mail
address.

Chapter 6178

TE
AM
FL
Y

Team-Fly®

ASN.1 Notation and Encoding

Most encrypted data ends up being transferred to other entities, so it is
crucial that the data follow a standard format, syntax, and encoding so
that it makes sense to other users or applications. We’ve talked about how
the X.509 standard provides such a format. In this section we explain the
X.509 rules for data syntax and encoding.

The syntax for all certificates that conform to the X.509 standard are
expressed using a special notation known as Abstract Syntax Notation 1
(ASN.1), which was originally created by Open Systems Interconnection
(OSI) for use with various X.500 protocols. ASN.1 describes the syntax for
various data structures, providing well-defined primitive objects as well
as a means to define complex combinations of those primitives.

ASN.1 has two sets of rules that govern encoding. Basic Encoding Rules
(BER, defined in X.690) are a way of representing ASN.1-specified objects
as strings of 1’s and 0’s. Distinguished Encoding Rules (DER), a subset of
BER, provide a means to uniquely encode each ASN.1 value.

NOTE:
For more information about these rules, see Appendix B, which includes a
copy of RSA Laboratories’ “A Layman’s Guide to a Subset of ASN.1, BER,
and DER.”

The Components of a PKI
As we’ve mentioned, CAs serve as trusted third parties to bind an indi-
vidual’s identity to his or her public key. CAs issue certificates that con-
tain the user’s name, public key, and other identifying information. Signed
by the CA, these certificates are stored in public directories and can be
retrieved to verify signatures or encrypt documents. A public-key infra-
structure involves a collaborative process between several entities: the
CA, a registration authority (RA), a certificate repository, a key recovery
server, and the end user. In this section we discuss each of these compo-
nents in detail.

179Public-Key Infrastructures and the X.509 Standard

Certification Authority

If we think of a certificate as being similar to a driver’s license, the CA
operates as a kind of licensing bureau analogous to a state’s Department
of Motor Vehicles or similar agency. In a PKI, a CA issues, manages, and
revokes certificates for a community of end users. The CA takes on the
tasks of authenticating its end users and then digitally signing the cer-
tificate information before disseminating it. The CA is ultimately respon-
sible for the authenticity of its end users.

In providing these services, the CA must provide its own public key to
all the certified end users as well as all relying parties who may use the
certified information. Like end users, the CA provides its public key in the
form of a digitally signed certificate. However, the CA’s certificate is
slightly different in that the Subject and Issuer fields contain the same
information. Thus, CA certificates are considered self-signed.

CAs fall into to two categories: public and private. Public CAs operate
via the Internet, providing certification services to the general public.
These CAs certify not only users but also organizations. Private CAs, on
the other hand, are usually found within a corporation or other closed net-
work. These CAs tend to license only to end users within their own popu-
lation, providing their network with stronger authentication and access
controls.

Registration Authority

Although an RA can be considered an extended component of a PKI,
administrators are discovering that it is a necessity. As the number of end
entities increases within a given PKI community, so does the workload
placed on a CA. An RA can serve as an intermediate entity between the CA
and its end users, assisting the CA in its day-to-day certificate-processing
functions.

An RA commonly provides these functions:

� Accepting and verifying registration information about new registers

� Generating keys on behalf of end users

� Accepting and authorizing requests for key backup and recovery

� Accepting and authorizing requests for certificate revocation

� Distributing or recovering hardware devices, such as tokens, as
needed

Chapter 6180

RAs are also commonly used for the convenience of end users. As the
number of end users increases within a PKI domain, it’s likely that they
will become more geographically dispersed. CAs can delegate the author-
ity to accept registration information to a local RA. In this way, the CA can
be operated as an offline entity, making it less susceptible to attacks by
outsiders.

Certificate Directory

After a certificate is generated, it must be stored for later use. To relieve
end users of the need to store the certificate on local machines, CAs often
use a certificate directory, or central storage location. An important com-
ponent of a PKI, a certificate directory provides a single point for certifi-
cate administration and distribution. There is no one required directory
standard. Lotus Notes and Microsoft Exchange use proprietary directo-
ries, and directories based on the X.500 standard are also gaining popu-
larity.

X.500 directories are becoming more widely accepted because in addi-
tion to acting as a certificate repository, they give administrators a central
location for entry of personal attribute information. Entries might include
network resources such as file servers, printers, and URLs. User informa-
tion, such as e-mail address, telephone privileges, and certificates, is
accessible from numerous clients in a controlled fashion. Directory clients
can locate entries and their attributes using a directory access protocol
such as Lightweight Directory Access Protocol (LDAP).

LDAP, defined by RFCs 1777 and 1778, was designed to give applica-
tions a means to access X.500 directories. It has been widely adopted
because it is simpler and easier to use than the X.500 standard protocols.
Because it is not directory-specific, LDAP has also found its way into var-
ious environments, enhancing its interoperability.

NOTE:
Because of the self-verifying nature of certificates, certificate directories
themselves do not necessarily have to be trusted. Should a directory be
compromised, certificates can still be validated through the standard
process of checking the certificate chain through the CA. If the directory
server contains personal or corporate data, however, it may be necessary
to provide security and access control to it.

181Public-Key Infrastructures and the X.509 Standard

Key Recovery Server

In a PKI population of any size, one thing is sure to happen: End users
will lose their private keys. Whether the loss results from hardware fail-
ure or a forgotten password, it can create a significant burden on all par-
ties in the PKI. With the loss of a private key, for example, the CA must
revoke the corresponding PKC; in addition, a new key pair must be gen-
erated, and a new corresponding PKC must be created. As a result, all
data encrypted before the incident becomes unrecoverable.

One solution is to provide a key recovery server (or, more accurately, a
key backup and recovery server). As the name implies, the key recovery
server gives the CA a simple way of backing up private keys at the time
of creation and recovering them later.

Although key recovery servers can save considerable time and money,
problems can arise. For example, the key used to decrypt data could be the
same key used to sign messages (that is, the user’s private key). In this
case, an attacker could access the user’s private key and forge messages in
the user’s name. For that reason, some CAs support two key pairs: one for
encryption and decryption and another one for signature and verification.
We discuss the storage of multiple key pairs later in this chapter in the
section titled “Managing Multiple Key Pairs.”

NOTE:
The term “escrow” is sometimes used interchangeably with “recovery.”
There is, however, a clear distinction between the two. A key recovery
server is implemented in a given PKI by its administrators to provide
recovery functions for end users. In key escrow, on the other hand, a third
party (such as a federal or local law enforcement agency) is given keys
needed as evidence in an investigation.

Management Protocols

Management protocols assist in the online communication between end
users and management within a PKI. For example, a management proto-
col might be used to communicate between an RA and an end user or
between two CAs that cross-certify each other. Examples of PKI manage-
ment protocols include Certificate Management Protocol (CMP) and mes-

Chapter 6182

sage formats such as Certificate Management Message Format (CMMF)
and PKCS �10.

Management protocols should support the following functions:

� Registration This is the process whereby a user first makes
herself or himself known to a CA (directly or through an RA).

� Initialization Before an end user system can operate securely, it
is necessary to install key materials that have the appropriate
relationship with keys stored elsewhere in the infrastructure. For
example, the end-user system must be securely initialized with the
public key and other assured information of the trusted CA(s), to
be used in validating certificate paths. Furthermore, a client typically
must be initialized with its own key pair(s).

� Certification This is the process in which a CA issues a certificate
for a user’s public key and then either returns the certificate to the
end user’s client system or posts the certificate in a repository (or
both).

� Key recovery As an option, end user client key materials (for
example, a user’s private key used for encryption purposes) can be
backed up by a CA or a key backup system. If a user needs to recover
these backed-up key materials (for example, as a result of a forgotten
password or a lost key chain file), an online protocol exchange may be
needed to support such recovery.

� Key update All key pairs must be updated regularly. In this
process, key pairs are replaced and new certificates are issued.

� Revocation This process is invoked when an authorized person
advises a CA of an abnormal situation requiring certificate
revocation.

� Cross-certification Two CAs exchange information used in
establishing a cross-certificate. A cross-certificate is a certificate
issued by one CA to another CA that contains a CA signature key
used for issuing certificates.

NOTE:
Online protocols are not the only way to implement these functions.
Offline methods can also be used.

183Public-Key Infrastructures and the X.509 Standard

Operational Protocols

Operational protocols are those protocols that enable the transfer of cer-
tificates and revocation status information between directories, end users,
and relying parties. The X.509 standard does not specify any single pro-
tocol for use within a PKI domain. Instead, the standard specifies how the
data should be structured for transport. The following protocols are com-
monly used within an environment: HTTP, FTP, e-mail, and LDAP.

Figure 6-2 illustrates the ways in which the various components of PKI
interact.

Chapter 6184

Registering and Issuing Certificates
CAs can register end users in various ways, often depending greatly on
the environment. Many end users simply register with the CA or RA via
the Internet using a Web browser. A private corporate PKI may use an
automated system to register newly hired employees.

In either case, registration is one of the most important processes in a
PKI. It is at this point that the end user and the CA establish trust.

Key recovery
server

Certification
authority (CA)

X.500
directoryRegistration

authority (RA)

End users

(3)

(2) (5)
(4)

(1) (6)

Figure 6-2

The interaction
between the
various PKI
components

Depending on the type of certificate being issued, each party may go to
great lengths to validate the other. For its part, the end user may review
the CA’s published certificate policies and certification practice state-
ments. For the CA to establish trust with the end user, the CA may
require financial documentation and proof of identity through in-person
communications.

After registration is complete and a relationship of trust has been
established between the CA and the end user, a certificate request can be
initiated. One of two approaches can be used. The end user generates a
key pair and provides the public key in the form of a standard PKCS �10
certificate-signing request (CSR), or the CA can generate a key pair on
behalf of the end user.

Revoking a Certificate
Certificates are created in the belief that they will be valid and usable
throughout the expected lifetime indicated in the Validity field. In some
cases, however, an unexpired certificate should no longer be used. For
example, the corresponding private key may have been compromised, the
CA has discovered that it has made a mistake, or the holder of the key is
no longer employed at a company. As a result, CAs need a way to revoke
an unexpired certificate and notify relying parties of the revocation.

The most common method is the use of a certificate revocation list
(CRL). Simply stated, a CRL is a signed data structure containing a time-
stamped list of revoked certificates. The signer of the CRL is typically the
same entity that originally issued it (the CA). After a CRL is created and
digitally signed, it can be freely distributed across a network or stored in
a directory in the same way that certificates are handled.

CAs issue CRLs periodically on schedules ranging from every few hours
to every few weeks. A new CRL is issued whether or not it contains any
new revocations; in this way, relying parties always know that the most
recently received CRL is current. A PKI’s certificate policy governs its
CRL time interval. Latency between CRLs is one of the major drawbacks
of their use. For example, a reported revocation may not be received by the
relying party until the next CRL issue, perhaps several hours or several
weeks later.

185Public-Key Infrastructures and the X.509 Standard

NOTE:
Currently, most applications (such as Web browsers and e-mail readers)
do not use the various revocation mechanisms that are in place. However,
this is beginning to change as PKIs are becoming more widespread.

Certificate Revocation Lists

As stated previously, a CRL is nothing more than a time-stamped, digi-
tally signed list of revoked certificates. The following section describes, in
detail, the various fields that make up a CRL. Figure 6-3 illustrates these
fields.

Chapter 6186

Version

Signature Algorithm Identifier

Issuer Name

User Certificate Serial Number / Revocation Date

CRL Entry Extensions

User Certificate Serial Number / Revocation Date

CRL Entry Extensions

CRL Extensions

Signature

This Update (Date/Time)

Next Update (Date/Time)

.

.

.

Figure 6-3

The standard
structure of a
CRL

� Version This field indicates the version of the CRL. (This field is
optional for Version 1 CRLs but must be present for Version 2.)

� Signature Algorithm Identifier This field contains the identifier
of the algorithm used to sign the CRL. For example, if this field

contains the object identifier for SHA-1 with RSA , it means that
the digital signature is a SHA-1 hash (see Chapter 5) encrypted using
RSA (see Chapter 4).

� Issuer Name This field identifies the DN, in X.500 format, of the
entity that issued the CRL.

� This Update (Date/Time) This field contains a date/time value
indicating when the CRL was issued.

� Next Update (Date/Time) This optional field contains a date/time
value indicating when the next CRL will be issued. (Although this
field is optional, RFC2459 mandates its use.)

� User Certificate Serial Number/Revocation Date This field
contains the list of certificates that have been revoked or suspended.
The list contains the certificate’s serial number and the date and time
it was revoked.

� CRL Entry Extensions These fields are discussed in the following
section.

� CRL Extensions These fields are discussed in the section “CRL
Extensions.”

� Signature This field contains the CA signature.

CRL Entry Extensions

Just as an X.509 Version 3 certificate can be enhanced through the use of
extensions, Version 2 CRLs are provided a set of extensions that enable
CAs to convey additional information with each individual revocation. The
X.509 standard defines the following four extensions for use with a Ver-
sion 2 CRL:

� Reason Code This extension specifies the reason for certificate
revocation. Valid entries include the following: unspecified, key
compromise, CA compromise, superseded, certificate hold, and others.
(For valid reasons, RFC2459 recommends the use of this field.)

� Hold Instruction Code This noncritical extension supports the
temporary suspension of a certificate. It contains an OID that
describes the action to be taken if the extension exists.

� Certificate Issuers This extension identifies the name of the
certificate issuer associated with an indirect CRL (discussed later in
the section titled “Indirect CRLs”). If this extension is present,
RFC2459 mandates that it be marked critical.

187Public-Key Infrastructures and the X.509 Standard

� Invalidity Date This noncritical extension contains a date/time
value showing when a suspected or known compromise of the private
key occurred.

CRL Extensions

The following CRL extensions have been defined on a per-CRL basis:

� Authority Key Identifier This extension can be used to
differentiate between multiple CRL signing keys held by this CA.
This field contains a unique key identifier (the subject key identifier
in the CRL signer’s certificate). The use of this field is mandated by
RFC2459.

� Issuer Alternative Name This extension associates one or more
alternative name forms with the CRL issuer. RFC2459 specifies that
if no DN is specified in the subject field of a certificate, it must have
one or more alternative names, and this extension must be flagged
critical. RFC2459 recommends the use of this extension when
alternative name forms are available but mandates that it not be
marked critical.

� CRL Number This noncritical extension provides a means of easily
recognizing whether a given CRL has been superseded. It contains a
unique serial number relative to the issuer of this CRL. Although this
extension is noncritical, RFC2459 mandates its use.

� Delta CRL Indicator This critical extension identifies the CRL as
a delta CRL and not a base CRL (see later section, “Delta CRLs”). If
this extension is present, RFC2459 mandates that it be marked
critical.

� Issuing Distribution Point This critical extension identifies the
name of the CRL distribution point for a given CRL (see next section).
It also indicates whether the CRL covers revocation of end user
certificates only or of CA certificates only, and it specifies whether the
certificate was revoked for a set reason. This extension can also be
used to indicate that the CRL is an indirect CRL. If this extension is
present, RFC2459 mandates that it be marked critical.

CRL Distribution Points

What happens when the CRL for a given PKI domain becomes too large?
CRL distribution points (sometimes referred to as CRL partitions) provide a
simple solution. The idea is that instead of a single large CRL, several

Chapter 6188

TE
AM
FL
Y

Team-Fly®

smaller CRLs are created for distribution. Relying servers retrieve and
process these smaller CRLs more easily, saving time, money, and bandwidth.

To use CRL distribution points, the CA supplies a pointer to a location
within the Issuing Distribution Point extension. Examples of such point-
ers are a DNS name, an IP address, or the specific filename on a Web
server. The pointer enables relying parties to locate the CRL distribution
point.

Delta CRLs

A delta CRL lists only incremental changes that have occurred since the
preceding CRL. In this way, delta CRLs provide a way to significantly
improve processing time for applications that store revocation informa-
tion in a format other than the CRL structure. With this approach, such
applications can add new changes to their local database while ignoring
unchanged information already stored there. After an initial full CRL
(base CRL) posting, an accurate list of revoked certificates is maintained
through delta CRLs. As a result, delta CRLs can be issued much more
often than can base CRLs.

CAs use the Delta CRL Indicator extension to indicate the use of delta
CRLs. In addition, a special value, the “Remove from CRL” value, can be
used in the Reason Code extension to specify that an entry in the base
CRL may now be removed. An entry might be removed because certificate
validity has expired or the certificate is no longer suspended.

Indirect CRLs

Indirect CRLs are another alternative for improving the distribution of
CRLs. As the name implies, an indirect CRL is provided to the relying
party by a third party that did not necessarily issue the certificate. In this
way, CRLs that otherwise would be supplied by numerous CAs (or other
revoking authorities) can be consolidated into a single CRL for distribu-
tion. For example, suppose that a private PKI is served by multiple CAs.
By using indirect CRLs, the PKI can receive one CRL issued by one CA (or
other trusted third party) on behalf of the other CAs.

Two CRL extensions enable the use of indirect CRLs. To indicate that
a CRL contains revocation information from multiple CAs, the Indirect
CRL attribute is set to True. It’s also important to provide the relying
party with additional information concerning revocation of each entry. A
CRL entry for each certificate is used to identify its CA. If there is no CRL
entry, the certificate is assumed to have been issued by the CA listed on
the first line of the CRL.

189Public-Key Infrastructures and the X.509 Standard

Suspending a Certificate

At times, a CA needs to limit the use of a certificate temporarily but does
not require that it be revoked. For example, a corporate end user may be
going on vacation. In such cases, the certificate can be suspended, dis-
abling the use of PKI-enabled applications that should not be accessed in
the employee’s absence. When the employee returns, the CA removes the
suspension. This approach saves the CA time by not requiring it to revoke
and then reissue the certificate. To suspend a certificate, the CA uses the
value Certificate Hold in the Reason Code extension of the CRL.

Authority Revocation Lists

Like end users, CAs themselves are identified by certificates. Just as end
user certificates may require revocation, so do CA certificates. An author-
ity revocation list (ARL) provides a means of disseminating this revoca-
tion information for CAs. ARLs are distinguished from CRLs via the
Issuing Distribution Point field within the revocation list.

Online Certificate Status Protocol

Depending on the size of the PKI population, CRLs can become unwieldy.
Even if you use the CRL techniques we’ve discussed (CRL distribution
points, indirect CRLs, and delta CRLs), the workload associated with
CRLs can become burdensome. On the other end, relying parties must
spend considerable resources obtaining the most current CRL.

A newer protocol, the Online Certificate Status Protocol (OCSP), can be
used to check whether a digital certificate is valid at the time of a given
transaction. OCSP enables relying parties to conduct these checks in real
time, providing a faster, easier, and more dependable way of validating
digital certificates than the traditional method of downloading and pro-
cessing CRLs. Figure 6-4 illustrates the interaction between various
OCSP components.

Here’s how it works. The CA provides a server, known as an OCSP
responder, that contains current revocation information. Relying parties
can query the OCSP responder to determine the status of a given certifi-
cate. The best way to obtain the information is to have the CA feed it
directly into the responder. Depending on the relationship between the CA
and the OCSP responder, the CA can forward immediate notification of a
certificate’s revocation, making it instantly available to users.

Chapter 6190

The relying party sends a simple request to the OCSP responder, sus-
pending the use of the certificate in question until a response is received.
The OCSP request contains the protocol version, the service requested,
and one or more certificate identifiers. The certificate identifier consists of
a hash of the issuer’s name, a hash of the issuer’s public key, and the cer-
tificate serial number.

The OCSP responder provides a digitally signed response for each of the
certificates in the original request. Replies consist of a certificate identi-
fier, one of three status values (Good, Revoked, or Unknown), and a valid-
ity interval (This Update and, optionally, Next Update). The response may
also include the time of revocation as well as the reason for revocation.

NOTE:
RFC2560 states that an OCSP request must be protocol-independent,
although HTTP is the most common approach in use.

Trust Models
Trust models are used to describe the relationship between end users,
relying parties, and the CA. Various models can be found in today’s PKIs.
The following describes the two most widely used and well known: certifi-
cate hierarchies and cross-certification models.

191Public-Key Infrastructures and the X.509 Standard

OCSP
responder

Relying party

X.500
directory

(3)

(2)

(1)

OCSP request OCSP reply

Figure 6-4

Interaction
between a relying
part and an
OCSP responder

It should be noted, however, that each of these can be used not only
alone but in conjunction with one another as well.

Certificate Hierarchies

As a PKI population begins to increase, it becomes difficult for a CA to
effectively track the identities of all the parties it has certified. As the
number of certificates grows, a single authority may become a bottleneck
in the certification process. One solution is to use a certificate hierarchy, in
which the CA delegates its authority to one or more subsidiary authori-
ties. These authorities, in turn, designate their own subsidiaries, and the
process travels down the hierarchy until an authority actually issues a
certificate. Figure 6-5 illustrates the concept of certificate hierarchies.

Chapter 6192

Metro Motors
Corporate

Metro Motors
East

Metro Motors
West

Metro Motors
Marketing

Metro Motors
HR

Metro Motors
R&D

Metro Motors
Manufacturing

Figure 6-5

This simple
certificate
hierarchy might
occur in a large
corporation

A powerful feature of certificate hierarchies is that not all parties must
automatically trust all the certificate authorities. Indeed, the only author-
ity whose trust must be established throughout the enterprise is the high-
est CA. Because of its position in the hierarchy, this authority is generally
known as the root authority. Examples of current public root CAs include
Verisign, Thawte, and the U.S. Postal Service’s root CA.

Cross-Certification

The concept of a single, monolithic PKI serving every user in the world is
unlikely to become a reality. Instead, we will continue to see PKIs estab-
lished between nations, political organizations, and businesses. One rea-
son for this practice is the policy that each CA should operate
independently and follow its own rules. Cross-certification enables CAs
and end users from different PKI domains to interact. Figure 6-6 illus-
trates the concept of cross-certification.

Cross-certification certificates are issued by CAs to form a nonhierar-
chical trust path. A mutual trust relationship requires two certificates,
which cover the relationship in each direction. These certificates must be
supported by a cross-certification agreement between the CAs. This agree-
ment governs the liability of the partners in the event that a certificate
turns out to be false or misleading.

After two CAs have established a trust path, relying parties within
a PKI domain are able to trust the end users of the other domain. This
capability is especially useful in Web-based business-to-business communi-
cations. Cross-certification also proves useful for intradomain communica-
tions when a single domain has several CAs.

NOTE:
The use of cross-certification instead of or in conjunction with certificate
hierarchies can prove to be more secure than a pure hierarchy model. In a
hierarchy, for example, if the private key of the root CA is compromised,
all subordinates are rendered untrustworthy. In contrast, with cross-cer-
tification, the compromising of one CA does not necessarily invalidate the
entire PKI.

193Public-Key Infrastructures and the X.509 Standard

X.509 Certificate Chain

A certificate chain is the most common method used to verify the binding
between an entity and its public key. To gain trust in a certificate, a rely-
ing party must verify three things about each certificate until it reaches
a trusted root. First, the relying party must check that each certificate in
the chain is signed by the public key of the next certificate in the chain. It
must also ensure that each certificate is not expired or revoked and that
each certificate conforms to a set of criteria defined by certificates higher
up in the chain. By verifying the trusted root for the certificate, a certifi-
cate-using application that trusts the certificate can develop trust in the
entity’s public key. Figure 6-7 illustrates certificate chains and how they
may be used.

Chapter 6194

Metro Motors
Corporate

Metro Motors
East

USA
Steel

USA Steel
Order Entry

USA Steel
Shipping

Metro Motors
R&D

Metro Motors
Manufacturing

Cross-certified

Figure 6-6

Cross-
certification

To see this process in action, consider what happens when a client
application in the marketing department verifies the identity of the mar-
keting department’s Web server. The server presents its certificate, which
was issued by authority of the manufacturing department. The marketing
client does not trust the manufacturing authority, however, so it asks to
see that authority’s certificate. When the client receives the manufactur-
ing authority’s certificate, it can verify that the manufacturing authority
was certified by the corporation’s root CA. Because the marketing client
trusts the root CA, it knows that it can trust the Web server.

The Push Model Versus the Pull Model

The chaining described here relies on individuals having access to all the
certificates in the chain. How does the relying party get these certificates?
One way is for the issuer to send an entire chain of certificates when send-
ing one certificate (see Figure 6-8). This is the push model, in which the
sender pushes the entire chain of certificates to the recipient, and the
recipient can immediately verify all the certificates. The pull model sends
only the sender’s certificate and leaves it up to the recipient to pull in the
CA’s certificate. Because each certificate contains the issuer’s name, the
recipient knows where to go to verify the certificate. (To make searches
easier, Version 3 certificates offer more fields to hold information.) Even
with the push model, however, some recipient chaining may be necessary.

195Public-Key Infrastructures and the X.509 Standard

Issuer:
East

Issuer:
West

Issuer:
Metro Motors

Issuer:
Metro Motors

Subject:
Metro Motors

Subject:
West

Subject:
Marketing

Subject:
Manufacturing

Figure 6-7

A certificate
chain

Managing Key Pairs
The management of key pairs—the policies whereby they are generated
and protected—is important in any PKI. As described in this section, such
policy decisions depend greatly on the intended purpose of the keys. For
example, keys that enable nonrepudiation for e-commerce transactions
are more likely to be handled with greater care than those used to provide
for secure e-mail.

Chapter 6196

Figure 6-8

Internet Explorer
provides a set of
trusted root
certification
authorities

Generating Key Pairs

Keys can be generated in one of two ways. In the first option, key pairs are
generated on the end user’s system. The second option requires that a
trusted third party (such as the CA or its delegated RA) generate the key
pair. Which of these options is more appropriate is a matter of debate.
Each approach has advantages and disadvantages.

End-user generation of keys can be effective, especially for generating
keys for the purpose of nonrepudiation. This option enables the user to
build greater confidence in the trust shared with relying parties because
the key value is never exposed to another entity. One problem is that the
end user must provide software or hardware to generate strong keys.
Even though most browsers incorporate this functionality, it tends to be
CPU-intensive and slow. In addition, end users face the task of securely
transporting the public key to the CA (or corresponding RA) for certifica-
tion.

The second method, in which a central system such as the CA or one of
its RAs generates key pairs, also has its advantages. A central system
commonly has greater resources to provide for faster key generation. Fur-
thermore, an end user may require cryptographically strong keys that
have been generated by a trusted and independently evaluated crypto-
graphic module. In other cases, an end user may need private key backup,
and this service can be easily accommodated without unnecessary trans-
fer of the private key.

Because each approach offers benefits, many CAs support both options.
Yet another option is the use of multiple key pairs. Here, end users gen-
erate keys used to provide nonrepudiation, and the central system pro-
vides the keys for encryption.

Protecting Private Keys

The strength of public-key cryptographic systems and their associated
certificates relies greatly on the security of private keys. It is crucial that
only the certified owner—the person or organization identified in the cer-
tificate—use the corresponding private key. The following mechanisms
are used to safeguard and limit access to private keys:

� Password protection This is the most common form of protection
employed by PKIs. A password or personal identification number
(PIN) is used to encrypt the private key, which is stored on the local

197Public-Key Infrastructures and the X.509 Standard

hard disk. However, if the key can be obtained from the hard disk,
the problem of accessing the key is reduced to simple password
guessing. As a result, this is considered the least secure method and
is generally not thought to be a long-term solution.

� PCMCIA cards (Personal Computer Memory Card International
Association) To reduce the risk of a key being stolen from the user’s
hard disk, many vendors have begun to offer the option of storing
keys on chip cards. Because the key must still leave the card and
enter the system’s memory, however, it remains vulnerable to theft.
Chip cards are discussed in Chapter 9.

� Tokens With tokens, the private key is stored in an encrypted
format in a hardware device and can be unlocked only through the
use of a one-time passcode provided by the token. Although this
technique is more secure than those mentioned so far, the token still
must be available to the end user whenever the private key is needed,
and it can be lost.

� Biometrics The key is associated with a unique identifying quality
of an individual user (for example, a fingerprint, a retinal scan, or a
voice match). The idea is that biometrics can provide the same level of
security as tokens while alleviating the need for the user to carry a
device that can be lost.

� Smart cards In a true smart card (see Chapter 3), the key is stored
in a tamperproof card that contains a computer chip, enabling it to
perform signature and decryption operations. Thus, the key never
leaves the card, and the possibility of compromise is greatly reduced.
However, the user must carry a device, and if the card was used for
encryption and is lost, the encrypted data may be unrecoverable.

NOTE:
Most users take few or no precautions to protect their private keys from
theft. As public-key technology becomes more widely used, organizations
will probably devote more time to awareness programs and education.

Managing Multiple Key Pairs

As stated throughout this chapter, it is not uncommon for end users to
have more than one certificate for various purposes, and therefore they

Chapter 6198

TE
AM
FL
Y

Team-Fly®

may have various key-pair types. For example, a key used to digitally sign
a document for purposes of nonrepudiation is not necessarily the same
one that would be used for the encryption of files. For this reason, it is cru-
cial that end users as well as PKI administrators be aware of the various
management techniques used to secure these keys.

A private key that is used to provide digital signatures for the purposes
of nonrepudiation requires secure storage for the lifetime of the key. Dur-
ing its lifetime, there is no requirement for backup; if the key is lost, a new
key pair should be generated. After the lifetime of the key has expired, the
key should not be archived. Instead, it should be securely destroyed. This
practice ensures against unauthorized use that may occur years after the
key is considered expired. The use of secure time-stamping can also help
reduce fraud. To authenticate data signed by these private keys, it is nec-
essary to maintain the corresponding PKC.

NOTE:
For private keys used for nonrepudiation, the ANSI X9.57 standard
requires that they be created, used, and destroyed within one secure
module.

Conversely, a private key used to support encryption should be backed
up during its lifetime to enable recovery of encrypted information. After
the private key is considered expired, it should be archived to support
later decryption of encrypted legacy data. Whether and how correspond-
ing public keys should be backed up and archived greatly depends on the
algorithm in use. With RSA, the public key does not require backup or
archiving. If Diffie-Hellman key agreement was used, on the other hand,
the public key will be required to recover data at a later time.

Updating Key Pairs

As mentioned earlier in this chapter in the section titled “Management
Protocols,” good security practices dictate that key pairs should be
updated periodically. One reason is that, over time, keys become suscepti-
ble to compromise through cryptanalytic attacks. After a certificate has
expired, one of two things can occur: The CA can reissue a new certificate
based on the original key pair, or a new key pair can be generated and a
new certificate issued.

199Public-Key Infrastructures and the X.509 Standard

Key pairs can be updated in one of two ways. In a manual update, it is
left to the end user to recognize that the certificate is about to expire and
request an update. This approach places a considerable burden on users to
keep track of a certificate’s expiration date. Failing to request a timely
update will put the user out of service and unable to communicate
securely. As a result, the end user must perform an off-line exchange with
the CA.

A better solution is an automated update, in which a system is in place
to check the validity of the certificate each time it is used. As the certifi-
cate approaches expiration, the automated system initiates a request for
key update with the appropriate CA. When the new certificate is created,
the system automatically replaces the old certificate. In this way, the end
user is free to carry out secure operations uninterrupted.

Keeping a History of Key Pairs

A CA’s published policy states the time period during which a given cer-
tificate can be considered valid (typically, one year). As a result, it’s not
uncommon for a user to accumulate three or more key pairs within three
years. A key history mechanism provides a way of archiving keys and cer-
tificates for later use. The other alternatives, such as decrypting and reen-
crypting data as new keys are generated, would be impractical in most
environments.

Such a history is of great importance to any PKI. For example, suppose
that a data file was signed with my private signing key three years ago.
How does a relying party get a copy of the corresponding PKC to verify the
signature? Similarly, what if the public key from my certificate was used
to encrypt some data or another symmetric key to perform a digital
enveloping process five years ago? Where can the corresponding private
decryption key be found? If a key history has been kept, the necessary
keys for both scenarios will be available.

NOTE:
As stated earlier, similar keys can be used for various purposes (for exam-
ple, private keys can be used not only for decryption but also for signing).
Because a key’s purpose dictates the method of storage, it may be neces-
sary to have two or more separate key pairs.

Chapter 6200

Deploying a PKI
As organizations plan for deploying PKIs, they have three basic options:
outsourcing, insourcing, or running their own. With outsourcing, a third
party runs a CA on behalf of the organization. This option requires the
organization to have a great deal of trust in the third party and its poli-
cies and practices. The advantage of outsourcing is that the organization
can leverage outside expertise and resources that it may not have in-
house.

With insourcing, an organization provides its own resources, but the
administrative staff is leveraged from outside. This option enables an
organization to maintain control over its own CA policies while taking
advantage of outside expertise. Many PKI vendors, including Entrust
Technologies and Verisign, include this service in their standard offerings.

Finally, it is possible for an organization to run its own CA. By using
PKI-enabling products or building its own, an organization manages
every aspect of the PKI. This option greatly benefits organizations that
have in-house expertise, affording them the most flexibility and control
over the system.

The Future of PKI
PKIs have grown considerably in the past decade as increasing numbers
of organizations have become dependent on them. However, many
improvements are in the works, not only by noncommercial organizations
such as the International Organization for Standardization (ISO) and
Internet Engineering Task Force (IETF) but also by many PKI vendors.
Two such improvements are roaming certificates and attribute certifi-
cates, discussed in the next two sections.

Roaming Certificates

As you’ve seen, standard certificates do a great job of binding an individ-
ual to a public key, but a new problem has arisen: the need for portability.
It is not uncommon for a user to move among several computers within an
organization. A certificate can be placed on every possible machine, but in
order to be effective, the private key also must be present.

201Public-Key Infrastructures and the X.509 Standard

Until recently, only two real solutions have provided the mobility of cer-
tificates and their corresponding private keys. The first is smart card tech-
nology, in which the public/private key pair is stored on the card. However,
this option has drawbacks, such as the inconvenience of carrying an item
that can be lost or damaged. In addition, smart cards are usable only on
systems that have a smart card reader. The second option, which is not
much better, is to copy the certificate and private key onto a floppy for
later use. Again, the user is forced to carry an item that can be lost or dam-
aged, and a floppy is not as cryptographically secure as a smart card.

A new solution is the use of roaming certificates (perhaps better stated
as roaming certificates and private keys), which are provided through
third-party software. Properly configured on any system, the software (or
plug-in) enables a user access to his or her public/private key pairs. The
concept is simple. Users’ certificates and private keys are placed in a
secure central server. When the user logs into a local system, the pub-
lic/private key pair is securely retrieved from the server and placed in the
local system’s memory for use. When the user has completed work and
logs off of the local system, the software (or plug-in) scrubs the user’s cer-
tificate and private key from memory.

To date, this technology has been limited mainly to private PKIs, such
as corporations, because of scalability issues. However, as roaming appli-
cations and users become more prevalent, it’s conceivable that roaming
certificate technology will be developed into a cost-effective way of pro-
viding virtual PKIs worldwide. Figure 6-9 illustrates the interaction of
common roaming certificate systems.

Chapter 6202

Host
system

Internet

Credential
server

Credential
directory

Secure transport

Figure 6-9

Roaming
certificates

NOTE:
Although the concept of roaming certificates has proven quite useful,
some standards do not support this technology. One such standard is
ANSI X9.57, which requires that private keys used for the purposes of
nonrepudiation be created, used, and destroyed within one secure
module.

Attribute Certificates

Another popular emerging standard is the attribute certificate (AC).
Although ACs are similar in structure to public-key certificates, ACs pro-
vide different functionality. ACs do not contain a public key for an indi-
vidual. Instead, they are used to bind an entity to a set of attributes that
specify membership, role, security clearance, or other authorization infor-
mation. Attribute certificates, like public-key certificates, are digitally
signed to prevent changes after the fact.

In conjunction with current authentication services, ACs can provide a
means to transport authorization information securely. Applications that
can use this technology include those that provide remote access to net-
work resources (such as Web servers and databases) and those that con-
trol physical access to buildings and facilities. For example, after a user
signs on, his or her identity can be verified through the use of the current
public-key certificate. After the user has logged in, his or her public key
can be used to create a secure session with an access control server, and
the user’s attribute certificate can be checked against a list of valid users.
Figure 6-10 illustrates a standard attribute certificate.

NOTE:
ISO has defined the basic attribute certificate, and IETF is currently pro-
filing these definitions for use in Internet environments.

203Public-Key Infrastructures and the X.509 Standard

Certificate Policies and Certification
Practice Statements

Certification authorities act as trusted third parties, vouching for the con-
tents of the certificates they issue. But what exactly does a CA certify?
What makes one CA more trusted than another? Two mechanisms are
used by CAs to establish trust among end users and relying parties. These
are certificate policies and certification practice statements.

The X.509 standard defines a certificate policy as “a named set of rules
that indicates the applicability of a certificate to a particular community
and/or class of application with common security requirements.” One or
more certificate policies can be identified in the standard extensions of an
X.509 Version 3 certificate. As relying parties obtain a certificate for pro-
cessing, they can use the policies specified in that certificate to make a
decision of trust.

A more detailed description of practices is made available through the
use of a certification practice statement, a concept originated by the Amer-
ican Bar Association (ABA). According to the ABA’s “Digital Signature
Guidelines,” a CPS is “a statement of the practices which the certification

Chapter 6204

Version (V.1 or V.2)

Serial Number

Issuer Name

Validity period (Start/End Date/Time)

Issuer Unique Identifier

Extensions

Signature

Attributes

Holder Name (Comparable to Subject's Name)

Figure 6-10

Controlling
access with
attribute
certificates

authority employs in issuing certificates.” A CPS gives relying parties a
basis for making a trust decision concerning a CA.

The relationship between certificate policies and CPSs is not entirely
clear. Each kind of document was created for unique reasons by different
sources. CPSs tend to provide a detailed statement about a CA’s practices,
whereas certificate policies tend to provide a broader definition of prac-
tices.

RFC2527 outlines the key components of a CPS as follows:

� Introduction This part of a CPS provides a general overview of
the certificate policy definition, indicating any applicable names or
other identifiers (for example, ASN.1 object identifiers) that are used
in the statement. It should also provide all contact information
(name, phone number, address, and so on) of the responsible
authority.

� General Provisions This section describes the various obligations,
rights, and liabilities of the CA or RA, end users, and relying parties.
It also includes information about how and how often certificates and
CRLs will be published.

� Identification and Authentication This section describes the
procedures used by the CA or RA to authenticate an end user
applicant. It also describes how end users should request certificate
revocations and key updates.

� Operational Requirements This section describes the
requirements for certificate enrollment, issuance, and acceptance. It
also addresses suspension, revocation, and the frequency of CRLs.
Various security concerns are also covered, such as audit procedures,
compromise and disaster recovery, and procedures for CA
termination.

� Physical, Procedural, and Personnel Security Controls This
section defines the nontechnical controls that are in place to provide
for secure key generation, subject authentication, certificate issuance,
certificate revocation, audit, and archiving. Such controls, for
example, might include off-site record storage and background
investigations of employees who fill trusted roles.

� Technical Security Controls This section describes the security
measures taken by a CA to protect its private keys. Examples include
where and how private keys are stored and who can activate and
deactivate a private key.

205Public-Key Infrastructures and the X.509 Standard

� Certificate and CRL Profile This section specifies the format to
be used for certificates and CRLs, the current versions supported, and
the name forms used by the CA, the RA, and the end user. Also
identified here are the supported certificate and CRL extensions and
their criticality.

� Specification Administration This section specifies how this
certificate policy definition or CPS will be maintained. Covered are
change procedures for updating this statement, how it will be
distributed, and the approval procedures for this and any new
statement.

Summary
Although public-key technology solves many of the problems associated
with symmetric-key technology, it presents a new set of distribution prob-
lems. The most widely accepted standard for public-key technology is the
X.509 standard, which describes the format of public-key certificates to
assist in the secure distribution of these keys. X.509 Version 3 certificates,
for example, contain various fields and extensions that help govern their
use.

A public-key infrastructure (PKI) plays an important role in the oper-
ation of public-key certificates. A PKI manages the collaboration between
end users and relying parties, enabling the secure issuance and operation
of these certificates. Certificate revocation and status checking are sup-
ported through the use of a CRL or the Online Certificate Status Protocol
(OCSP), or both.

Certificate policies and certification practice statements provide end
users and relying parties with information on which to base a decision to
trust a given CA.

Real-World Examples
Various products are available that provide public-key infrastructure sup-
port, including developer toolkits, which assist individuals in creating their
own public-key infrastructures, and companies, such as Verisign, that have

Chapter 6206

based their business on providing certificates as a service. The following is
a description of two PKI products developed by RSA Security, Inc.

Keon Certificate Server

The Keon certificate server is a fully functional CA\RA with all of the nec-
essary tools to run a full CA. This server provides useful functionality,
such as the One Step function. The One Step function actually allows the
CA administrator to set up Keon programmatically so that as new
employees are added to a human resource database, a certificate is gen-
erated and stored for use. This functionality takes a lot of the burden off
end users and administrators.

Keon Web PassPort

Another advancement in the PKI arena is the new Keon Web PassPort.
The Web PassPort provides roaming-certificate technology, which is simi-
lar to certificates discussed in the “Roaming Certificates” section earlier in
this chapter. Through the use of a browser plug-in, a user can download
the necessary private and public information to make use of PKI-enabled
applications. A user may now, through the use of strong authentication
and one small plug-in, make use of any computer system anywhere in the
world.

207Public-Key Infrastructures and the X.509 Standard

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

Network and Transport
Security Protocols

Applications, systems, and networks can be made secure through the use of
security protocols, which provide a wide range of encryption and authen-
tication services. Each protocol is placed within several layers of a com-
puting infrastructure (that is, network, transport, and application layers).
Figure 7-1 shows the various protocols and their locations within the
Transportation Control Protocol/Internet Protocol (TCP/IP) stack. This
chapter and Chapter 8 describe these protocols and explain how they oper-
ate within the TCP/IP stack. This chapter first covers the IPSec protocol,
which provides security at the network layer. Then we take an in-depth look
at the Secure Sockets Layer (SSL), which implements security at the trans-
port layer.

Internet Protocol Security
Internet Protocol Security (IPSec) is a framework of open standards for
ensuring secure private communications over IP networks. Based on stan-
dards developed by the Internet Engineering Task Force (IETF), IPSec
ensures confidentiality, integrity, and authenticity of data communica-
tions across a public IP network. IPSec is a necessary component of a

CHAPTER 7

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

standards-based, flexible solution for deploying a network-wide security
policy.

IPSec implements network layer encryption and authentication, pro-
viding an end-to-end security solution in the network architecture. In this
way, end systems and applications can enjoy the advantage of strong secu-
rity without the need to make any changes. Because IPSec encrypted
packets look like ordinary IP packets, they can be easily routed through
any IP network, such as the Internet, without any changes to the inter-
mediate networking equipment. The only devices that know about the
encryption are the endpoints. This feature greatly reduces the cost of
implementation and management.

IP Security Architecture

IPSec combines several security technologies to protect the confidential-
ity, integrity, and authenticity of IP packets. IPSec actually refers to sev-
eral related protocols as defined in RFCs 2401-2411 and 2451. Two of
these standards define IPSec and Internet Key Exchange (IKE). IPSec
defines the information that is added to an IP packet to enable confiden-
tiality, integrity, and authenticity controls; it also defines how to encrypt
the packet data. IKE is used to negotiate the security association between
two entities and to exchange keying material. The use of IKE is optional,
but it relieves users of the difficult and labor-intensive task of manually
configuring security associations. IKE should be used in most real-world
applications to enable large-scale, secure communications.

Chapter 7210

Figure 7-1

Protocol locations
within TCP/IP:
(a) network
security and (b)
transport security

IPSec Services

IPSec provides security services at the IP layer by enabling a system for
selecting required security protocols, determining the algorithm(s) to use
for the service(s), and implementing any cryptographic keys required to
provide the following services:

� Access control

� Connectionless integrity (a detection method of the IP packet itself)

� Data origin authentication

� Rejection of replayed packets (a form of partial sequence integrity)

� Confidentiality (encryption)

� Limited traffic-flow confidentiality

IPSec provides these services through the use of two protocols. The first
one, the authentication header (AH) protocol, supports access control, data
origin authentication, connectionless integrity, and the rejection of replay
attacks, in which an attacker copies a packet and sends it out of sequence
to confuse communicating nodes. The second protocol is the encapsulating
security payload (ESP) protocol. ESP alone can support confidentiality,
access control, limited traffic-flow confidentiality, and the rejection of
replay attacks.

NOTE:
ESP and AH can be used in concert to provide all the services.

The Authentication Header Protocol
AH provides data integrity and authentication services for IP packets (see
Figure 7-2). These services protect against attacks commonly mounted
against open networks. AH uses a keyed-hash function rather than digi-
tal signatures because digital signature technology is too slow and would
greatly reduce network throughput. Note, however, that AH does not pro-
vide confidentiality protection, so data can still be viewed as it travels
across a network.

211Network and Transport Security Protocols

AH contains the following fields:

� Next Header This field identifies the higher-level protocol
following AH (for example, TCP, UDP, or ESP).

� Payload Length This field indicates the length of the AH contents.

� Reserved This field is reserved for future use. Currently, this field
must always be set to zero.

� Security Parameters Index This field is a fixed-length, arbitrary
value. When used in combination with the destination IP address, this
value uniquely identifies a security association for this packet (that is,
it indicates a set of security parameters for use in this connection).

� Sequence Number The field provides a monotonically increasing
number for each packet sent with a given SPI. This value lets the
recipient keep track of the order of the packets and ensures that the
same set of parameters is not used for too many packets. The
sequence number provides protection against replay attacks.

� Authentication Data This variable-length field contains the
integrity check value (ICV) (see next section) for this packet. It may
include padding to bring the length of the header to an integral
multiple of 32 bits (in IPv4) or 64 bits (IPv6).

Integrity Check Value Calculation

The ICV, a truncated version of a message authentication code (MAC), is
calculated by a MAC algorithm. IPSec requires that all implementations
support at least HMAC-MD5 and HMAC-SHA1 (the HMAC symmetric
authentication scheme supported by MD5 or SHA-1 hashes; see Chap-
ter 6. To guarantee minimal interoperability, an IPSec implementation
must support at least these schemes.

Chapter 7212

Figure 7-2

The
authentication
header protocol

The ICV is computed using the following fields:

� The IP header fields that either do not change in transit or whose
values are predictable upon arrival at the endpoint for the AH
security association. Other fields are set to zero for the purpose of
calculation.

� The entire contents of the AH header except for the Authentication
Data field. The Authentication Data field is set to zero for the purpose
of calculation.

� All upper-level protocol data, which is assumed to be immutable in
transit.

NOTE:
The HMAC value is calculated completely, although it is truncated to
96 bytes (the default size for the Authentication Data field).

Transport and Tunnel Modes

AH services can be employed in two ways: in transport mode or in tunnel
mode. The actual placement of the AH depends on which mode is used and
on whether the AH is being applied to an IPv4 or an IPv6 packet. Fig-
ure 7-3 illustrates IPv4 and IPv6 packets before authentication services
are applied.

In transport mode, the AH applies only to host implementations and
provides protection for upper-layer protocols in addition to selected IP
header fields. In this mode, AH is inserted after the IP header but before

213Network and Transport Security Protocols

Figure 7-3

IPv4 and IPv6
before AH is
applied

any upper-layer protocol (such as, TCP, UDP) and before any other IPSec
headers that have already been inserted. In IPv4, this calls for placing AH
after the original IP header but before the upper-layer protocol. In IPv6,
AH is viewed as an end-to-end payload; this means that intermediate
routers should not process it. For this reason, the AH should appear after
the original IP header, hop-by-hop, routing, and fragmentation extension
headers. This mode is provided via the transport security association (SA).
Figure 7-4 illustrates the AH transport mode positioning in typical IPv4
and IPv6 packets.

Chapter 7214

Figure 7-4

IPv4 and IPv6
header placement
in transport mode

In tunnel mode, the AH can be employed in either host or security gate-
ways. When AH is implemented in a security gateway (to protect transit
traffic), tunnel mode must be used. In this mode, the AH is inserted
between the original IP header and the new outer IP header. Whereas the
inner IP header carries the ultimate source and destination addresses,
the new outer IP header may contain distinct IP addresses (such as,
addresses of firewalls or other security gateways). In tunnel mode, AH
protects the entire inner IP packet, including the entire inner IP header.
In tunnel mode, the position of AH relative to the outer IP header is the
same as for AH in transport mode. This mode is provided via the tunnel
SA. Figure 7-5 illustrates AH tunnel mode positioning for typical IPv4
and IPv6 packets.

NOTE:
ESP and AH headers can be combined in a variety of modes. The IPSec
architecture document (RFC2401) describes the combinations of security
associations that must be supported.

The Encapsulating Security Payload Protocol
The encapsulating security payload (ESP) protocol provides confidential-
ity services for IP data while in transit across untrusted networks.
Optionally, ESP also provides authentication services. The format of ESP
varies according to the type and mode of the encryption being used. In all
cases the key associated with the encryption is selected using the SPI.
Figure 7-6 illustrates the components of an ESP header.

215Network and Transport Security Protocols

Figure 7-5

IPv4 and IPv6
header placement
in tunnel mode

Figure 7-6

Components of an
ESP header

The ESP header contains the following fields:

� Security Parameters Index This field, as in the AH packet, is
used to help uniquely identify a security association to be used.

� Sequence Number This field, again as in the AH packet, contains
a counter that increases each time a packet is sent to the same
address using the same SPI. It lets the recipient keep track of the
packet order.

� Payload Data This variable-length field contains the actual
encrypted data contents being carried by the IP packet.

� Padding This field provides space for adding bytes, as required by
certain types of encryption algorithms (see Chapter 2). Data padding
confuses sniffers, who try to access information about encrypted data
in transit, in this case by trying to estimate how much data is being
transmitted.

� Pad Length This field identifies how much of the encrypted
payload is padding.

� Next Header This field identifies the type of data carried in the
Payload Data field.

� Authentication Data This variable-length field contains a value
that represents the ICV computed over the ESP packet minus the
Authentication Data field. This field is optional and is included only if
the authentication service is selected within the SA.

NOTE:
All the ESP header components are encrypted except for the Security
Parameters Index and Sequence Number fields. Both of these fields, how-
ever, are authenticated.

Encryption Algorithms

The IPSec ESP standard currently requires that compliant systems have
two cryptographic algorithms. Systems must have the DES algorithm
using cipher block chaining (CBC) mode (see Chapter 2); compliant sys-
tems that require only authentication must have a NULL algorithm.
However, other algorithms are defined for use by ESP services. Following
are some of the defined algorithms:

Chapter 7216

� Triple DES

� RC5

� IDEA

� CAST

� BLOWFISH

� 3IDEA

ESP in Transport and Tunnel Modes

Like AH, ESP can be employed in two modes: transport mode and tunnel
mode. These modes operate here in a similar way to their operation in AH,
with one exception: with ESP, data, called trailers, are appended to the
end of each packet.

In transport mode, ESP is used only to support host implementations
and to provide protection for upper-layer protocols but not for the IP
header itself. As with AH, in an IPv4 packet the ESP header is inserted
after the original IP header and before any upper-layer protocols (for
example, TCP, UDP) and before any other existing IPSec headers. In IPv6,
ESP is viewed as an end-to-end payload; that is, intermediate routers
should not process it. For this reason, the ESP header should appear after
the original IP header, hop-by-hop header, routing header, and fragmen-
tation extension header. In each case, the ESP trailer is also appended to
the packet (encompassing the Padding, Pad Length, and Next Header
fields). Optionally, the ESP authentication data field is appended if it has
been selected. Figure 7-7 illustrates the ESP transport mode positioning
in typical IPv4 and IPv6 packets.

217Network and Transport Security Protocols

Figure 7-7

IPv4 and IPv6
header placement
in transport mode

Tunnel mode ESP can be employed by either hosts or security gate-
ways. When ESP is implemented in a security gateway (to protect sub-
scriber transit traffic), tunnel mode must be used. In this mode, the ESP
header is inserted between the original IP header and the new outer IP
header. Whereas the inner IP header carries the ultimate source and des-
tination addresses, the new outer IP header may contain distinct IP
addresses (such as, addresses of firewalls or other security gateways). In
tunnel mode, ESP protects the entire inner IP packet, including the entire
inner IP header. The position of ESP in tunnel mode, relative to the outer
IP header, is the same as for ESP in transport mode. Figure 7-8 illustrates
ESP tunnel mode positioning for typical IPv4 and IPv6 packets.

Chapter 7218

Figure 7-8

IPv4 and IPv6
header placement
in tunnel mode

NOTE:
ESP and AH headers can be combined in a variety of modes. The IPSec
architecture document describes the combinations of security associations
that must be supported.

Security Associations
To communicate, each pair of hosts using IPSec must establish a security
association (SA) between them. The SA groups together all the things that
you need to know about how to communicate securely with someone else,
such as the type of protection used, the keys to be used, and the valid dura-
tion of this SA. The SA establishes a one-way relationship between the
sender and the receiver. For peer communications, a second SA is needed.

TE
AM
FL
Y

Team-Fly®

You can think of an SA as a secure channel through the public network
to a certain person, group of people, or network resource. It’s like a con-
tract with whoever is at the other end. The SA also has the advantage in
that it lets you construct classes of security channels. If you need to be a
little more careful when talking to one party than another, the rules of
your SA with that party can reflect extra caution—for example, specifying
stronger encryption.

A security association is uniquely identified by three parameters:

� Security Parameters Index This bit string uniquely identifies a
security association relative to a security protocol (for example, AH
or ESP). The SPI is located within AH and ESP headers so that the
receiving system can select the SA under which a received packet
will be processed.

� IP Destination Address This parameter indicates the destination
IP address for this SA. The endpoint may be that of an end user
system or a network system such as a gateway or firewall. Although
in concept this parameter could be any address type (multicast,
broadcast, and so on), currently it can be only a unicast address.

� Security Protocol Identifier This parameter indicates whether
the association is that of an AH or an ESP security association.

Combining Security Associations

Using a single SA, you can deploy either AH or ESP (but not both) to
implement security for IP packets. However, there is no restriction on the
use of multiple SAs, usually referred to as an SA bundle. The order in
which the SAs are bundled is defined by your security policy. IPSec does
define two ways of combining SAs: transport adjacency and iterated tun-
neling.

Transport adjacency refers to the process of applying multiple trans-
port SAs to the same IP packet without using tunneling SAs. This level of
combination lets you apply both AH and ESP IP packets but does not
enable further nesting. The idea is that strong algorithms are used in both
AH and ESP, so further nesting would yield no additional benefits. The IP
packet is processed only once: at its final destination. Figure 7-9 illus-
trates the application of transport adjacency.

In iterated tunneling, you apply multiple (layered) security protocols by
using IP tunneling. This approach allows multiple levels of nesting. Each

219Network and Transport Security Protocols

tunnel can originate or terminate at a different IPSec site along the path.
Figure 7-10 shows three basic cases of iterated tunneling supported by the
IPSec protocol.

NOTE:
You can also combine transport adjacency and iterated tunneling. For
example, you could construct an SA bundle from one tunnel SA and one
or two transport SAs applied in sequence.

Security Databases
IPSec contains two nominal databases: the Security Policy Database
(SPD) and the Security Association Database (SAD). SPD specifies the
policies that determine the disposition of all IP traffic, inbound or out-
bound. SAD contains parameters that are associated with each currently
active security association.

Chapter 7220

Figure 7-9

Transport
adjacency

221Network and Transport Security Protocols

Figure 7-10

Three cases of
iterated
tunneling

Security Policy Database

An SA is nothing more than a management construct that is used to
enforce a security policy. Because SPD is responsible for all IP traffic, it
must be consulted during the processing of all traffic (inbound and out-
bound), including non-IPSec traffic. To support this, SPD requires distinct
entries for inbound and outbound traffic; these entries are defined by a set
of selectors, or IP and upper-layer protocol field values. The following
selectors determine an SPD entry:

� Destination IP Address This can be a single IP address, a list of
addresses, or a wildcard address. Multiple and wildcard addresses
are used when you have more than one source system sharing the
same SA (for example, behind a gateway).

� Source IP Address This can be a single IP address, a range of
addresses, or a wildcard address. Multiple and wildcard addresses are
used when you have more than one source system sharing the same
SA (for example, behind a gateway).

� Name This can be either an X.500 distinguished name or a user
identifier from the operating system.

� Data Sensitivity Level This is used for systems that provide
information flow security (for example, unclassified or secret).

� Transport Layer Protocol This is obtained from the IPv4 Protocol
field or IPv6 Next Header field. It can be an individual protocol
number, a list of protocol numbers, or a range of protocol numbers.

� Source and Destination Ports These can be individual UDP or
TCP port values, or a wildcard port.

Security Association Database

Each implementation of IPSec contains a nominal SAD, which is used to
define the parameters associated with each SA. The following parameters
are used to define an SA:

� Sequence Number Counter A 32-bit value used to generate the
Sequence Number field in AH or ESP headers.

� Sequence Counter Overflow A flag indicating whether overflow
of the sequence number counter should generate an auditable event
and prevent transmission of additional packets on the SA.

Chapter 7222

� Anti-Replay Window A 32-bit counter that is used to determine
whether an inbound AH or ESP packet is a replay.

� AH Information Parameters relating to the use of AH (such as
authentication algorithms, keys, and key lifetimes).

� ESP Information Parameters relating to the use of ESP (such as
encryption algorithms, keys, key lifetimes, and initialization values).

� Lifetime of This Security Association A time interval or byte
count that specifies an SA’s duration of use. When the duration is
complete the SA must be replaced with a new SA (and new SPI) or
terminated, and this parameter includes an indication of which of
these actions should occur.

NOTE:
If a time interval is employed, and if IKE employs X.509 certificates for
SA establishment, the SA lifetime must be constrained by the validity
intervals of the certificates and by the “NextIssueDate” of the CRLs used
in the IKE exchange for the SA. For more about CRLs, see Chapter 6.

� IPSec Protocol Mode Specifies the mode-tunnel, transport, or
wildcard-of AH or ESP that is applied to traffic on this SA.

� Path MTU Any observed path maximum transferable unit (MTU)
and aging variables. (The MTU is the maximum size of a packet
without fragmentation.)

Key Management
As with any security protocol, when you use IPSec you must provide key
management, such as supplying a means of negotiating with other people
the protocols, encryption algorithms, and keys to be used in data
exchange. In addition, IPSec requires that you keep track of all such
agreements between the entities. IETF’s IPSec working group has speci-
fied that compliant systems must support both manual and automated SA
and cryptographic key management.

223Network and Transport Security Protocols

Following are brief descriptions of these techniques:

� Manual Manual key and SA management are the simplest forms
of key management. A person (usually a systems administrator)
manually configures each system, supplying the keying material and
SA management data relevant to secure communication with other
systems. Manual techniques can work effectively in small, static
environments, but this approach is not very practical for larger
networks.

� Automated By using automated key management protocols, you
can create keys as needed for your SAs. Automated management also
gives you a great deal of scalability for larger distributed systems
that are still evolving. You can use various protocols for automated
management, but IKE seems to have prevailed as the current
industry standard.

Internet Key Exchange

IKE is not a single protocol; rather, it is a hybrid of two protocols. IKE
integrates the Internet Security Association and Key Management Proto-
col (ISAKMP) with the Oakley key exchange protocol.

IKE performs its services in two phases. In the first phase, two IKE
peers establish a secure, authenticated channel for communication by
using a common IKE security association. IKE provides three modes of
exchanging keying information and setting up SAs (see next section); in
this first phase, only main or aggressive mode is employed.

In the second phase, SAs are negotiated on behalf of services such as
IPSec or any other service that needs keying material or parameter nego-
tiation. The second phase is accomplished via a quick mode exchange.

Main Mode

IKE’s main mode provides a three-stage mechanism for establishing the
first-phase IKE SA, which is used to negotiate future communications. In
this mode, the parties agree on enough things (such as authentication and
confidentiality algorithms, hashes, and keys) to be able to communicate
securely long enough to set up an SA for future communication. In this
mode, three two-way messages are exchanged between the SA initiator
and the recipient.

As shown in Figure 7-11, in the first exchange, the two parties agree on
basic algorithms and hashes. In the second, they exchange public keys for

Chapter 7224

a Diffie-Hellman exchange and pass each other nonces (random numbers
signed and returned by the other party to prove its identity). In the third
exchange, they verify those identities.

Aggressive Mode

Aggressive mode is similar to main mode in that aggressive mode is used
to establish an initial IKE SA. However, aggressive mode differs in the
way the messages are structured, thereby reducing the number of
exchanges from three to two.

In aggressive mode, the proposing party generates a Diffie-Hellman
pair at the beginning of the exchange and does as much as is practical
with that first packet: proposing an SA, passing the Diffie-Hellman pub-
lic value, sending a nonce for the other party to sign, and sending an ID
packet that the responder can use to check the initiator’s identity with a
third party (see Figure 7-12). The responder then sends back everything
needed to complete the exchange. All that’s left for the initiator to do is to
confirm the exchange.

The advantage of aggressive mode is its speed, although aggressive
mode does not provide identity protection for the communicating parties.
This means that the parties exchange identification information before

225Network and Transport Security Protocols

Figure 7-11

Transactions in
IKE’s main mode

establishing a secure SA in which to encrypt it. As a result, someone mon-
itoring an aggressive mode exchange can identify the entity that has just
formed a new SA.

Quick Mode

After two communicating entities have established an IKE SA using
either main or aggressive mode, they can use quick mode. Quick mode,
unlike the other two modes, is used solely to negotiate general IPSec secu-
rity services and to generate fresh keying material.

Because the data is already inside a secure tunnel (every packet is
encrypted), you can afford to be a little more flexible in quick mode. Quick
mode packets are always encrypted and always start with a hash payload,
which is composed using the agreed-upon pseudo-random function and
the derived authentication key for the IKE SA. The hash payload is used
to authenticate the rest of the packet. Quick mode defines which parts of
the packet are included in the hash.

As shown in Figure 7-13, the initiator sends a packet with the quick
mode hash; this packet contains proposals and a nonce. The responder

Chapter 7226

Figure 7-12

Aggressive mode
transactions

Figure 7-13

Quick mode
transactions

then replies with a similar packet, this time generating its own nonce and
including the initiator’s nonce in the quick mode hash for confirmation.
The initiator then sends back a confirming quick mode hash of both
nonces, completing the exchange. Finally, using the derivation key as the
key for the hash, both parties perform a hash of a concatenation of the fol-
lowing: the nonces, the SPI, and the protocol values from the ISAKMP
header that initiated the exchange. The resulting hash becomes the new
password for that SA.

Secure Sockets Layer
Secure Sockets Layer (SSL), the Internet protocol for session-based
encryption and authentication, provides a secure pipe between two par-
ties (the client and the server). SSL provides server authentication and
optional client authentication to defeat eavesdropping, tampering, and
message forgery in client-server applications. By establishing a shared
secret between the two parties, SSL provides privacy.

SSL works at the transport layer (below the application layer) and is
independent of the application protocol used. Therefore, application pro-
tocols (HTTP, FTP, TELNET, and so on) can transparently layer on top of
SSL, as shown in Figure 7-14.

227Network and Transport Security Protocols

Figure 7-14

SSL in the
TCP/IP stack

The History of SSL

Netscape originally developed SSL in 1994. Since then, SSL has become
widely accepted and is now deployed and supported in all major Web
browsers and servers as well as various other software and hardware
products (see Figure 7-15). This protocol currently comes in three ver-
sions: SSLv2, SSLv3, and TLSv1 (also known as SSLv3.1). Although all
three can be found in use around the world, SSLv3, released in 1995, is
the predominant version.

SSLv3 solved many of the deficiencies in the SSLv2 release. SSLv3
enables either party (client or server) to request a new handshake (see
next section) at any time to allow the keys and ciphers to be renegotiated.
Other features of SSLv3 include data compression, a generalized mecha-
nism for Diffie-Hellman and Fortezza key exchanges and non-RSA cer-
tificates, and the ability to send certificate chains.

In 1996, Netscape turned the SSL specification over to the IETF. Cur-
rently, the IETF is standardizing SSLv3 in its Transport Layer Security
(TLS) working group. TLSv1 is very similar to SSLv3, with only minor pro-
tocol modifications. The first official version of TLS was released in 1999.

Session and Connection States
Any system of the type discussed in this chapter is composed of two parts:
its state and the associated state transitions. The system’s state describes
the system at a particular point in time. The state transitions are the
processes for changing from one state to another. The combination of all
possible states and state transitions for a particular object is called a state
machine. SSL has two state machines: one for the client side of the proto-
col and another for the server side. Each endpoint must implement the
matching side of the protocol. The interaction between the state machines
is called the handshake.

It is the responsibility of the SSL handshake protocol to coordinate the
states of the client and server, thereby enabling each one’s protocol state
machine to operate consistently even though the state is not exactly par-
allel. Logically, the state is represented twice: once as the current operat-
ing state and (during the handshake protocol) a second time as the
pending state. Additionally, separate read and write states are main-

Chapter 7228

Figure 7-15

The padlock
symbol in this
browser denotes
the use of SSL for
Web security

TE
AM
FL
Y

Team-Fly®

tained. An SSL session can include multiple secure connections, and par-
ties can have multiple simultaneous sessions.

The SSL specification defines the elements of a session state as follows:

� Session Identifier An arbitrary byte sequence chosen by the
server to identify an active or resumable session state.

� Peer Certificate X.509v3 certificate of the peer. This element of the
state can be null.

� Compression Method The algorithm used to compress data before
encryption.

� Cipher Spec Specifies the bulk data encryption algorithm (null,
DES, and so on) and a MAC algorithm (such as MD5 or SHA-1) used
for message authentication. It also defines cryptographic attributes
such as the hash size.

� Master Secret 48-byte secret shared between the client and the
server.

� Is Resumable A flag indicating whether the session can be used to
initiate new connections.

Furthermore, the SSL specification defines the following elements of a
connection state:

� Server and Client Random Byte sequences that are
independently chosen by the server and the client for each
connection.

� Server Write MAC Secret The secret key that is used in MAC
operations on data written by the server.

� Client Write MAC Secret The secret key that is used in MAC
operations on data written by the client.

� Server Write Key The symmetric cipher key for data encrypted by
the server and decrypted by the client.

� Client Write Key The symmetric cipher key for data encrypted by
the client and decrypted by the server.

� Initialization Vectors The initialization vector (IV) required for
each block cipher used in CBC mode. This field is first initialized by
the SSL handshake protocol. Thereafter, the final ciphertext block
from each record is preserved for use with the following record.

� Sequence Numbers Each party maintains separate sequence
numbers for transmitted and received messages for each connection.
When a party sends or receives a change cipher spec message (see

229Network and Transport Security Protocols

later section titled “The Change Cipher Spec Protocol”), the
appropriate sequence number is set to zero. Sequence numbers are
of type uint64 and may not exceed 264-1.

The Record Layer Protocol
As data is transmitted to and received from upper application layers, it is
operated on in the SSL record layer (see Figure 7-16). It is here that data
is encrypted, decrypted, and authenticated.

Chapter 7230

Figure 7-16

Overview of the
SSL record layer

The following five steps take place in the record layer:

1. As the record layer receives an uninterrupted stream of data from
the upper application layer, the data is fragmented, or broken into
manageable plaintext blocks (or records). Each record is 16K or
smaller.

2. Optionally, the plaintext records are compressed using the
compression algorithm defined by the current session state.

3. A MAC is computed for each of the plaintext records. For this
purpose, the shared secret key, previously established, is used.

4. The compressed (or plaintext) data and its associated MAC are
encrypted using the symmetric cipher that has been previously
agreed upon for this session. Encryption may not increase the overall
length of the record beyond 1,024 bytes.

5. A header is added to each record as a prefix consisting of the
following fields:

Content Type This field indicates the protocol used to process
the enclosed record in the next-higher level.
Major Version This field indicates the major version of SSL in
use. For example, TLS has the value 3.
Minor Version This field indicates the minor version of SSL in
use. For example, TLS has the value 1.
Compressed Length This field indicates the total length in
bytes of the plaintext record.

The party receiving this information reverses the process, that is, the
decryption and authentication functions are simply performed in reverse.

NOTE:
Sequence numbers are also included with each transmission so that
missing, altered, or extra messages are detectable.

The Change Cipher Spec Protocol
The change cipher spec protocol is the simplest of the SSL-specific proto-
cols. It exists to signal a transition in the ciphering strategies. The
protocol consists of a single message, which is encrypted and compressed
by the record layer as specified by the current cipher specification. Before
finishing the handshake protocol, both the client and the server send this
message to notify each other that subsequent records will be protected
under the just-negotiated cipher specification and associated keys. An
unexpected change cipher spec message should generate an unex-
pected_message alert.

231Network and Transport Security Protocols

The Alert Protocol
One of the content types supported by the SSL record layer is the alert
type. The alert protocol conveys alert messages and their severity to par-
ties in an SSL session. Just as application data is processed by the record
layer, alert messages are compressed and encrypted as specified by the
current connection state.

When either party detects an error, the detecting party sends a mes-
sage to the other. If the alert message has a fatal result, both parties
immediately close the connection. Both parties are required to forget any
session identifier, keys, and secrets associated with a failed connection.
For all other nonfatal errors, both parties can cache information to resume
the connection.

The following error alerts are always fatal:

� Unexpected_message This message is returned if an inappro-
priate message was received.

� Bad_record_mac This message is returned if a record is received
without a correct message authentication code.

� Decompression_failure This message is returned if the
decompression function received improper input (for example, the
data could not be decompressed or it decompresses to an excessive
length).

� Handshake_failure The return of this message indicates that the
sender was unable to negotiate an acceptable set of security
parameters given the available options.

� Illegal_parameter A field in the handshake was out of range or
inconsistent with other fields.

The remaining alerts are as follows:

� No_certificate This message can be sent in response to a certifi-
cation request if no appropriate certificate is available.

� Bad_certificate The return of this message indicates that a certi-
ficate was corrupted (that is, it contained a signature that did not
verify).

� Unsupported_certificate The return of this message indicates
that a certificate was of an unsupported type.

� Certificate_revoked The return of this message indicates that a
certificate was revoked by its signer.

Chapter 7232

� Certificate_expired The return of this message indicates that a
certificate has expired.

� Certificate_unknown The return of this message indicates that
some other (unspecified) issue arose in processing the certificate, and
it was rendered unacceptable.

� Close_notify This message notifies the recipient that the sender
will not send any more messages on this connection. Each party is
required to send this message before closing the write side of a
connection.

The Handshake Protocol
The SSL handshake protocol is responsible for establishing the parame-
ters of the current session state. As shown in Figure 7-17, both parties
agree on a protocol version, select cryptographic algorithms, optionally

233Network and Transport Security Protocols

Figure 7-17

Overview of the
handshake
protocol

authenticate each other, and use public-key encryption techniques to gen-
erate shared secrets (described later under “Cryptographic Computa-
tions”) through a series of messages exchanged between the client and the
server. The following subsections explain in detail the steps of the hand-
shake protocol.

The Client Hello Message

For communications to begin between a client and a server, the client
must first initiate a client hello message. The contents of this message
provide the server with data (such as version, random value, session ID,
acceptable ciphers, and acceptable compression methods) about variables
that are supported by the client. This message can come as a client
response to a hello request (from the server), or on its own initiative the
client can use it to renegotiate the security parameters in an existing con-
nection.

A client hello message contains the following fields:

� Client_version This field provides the highest SSL version that is
understood by the client.

� Random This field contains a client-generated random structure
that will be used for later cryptographic computations in the SSL
protocol. The 32-byte random structure is not entirely random.
Rather, it is made up of a 4-byte date/time stamp, with the remaining
28 bytes of data being randomly generated. The date/time stamp
assists in the prevention of replay attacks.

� Session_id This field contains a variable-length session identifier.
This field should be empty if no session identifier is available or if the
client wishes to generate new security parameters. If the session
identifier does, however, contain a value, that value should identify a
previous session between the same client and server whose security
parameters the client wishes to reuse. (The reuse of session
identifiers is discussed later in this chapter under “Resuming
Sessions.”)

� Cipher_suites This field contains a list of combinations for
cryptographic algorithms supported by the client. This list is ordered
according to the client’s preference (that is, first choice first). This list
is used to make the server aware of the cipher suites available to the
client, but it is the server that ultimately decides which cipher will be

Chapter 7234

used. If the server cannot find an acceptable choice from the list, it
returns a handshake failure alert and closes the connection.

� Compression_methods Similar to the cipher_suites field, this
field lists all supported compression methods known to the client.
Again, this list is ordered according to the client’s preference.
Although this field is not regularly used in SSLv3, future TLS
versions will require support for it.

NOTE:
After the client hello message is sent, the client waits for a server hello
message. If the server returns any handshake message other than a server
hello, a fatal error results and communications are halted.

The Server Hello Message

After the server processes the client hello message, it can respond with
either a handshake failure alert or a server hello message. The content of
the server hello message is similar to that of the client hello. The differ-
ence is that whereas the client hello is used to list its capabilities, the
server hello is used to make decisions that are then passed back to the
client.

The server hello message contains the following fields:

� Server_version This field contains the version that was decided
on by the server; this version will be used for further communi-
cations with the client. The server bases its decision on the highest
version supported by both parties. For example, if the client states
that it can support SSLv3 but the server supports up to TLS (or
SSLv3.1), the server will decide on SSLv3.

� Random This field, similar in structure to that of the client’s, is
used for future cryptographic operations within SSL. It must,
however, be independent of and different from that generated by the
client.

� Session_id This field provides the identity of the session
corresponding to the current connection. If the session identifier that
was received by the client is nonempty, the server will look in the
session cache for a match. If a match is found, the server can

235Network and Transport Security Protocols

establish a new connection, resuming the specified session state. In
that case, the server returns the same value that was provided by the
client, indicating a resumed session. Otherwise, this field contains a
different value, identifying a new session.

� Cipher_suite This field indicates the single cipher suite selected by
the server from the list provided by the client.

� Compression_method Similar to the cipher_suite message, this
field indicates the single compression method selected by the server
from the list provided by the client.

The Server Certificate Message

Immediately after the server hello message, the server can send its cer-
tificate or chain of certificates to be authenticated. Authentication is
required in all cases of agreed-on key exchange (with the exception of
anonymous Diffie-Hellman). The appropriate certificate type (generally
an X.509v3 server certificate) must be used for the key exchange algo-
rithm of the selected cipher suite.

This message also makes the public key available to the client. This
public key is what the client uses to encrypt the actual session key.

NOTE:
A similar message type can be used for client-side authentication support.

The Server Key Exchange Message

The server sends a server key exchange message only when no certificate
is present, when the certificate is used only for signing (as with Digital
Signature Standard [DSS] certificates and signing-only RSA certificates),
or when Fortezza key exchange is used. The message complements the
cipher suite that was previously stated in the server hello message, pro-
viding the algorithm variables that the client needs in order to continue.
These values depend on which algorithm has been selected. For example,
with RSA key exchange (where RSA is used only for signatures), the mes-

Chapter 7236

sage would contain a temporary RSA public key exponent and modulus,
and a signature of those values.

The Certificate Request Message

The optional certificate request message requests a certificate from the
client for authentication purposes. It is made up of two parameters. The
first parameter indicates the acceptable certificate types (RSA—signa-
ture-only, DSS—signature-only, and so on). The second parameter indi-
cates the acceptable distinguished names of acceptable certificate
authorities.

NOTE:
This message is to be used only by non-anonymous servers (servers not
using anonymous Diffie-Hellman).

The Server Hello Done Message

As the name implies, the server hello done message is sent by the server
to the client to indicate the end of the server hello and to signal that no
further associated server hello messages are coming. After this message is
sent, the server waits for the client to respond. On receipt of the server
hello done message, the client should verify the certificate and any cer-
tificate chain sent by the server (if required) and should verify that all
server hello parameters received are acceptable.

The Client Certificate Message

The client certificate message is the first message that a client can send
after a server hello done message is received, and it is sent only if the
server requests a certificate. If the client does not have a suitable cer-
tificate (for example, an X.509v3 client certificate) to send, it should
send a no_certificate alert instead. Although this alert is only a warning,
it is a matter of the server’s discretion whether to continue or terminate
communications.

237Network and Transport Security Protocols

The Client Key Exchange Message

Like the server key exchange message, the client key exchange message
allows the client to send key information to the server. Unlike the server
key exchange message, however, this key information pertains to a sym-
metric-key algorithm that both parties will use for the session.

NOTE:
Without the information contained in this message, communications can-
not continue.

The content of this message depends on the type of key exchange, as
follows:

� RSA The client generates a 48-byte pre-master secret, which it
encrypts by using either the public key from the server’s certificate
or a temporary RSA key from a server key exchange message. This
result is then sent to the server to compute the master secret key.
(Computation of the master secret is discussed later in this chapter
under “Cryptographic Computations.”)

� Ephemeral or Anonymous Diffie-Hellman The client provides
its own Diffie-Hellman public parameters to the server.

� Fortezza The client calculates public parameters using the public
key in the server’s certificate along with private parameters in the
client’s token. These parameters are then sent to the server.

The Certificate Verify Message

The certificate verify message is used to provide explicit verification of a
client certificate. When using client authentication, the server authenti-
cates the client using the private key. This message contains the pre-
master secret key signed with the client’s private key. The server validates
the key against the client’s certificate. The server is not required to
authenticate itself to the client. Because the pre-master secret is sent to
the server using the server’s public key, only the legitimate server can
decrypt it with the corresponding private key.

Chapter 7238

TE
AM
FL
Y

Team-Fly®

The Finished Message

Next, the client sends a change cipher spec message, followed immedi-
ately by the finished message. When the server receives the finished mes-
sage, it too sends out a change cipher spec message and then sends its
finished message. At this point the handshake protocol is complete and
the parties can begin to transfer application data securely.

Be aware that the finished message is the first to be protected with the
just-negotiated algorithms, keys, and secrets. As a result, the communi-
cating parties can verify that the key exchange and authentication
processes were successful. No acknowledgment of the finished message is
required; parties can begin sending encrypted data immediately after
sending the finished message. Recipients of finished messages must ver-
ify that the contents are correct.

NOTE:
The change cipher spec message is actually part of the change cipher spec
protocol and not the handshake protocol.

Ending a Session and Connection

Before the end of communications, the client and the server must share
knowledge that the connection is ending. This arrangement protects the
session from a possible truncation attack, whereby an attacker tries to
compromise security by prematurely ending communications. Either
party can terminate the session by sending a close_notify alert before clos-
ing its own write session. When such an alert is received, the other party
must send its own close_notify alert and close down immediately, dis-
carding any pending writes.

NOTE:
If the SSL session is closed before either party sends a close_notify mes-
sage, the session cannot be resumed.

239Network and Transport Security Protocols

Resuming Sessions

Public-key encryption algorithms are very slow. To improve performance,
the parties can cache and reuse information exchanged during the hand-
shake protocol. This process is called session ID reuse. If it is determined
during the handshake protocol that the client and the server sides of the
protocol share a session ID, the public-key and authentication operations
are skipped, and the previously generated shared secret is reused during
key generation.

Both parties (client and server) must agree to reuse a previous session
ID. If either party suspects that the session may have been compromised
or that certificates may have expired or been revoked, it should force a full
handshake. Because an attacker who obtains a master secret key may be
able to impersonate the compromised party until the corresponding ses-
sion ID expires, the SSL specification suggests that the lifetime of cached
session IDs expire after 24 hours. It also suggests that applications that
run in relatively insecure environments should not write session IDs to
stable storage.

Cryptographic Computations

We have used the term “shared secret” to explain how traffic is encrypted
in SSL. Now let’s look at the generation of the master secret, which is
derived from the pre-master secret. In the case of RSA or Fortezza cryp-
tography, the pre-master secret is a value generated by the client and sent
to the server via the client key exchange message. In Diffie-Hellman cryp-
tography, the pre-master secret is generated by each side (server and
client) using the other party’s Diffie-Hellman public values.

In each of these three cases, after a pre-master secret is generated and
both sides are aware of it, the master secret can be computed. The master
secret, which is used as the shared secret, is made up of several hash cal-
culations of data previously exchanged in messages. Figure 7-18 shows
the format of these calculations.

Encryption and Authentication Algorithms

SSLv3.0 supports a wide range of algorithms that provide various levels of
security. These algorithms (encryption, key exchange, and authentication)
support a total of 31 cipher suites, although some of them provide little or

Chapter 7240

no security in today’s world. One such cipher suite is based on anonymous
Diffie-Hellman, and the specification strongly discourages its use because
it is vulnerable to man-in-the-middle attacks.

Summary
Security protocols make use of the various technologies described up to
this point in the book to provide the necessary security. All cryptographic
algorithms, whether they are symmetric, asymmetric, message digests, or
message authentication, codes do very little on their own; instead, they
are the basis for the security provided through set standard protocols
such as IPSec or SSL.

Security protocols can be placed within the various layers of the TCP/IP
networking stack. IPSec, for example, is located at the IP layer, while SSL
is located between the TCP and application layers. The lower in the
TCP/IP stack a protocol is placed, the more flexible and less user-intrusive
the protocol is.

IPSec plays an important role in securing IP networks to provide pri-
vate communications. It enables a wide range of security services, not only
confidentiality but also authentication, access control, and protection
against replay attacks. These services are available through the use of
either or both the authentication header (AH) and encapsulating security
payload (ESP).

SSL provides security at the transport (TCP) layer, which is below the
application layer. The security provided by SSL can be thought of as a
secure pipe placed between a client and server. Data is authenticated con-
fidentially while in the pipe. It should be noted, however, that once either
system (client or server) receives the data, the data is returned to its
unprotected clear state.

241Network and Transport Security Protocols

Figure 7-18

Generating a
master secret

Real-World Examples
Various products are available that provide security using the IPSec and
SSL protocols. There are several toolkits available for developers who
wish to build IPSec and SSL into their applications. RSA Security, Inc.
provides two such commercial products, BSAFE Crypto-C/J and SSL-C/J,
both of which are available for C programmers as well as Java program-
mers.

Other companies, however, have created end-user software and embed-
ded hardware products using IPSec and SSL. In fact, most virtual private
networks (VPNs) are based on the popular IPSec protocol. For example,
Microsoft Windows 2000 makes use of IPSec to provide a VPN, something
most end users aren’t aware is available. Just as IPSec can be found in a
various software and hardware products, so can SSL. SSL is by far the
most widely distributed security protocol when it comes to e-commerce.
One reason for SSL’s widespread use is that it is incorporated in every
copy of Netscape and Internet Explorer available today. SSL is also found
within the operating system of various platforms. Many Linux vendors
have included SSL in their systems; it provides security not only for
HTTP communications, but also for other protocols as well, such as NNTP,
SMTP, and FTP.

Chapter 7242

Application-Layer
Security Protocols

Like Chapter 7, this chapter looks at security protocols that are used in
today’s networks. But unlike the protocols described in Chapter 7, the pro-
tocols discussed in this chapter provide security services for specific appli-
cations (such as Simple Mail Transfer Protocol (SMTP), Hypertext
Transfer Protocol (HTTP), and so on). Figure 8-1 shows each of these
application protocols along with its location in the Transportation Control
Protocol/Internet Protocol (TCP/IP) stack. This chapter provides a de-
tailed look at two well-known security protocols—S/MIME and SET—
which operate above the application layer.

S/MIME
Secure/Multipurpose Internet Mail Extensions (S/MIME) is a specifica-
tion for securing electronic mail. S/MIME, which is based on the popular
MIME standard, describes a protocol for adding cryptographic security
services through MIME encapsulation of digitally signed and encrypted
objects. These security services are authentication, nonrepudiation, mes-
sage integrity, and message confidentiality.

CHAPTER 8

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Although S/MIME is most widely known and used for securing e-mail,
it can be used with any transport mechanism that transports MIME (such
as HTTP). S/MIME can even be used in automated message transfer
agents, which use cryptographic security services that do not require
human intervention. The S/MIME specification even points out how to use
its services to encrypt fax messages sent over the Internet.

The following section describes S/MIME along with the various MIME
types and their uses. It explains how to create a MIME body that has been
cryptographically enhanced according to Cryptographic Message Syntax
(CMS), a formatting standard derived from PKCS #7. Finally, it defines
and illustrates how cryptographic signature and encryption services are
added to MIME data.

Overview

In the early 1980s, the Internet Engineering Task Force (IETF) developed
Request for Comment (RFC) 822, which became the specification that
defined the standard format of electronic mail messages. Along with RFC
821 (which defined the mail transfer protocol), RFC 822 was the founda-
tion of the SMTP, which was designed to carry textual messages over the
Internet.

MIME, also developed by the IETF, was designed to support nontextual
data (such as graphics or video data) used in Internet messages. The
MIME specification adds structured information to the message body that
allows it to contain nontextual information. However, MIME does not pro-
vide any security services.

In 1995, RSA Data Security, Inc., led a consortium of industry vendors
in the development of S/MIME. After work on the specification was under
way, RSA passed it to the IETF for further development. S/MIMEv3 is the
current version. Through continued development by the IETF S/MIME
working group, the protocol has incorporated a number of enhancements.

Chapter 8244

Figure 8-1

Application-layer
protocols within
TCP/IP

S/MIME Functionality

S/MIMEv3 currently provides the following security enhancements to
MIME content:

� Enveloped data This function supports confidentiality services by
allowing any content type in a MIME message to be symmetrically
encrypted. The symmetric key is then encrypted with one or more
recipients’ public keys. The encrypted data and corresponding
encrypted symmetric key are then attached to the data structure,
along with any necessary recipient identifiers and algorithm
identifiers.

� Signed data This function provides data integrity services. A
message digest is computed over the selected content (including any
algorithm identifiers and optional public-key certificates), which is
then encrypted using the signer’s private key. The original content
and its corresponding signature are then base-64 encoded (base-64
and other encoding methods are described later in “Transfer
Encoding”).

� Clear-signed data This function allows S/MIME to provide the
same data integrity services as provided by the signed data function,
while at the same time allowing readers that are not S/MIME-
compliant to view the original data. Following the processes just
described, a digital signature is computed over the selected content,
but only this digital signature (and not the original data) is base-64
encoded.

� Signed and enveloped data This function supports both
confidentiality and integrity services by allowing either the signing of
encrypted data or the encrypting of signed data.

Cryptographic Algorithms

S/MIMEv3 implements support for several symmetric content-encryption
algorithms. However, some S/MIME implementations still incorporate
RC2 with a key size of 40 bits, and by today’s standards, a 40-bit key is too
weak. However, in most current S/MIMEv3 implementations, the user can
choose from various content-encryption algorithms, such as DES, Triple
DES, or RC2 with a key size greater than 40; see Chapter 2.

245Application-Layer Security Protocols

The specification does, however, spell out all algorithms to be used for
security services within S/MIMEv3. Some of them are optional, and oth-
ers are required. They are as follows:

� Digest and hashing algorithms These must support MD5 and
SHA-1; however, SHA-1 should be used.

� Digital signature algorithms Both sending and receiving agents
must support DSA and should also support RSA.

� Key encryption algorithms Sending and receiving agents must
support Diffie-Hellman and should also support RSA encryption.

� Data encryption (session key) algorithms Sending agents
should support RC2/40-bit key, RC2/128-bit key, and Triple DES.
Receiving agents should support RC2/128 and Triple DES but must
support RC2/40.

Which algorithm is best? It’s a simple matter of looking at key length; the
bigger the key, the greater the security. However, sending and receiving
agents are not always at the same level. For instance, the sending agent
may be attempting to encrypt something with RC2/128 for added security;
however, the receiving agent may only have the ability to decrypt messages
with RC2/40. For this reason, the S/MIME specification defines a process for
deciding which algorithm is best when you’re sending S/MIME messages.

The following are the specified rules that a sending agent should use in
making its decision:

1. Known capabilities. If the sending agent has previously received a
list of cryptographic capabilities of the recipient, the sender should
choose the first (most preferred) capability listed to encrypt the
outgoing message.

2. Unknown capabilities but known use of encryption. This rule applies
when the sending agent has no idea of the encryption capabilities of
the recipient but has received at least one previously encrypted
message from that recipient. In this case, the sending agent should
encrypt the outgoing message using that algorithm.

3. Unknown capabilities and unknown version of S/MIME. This rule
applies when a sending agent has had no previous contact with the
recipient and does not know its capabilities. The sending agent should
use Triple DES because of its strength and because it is required by
S/MIMEv3. However, if Triple DES is not used, the sending agent
should use RC2/40.

Chapter 8246

S/MIME Messages

S/MIME messages are made up of the MIME bodies and CMS objects. The
latter are derived from PKCS #7 data structures.

Before any cryptographic processing takes place, a MIME entity must
be prepared. A MIME entity may be a subpart of a message or the whole
message, including all its subparts. The latter type of MIME entity is
made up only of the MIME headers and MIME body and does not include
the RFC822 headers (To:, From:, and so on). This MIME entity is then
converted to canonical form, and the appropriate transfer encoding is
applied (both processes are discussed in the following sections).

After the MIME entity has been created and all proper encoding has
taken place, the MIME entity is sent to security services, where the cho-
sen security function is provided (enveloping, signing, or both). This
process yields a CMS (or PKCS #7) object, which in turn is wrapped up in
MIME and placed with the original message, according to the selected
S/MIME content type.

Canonicalization

As stated in the preceding section, each MIME entity must be converted
to a canonical form. This conversion allows the MIME entity to be
uniquely and unambiguously represented in the environments where the
signature is created and where the signature will be verified. This same
process is performed for MIME entities that will be digitally enveloped as
well as signed. Canonicalization provides a standard means by which data
from various platforms can be exchanged.

Transfer Encoding

Whenever data is processed by digital equipment, it can be encoded and
represented in a variety of ways, such as 7-bit, 8-bit, or binary. Transfer
encoding ensures that data is represented properly for transfer across the
Internet and ensures reliable delivery. One common method is base-64
encoding, which enables arbitrary binary data to be encoded so that it
may pass through a variety of systems unchanged. For example, if 8-bit
data is transferred and a 7-bit device (such as a mail gateway) receives it,
there is a good chance that before it is forwarded to its final destination,
it may be stripped of characters.

247Application-Layer Security Protocols

NOTE:
As you might expect, if a digitally signed message is altered or stripped of
characters, it will be selected as invalid.

Enveloped-Only Data

The process of generating an encrypted MIME entity is called digital
enveloping and is provided for by the enveloped-data content type. This
content type consists of encrypted content of any type and encrypted
content-encryption keys for one or more recipients. For each recipient, a
digital envelope (made up of the encrypted content and associated
encrypted content-encryption key) is created, ensuring confidentiality for
the message while it is in transit. Figure 8-2 illustrates the S/MIME
enveloped-data process.

Chapter 8248

Figure 8-2

S/MIME
enveloped-data
process

To construct an enveloped-data content type, follow these steps:

1. For a chosen symmetric algorithm (that is, RC2, DES, and so on),
generate a pseudo-random content-encryption key.

2. For each recipient, encrypt the content-encryption key. Which
encryption to use depends on which key management system is used.
The associated key management systems are as follows:

RSA key transport The content-encryption key is encrypted in
the recipient’s public key.

TE
AM
FL
Y

Team-Fly®

Diffie-Hellman key agreement The recipient’s public key and
the sender’s private key are used to generate a shared symmetric
key, which is then used to encrypt the content-encryption key.
Known symmetric key The content-encryption key is
encrypted using a previously distributed symmetric key.

3. For each recipient, create a block of data containing the recipient
information. This information includes the encrypted content-
encryption key and other recipient-specific information (such as
version and algorithm identifiers).

4. Encrypt the message using the content-encryption key.

5. Prepend the recipient information to the encrypted content, and base
64-encode the result to produce the enveloped-data value.

When the digital envelope is received, the process is reversed to retrieve
the original data. First, the enveloped data is stripped of its base-64 encod-
ing. Then the appropriate content-encryption key is decrypted. Finally, the
content-encryption key is used to decrypt the original content.

Signed-Only Data

The S/MIME specification defines two methods for signing messages:

� Application/pkcs7-mime with signed-data (usable only by S/MIME-
compliant mailers)

� Multipart/signed, also known as clear signing (usable by all mailers)

S/MIMEv3 doesn’t mandate which method to use, but the specification
mentions that the multipart/signed form is preferred for sent messages
because of its readability by any mailer. The specification states that
receiving agents should be able to handle both kinds.

Signed Data An S/MIME application/pkcs7-mime message with signed
data may consist of any MIME content type, in which any number of sign-
ers in parallel can sign any type of content. Figure 8-3 illustrates S/MIME
data signing.

The following steps apply to constructing a signed-data content type:

1. For each signer, select a message digest or hashing algorithm (MD5
or SHA-1).

2. Compute a message digest or hash value over all content to be signed.

249Application-Layer Security Protocols

3. For each signer, digitally sign the message digest (that is, encrypt the
digest using the signer’s private key).

4. For each signer, create a signer information block containing the
signature value and other signer-specific information (such as version
and algorithm identifier).

5. Prepend the signed content with signer information (for all signers),
and then base-64-encode it to produce the signed data value.

After it is received, the signed data content type is stripped of its
base-64 encoding. Next, the signer’s public key is used to decrypt and
reveal the original message digest. Finally, the recipient independently
computes the message digest and compares the result with that of the one
that was just decrypted.

Clear-Signed Data It is possible that data you have digitally signed might
be received by a recipient that is not S/MIME-compliant, rendering the
original content unusable. To counter this problem, S/MIME uses an
alternative structure, the multipart/signed MIME type.

The body of the multipart/signed MIME type is made up of two parts.
The first part, which can be of any MIME content type, is left in the clear
and placed in the final message. The contents of the second part are a spe-
cial case of signed data, known as a detached signature, which omits the
copy of the plaintext that may be contained within the signed data. Fig-
ure 8-4 illustrates the S/MIME clear-signed data process.

Chapter 8250

Figure 8-3

S/MIME data
signing

Signing and Encrypting

S/MIME also supports both encryption and signing. To provide this ser-
vice, you can nest enveloped-only and signed-only data. In other words,
you either sign a message first or envelope the message first. The decision
of which process to perform first is up to the implementer and the user.

NOTE:
The S/MIMEv3 specification (RFC2633) describes security risks involved
with each technique (envelope first or signing first).

Registration Request

In addition to security functions, S/MIME defines a format for conveying
a request to have a public-key certificate issued. A MIME content type,
application/x-pkcs10, is used to request a certificate from a certification
authority.

251Application-Layer Security Protocols

Figure 8-4

S/MIME clear-
signed data
process

NOTE:
The specification does not mandate the use of any specific technique for
requesting a certificate, whether it is through a certificate authority, a
hardware token, or manual distribution. The specification does, however,
mandate that every sending agent have a certificate.

Certificates-Only Messages

A certificates-only message is an application/pkcs7-mime and is prepared
in much the same way as a signed-data message. This message, which is
used to transport certificates to an S/MIME-compliant end entity, may be
needed from time to time after a certification authority receives a certifi-
cate request. The certificates-only message can also be used for the trans-
port of certificate revocation lists (CRLs).

Enhanced Security Services

Currently there are three optional enhanced security services that can be
used to extend the current S/MIMEv3 security and certificate processing
services.

� Signed receipts A signed receipt is an optional service that allows
for proof of message delivery. The receipt provides the originator a
means of demonstrating to a third party that the recipient not only
received but also verified the signature of the original message
(hopefully, this means that the recipient also read the message).
Ultimately, the recipient signs the entire message and its corre-
sponding signature for proof of receipt. Note that this service is used
only for signed data.

� Security labels Security labels can be used in a couple of ways.
The first and probably most easily recognizable approach is to
describe the sensitivity of data. A ranked list of labels is used (confi-
dential, secret, restricted, and so on). Another technique is to use the
labels to control authorization and access, describing which kind of
recipient should have access to the data (such as a patient’s doctor,
medical billing agents, and so on).

� Secure mailing lists When S/MIME provides its services, sending
agents must create recipient-specific data structures for each

Chapter 8252

recipient. As the number of recipients grows for a given message, this
processing can impair performance for messages sent out. Thus, mail
list agents (MLAs) can take a single message and perform the
recipient-specific encryption for every recipient.

Interoperability

Since the S/MIME standard first entered the public eye, a number of ven-
dors have made efforts to incorporate it. However, a lack of interoperabil-
ity is one pitfall that end users should take into account. For example,
many vendors are still S/MIMEv2-compliant, whereas others have moved
to S/MIMEv3 without supporting backward compatibility. Other problems
include limits on the certificate processing available in various products.

To help promote product interoperability, the RSA Interoperability Test
Center was established. This S/MIME test center allows vendors to per-
form interoperability testing on their products and to have the results
published. The following Web address provides interoperability informa-
tion as well as products that have been found to be S/MIME-compliant:
http://www.rsasecurity.com/standards/smime/interop_center.html.

Secure Electronic Transaction (SET)
The Internet has made it easier than ever for consumers to shop, money
to be transferred, and bills to be paid over the Internet at the press of a
button. The price we pay for this ease of use, however, is increased oppor-
tunity for fraud. For example, Figure 8-5 illustrates how easy it is for
those with very little character to fraudulently generate credit cards used
for online payment, known in the industry as payment cards.

The Secure Electronic Transaction (SET) specification provides a
framework for protecting payment cards used in Internet e-commerce
transactions against fraud. SET protects payment cards by ensuring the
confidentiality and integrity of the cardholder’s data while at the same
time providing a means of authentication of the card. The current version
of the specification (SETv1) was initiated by MasterCard and Visa in Feb-
ruary 1996 and was completed in May 1997.

SET is defined in three books. The first book, Business Description,
describes the specification in business terms (that is, goals, participants,

253Application-Layer Security Protocols

and overall architecture). The second book, Programmer’s Guide, is a
developer’s guide, detailing the architecture, cryptography, and various
messages used in SET. The third book, Formal Protocol Definition, pro-
vides a formal definition of the entire SET process. (All three books were
published by Visa International and MasterCard on May 31, 1997.)

What follows is a high-level overview of the SET specification, outlining
the business requirements, functions, and participants defined in the first
book. We also cover SET certificates used and their management, describ-
ing the addition of SET-specific extensions. Finally, we look at the SET
messages and transactions.

Business Requirements

The specification defines the business requirements of SET as follows:

� To provide confidentiality of payment information and enable
confidentiality of the associated order information

� To ensure the integrity of all transmitted data

� To provide authentication that a cardholder is a legitimate user of a
branded payment card account

Chapter 8254

Figure 8-5

Generation of
fraudulent credit
cards

� To provide authentication that a merchant can accept branded
payment card transactions through its relationship with an acquiring
financial institution

� To ensure the use of the best security practices and system design
techniques to protect all legitimate parties in an electronic commerce
transactions

� To create a protocol that neither depends on transport security
mechanisms nor prevents their use

� To facilitate and encourage interoperability among software and
network providers

SET Features

To meet its stated business requirements, SET defines the following nec-
essary features:

� Confidentiality of information Confidentiality provides a secure
channel for all payment and account information, preventing
unauthorized disclosure. SET provides for confidentiality through the
use of the DES algorithm.

� Integrity of data Data integrity ensures that the message content
is not altered during transmission. This feature is provided through
the use of digital signatures using the RSA algorithm.

� Cardholder account authentication Cardholder authentication
provides merchants a means of verifying the cardholder as legitimate.
Digital signatures and X.509v3 certificates are used to implement
this function.

� Merchant authentication Merchant authentication gives
cardholders a means of verifying that the merchant not only is
legitimate but also has a relationship with a financial institution.
Again, digital signatures and X.509v3 certificates are used to
implement this service.

� Interoperability Interoperability allows the use of this
specification in hardware and software from various manufacturers,
allowing their use by cardholders or other participants.

255Application-Layer Security Protocols

SET Participants

Various participants use and interact with the SET specification. Figure
8-6 illustrates a simplified overview of the participants’ interactions.

Chapter 8256

Figure 8-6

Interactions
among SET
participants

Following are these participants and their roles in the transactions
governed by SET:

� Issuer The issuer is the bank or other financial institution that
provides a branded payment card (such as a MasterCard or Visa
credit card) to an individual. The card is provided after the individual
establishes an account with the issuer. It is the issuer that is
responsible for the repayment of debt, for all authorized transactions
placed on the card.

� Cardholder The cardholder is the individual authorized to use the
payment card. The SET protocol provides confidentiality services for
the cardholder’s transactions with merchants over the Internet.

� Merchant The merchant is any entity that provides goods and/or
services to a cardholder for payment. Any merchant that accepts
payment cards must have a relationship with an acquirer.

� Acquirer The acquirer is a financial institution that supports
merchants by providing the service of processing payment cards. In
other words, the acquirer pays the merchant, and the issuer repays
the acquirer.

� Payment gateway The payment gateway is the entity that
processes merchant payment messages (for example, payment
instructions from cardholders). The acquirer or a designated third
party can act as a payment gateway; however, the third party must
interface with the acquirer at some point.

Dual Signatures

The SET protocol introduced dual signatures, a new concept in digital sig-
natures. Dual signatures allow two pieces of data to be linked and sent to
two different entities for processing. For example, within SET a card-
holder is required to send an order information (OI) message to the mer-
chant for processing; at the same time, a payment instructions (PI)
message is required by the payment gateway. Figure 8-7 illustrates the
dual signature generation process.

The dual signature process follows these steps:

1. A message digest is generated for both the OI and the PI.

2. The two message digests are concatenated (hashed) to produce a new
block of data.

3. The new block of data is hashed again to provide a final message
digest.

4. The final message digest is encrypted using the signer’s private key,
producing a digital signature.

A recipient of either message can check its authenticity by generating
the message digest on its copy of the message, concatenating it with the
message digest of the other message (as provided by the sender) and com-
puting the message digest of the result. If the newly generated digest

257Application-Layer Security Protocols

matches the decrypted dual signature, the recipient can trust the authen-
ticity of the message.

SET Certificates

The SET protocol provides authentication services for participants
through the use of X.509v3, and has revocation provisions through the use
of CRLv2 (both X.509v3 and CRLv2 are described in Chapter 6.). These
certificates are application-specific; that is, SET has defined its own spe-
cific private extensions that are meaningful only to SET-compliant sys-
tems. SET contains the following predefined profiles for each type of
certificate:

� Cardholder certificates function as electronic representations of
payment cards. Because a financial institution digitally signs these
certificates, they cannot be altered by a third party and can be
generated only by the financial institution. A cardholder certificate
does not contain the account number and expiration date. Instead,
the account information and a secret value known only to the
cardholder’s software are encoded using a one-way hashing
algorithm.

� Merchant certificates function as electronic substitutes for the
payment card brand decal that appears in a store window; the decal

Chapter 8258

Figure 8-7

Generating dual
signatures

TE
AM
FL
Y

Team-Fly®

itself is a representation that the merchant has a relationship with a
financial institution allowing it to accept the payment card brand.
Because the merchant’s financial institution digitally signs them,
merchant certificates cannot be altered by a third party and can be
generated only by a financial institution.

� Payment gateway certificates are obtained by acquirers or their
processors for the systems that process authorization and capture
messages. The gateway’s encryption key, which the cardholder gets
from this certificate, is used to protect the cardholder’s account
information. Payment gateway certificates are issued to the acquirer
by the payment card brand organization.

� Acquirer certificates are required only in order to operate a
certification authority that can accept and process certificate requests
directly from merchants over public and private networks. Those
acquirers that choose to have the payment card brand organization
process certificate requests on their behalf do not require certificates
because they are not processing SET messages. Acquirers receive
their certificates from the payment card brand organization.

� Issuer certificates are required only in order to operate a
certification authority that can accept and process certificate requests
directly from cardholders over public and private networks. Those
issuers that choose to have the payment card brand organization
process certificate requests on their behalf do not require certificates
because they are not processing SET messages. Issuers receive their
certificates from the payment card brand organization.

Certificate Management

The SET specification states that certificates must be managed through a
strict certificate hierarchy, as shown in Figure 8-8 (certificate hierarchies
are explained in Chapter 6).

In the case of SET, each certificate is linked to the signature certificate
of the entity that digitally signed it. By following the trust tree to a known
trusted party, a person can be assured that the certificate is valid. For
example, a cardholder certificate is linked to the certificate of the issuer
(or the brand organization on behalf of the issuer). The issuer’s certificate
is linked back to a root key through the brand organization’s certificate.
The public signature key of the root is known to all SET software and can
be used to verify each of the certificates in turn.

259Application-Layer Security Protocols

Payment Processing

To provide for secure payment processing over the Internet, the SET spec-
ification defines multiple transaction types, as shown in Table 8-1.

To illustrate how SET provides security of payment processing within
e-commerce transactions, we next discuss each of the following transac-
tion types in depth:

� Purchase request

� Payment authorization

� Payment capture

Purchase Request

The purchase request transaction is made up of four messages that are
exchanged between the cardholder and the merchant:

1. Initiate request. When the cardholder has selected a purchase and
decided which payment card to use, the cardholder is ready to
initiate the request. To send SET messages to a merchant, the
cardholder must have a copy of the merchant’s and payment

Chapter 8260

Figure 8-8

SET certificate
hierarchy

261Application-Layer Security Protocols

Transaction Description

Cardholder registration Allows the cardholder to register with a CA.

Merchant registration Allows a merchant to register with a CA.

Purchase request Message from the cardholder containing order
information (OI) and payment information
(PI) and sent to the merchant and bank.

Payment authorization Message between the merchant and payment
gateway requesting payment authorization
for a transaction.

Payment capture Message from the merchant to the payment
gateway requesting payment.

Certificate inquiry A CA may send this message to either
and status cardholders or merchants to state that more

processing time is needed.
or
A cardholder or merchant may send this
message to a CA to check the current status
of a certificate request, or to receive the
certificate if the request has been approved.

Purchase inquiry Allows the cardholder to check the status of
authorization, capture, or credit processing of
an order after the purchase response has been
received.

Authorization reversal Allows a merchant to reverse an
authorization entirely or in part.

Capture reversal Allows a merchant to correct errors in
previous capture requests, such as those
caused by human error.

Credit Allows a merchant to issue credit to a
cardholder’s account for various reasons (such
as for returned or damaged goods).

Credit reversal Allows a merchant to correct errors in a
previous credit request.

Payment gateway Allows a merchant to request a current copy
certificate request of the payment gateway’s certificates.

Batch administration Message between merchant and payment
gateway regarding merchant batches.

Error message Indicates that a responder rejects a message
because it fails tests of format or content
verification.

Table 8-1

SET Transaction
Types

gateway’s key-exchange keys. The SET order process begins when the
cardholder software (software that runs with your browser) requests
a copy of the gateway’s certificate. The message from the cardholder
indicates which payment card brand will be used for the transaction.

2. Initiate response. When the merchant receives an initiate request
message, a unique transaction identifier is assigned to the message.
The merchant then generates an initiate response message
containing its certificates and that of the payment gateway. This
information is then digitally signed with the merchant’s private key
and transmitted to the cardholder.

3. Purchase request. Upon receipt of the initiate response message, the
cardholder software verifies the certificates of both the merchant and
gateway. Next, the cardholder software creates a dual signature using
the OI and PI. Finally, the cardholder software generates a purchase
request message containing a dual-signed OI and a dual-signed PI
that is digitally enveloped to the payment gateway. The entire
purchase request is then sent to the merchant.

4. Purchase response. When the merchant software receives the
purchase request message, it verifies the cardholder’s certificate
contained within the message, as well as the dual-signed OI. The
merchant software then begins processing the OI and attempts to
gain authorization from the payment gateway by forwarding the PI.
Finally, the merchant generates a purchase response message, which
states that the merchant received the cardholder’s request.

Upon receipt of the purchase response from the merchant, the card-
holder software verifies the merchant certificate as well as the digital sig-
nature of the message contents. At this point, the cardholder software
takes some action based on the message, such as displaying a message to
the cardholder or updating a database with the status of the order.

Payment Authorization

During the processing of an order from a cardholder, the merchant
attempts to authorize the transaction by initiating a two-way message
exchange between the merchant and the payment gateway. First, an
authorization request is sent from the merchant to the payment gateway;
then an authorization response is received from the merchant by the pay-
ment gateway. The request and response are described as follows:

Chapter 8262

1. Authorization request. The merchant software generates and digitally
signs an authorization request, which includes the amount to be
authorized, the transaction identifier from the OI, and other
information about the transaction. This information is then digitally
enveloped using the payment gateway’s public key. The authorization
request and the cardholder PI (which is still digitally enveloped to
the payment gateway) are transmitted to the payment gateway.

2. Authorization response. When the authorization request is received,
the payment gateway decrypts and verifies the contents of the
message (that is, certificates and PI). If everything is valid, the
payment gateway generates an authorization response message,
which is then digitally enveloped with the merchant’s public key and
transmitted back to the merchant.

Upon receipt of the authorization response message from the payment
gateway, the merchant decrypts the digital envelope and verifies the data
within. If the purchase is authorized, the merchant then completes pro-
cessing of the cardholder’s order by shipping the goods or performing the
services indicated in the order.

Payment Capture

When the order-processing portion is completed with the cardholder, the
merchant then requests payment from the payment gateway. Payment
capture is accomplished by the exchange of two messages: the capture
request and the capture response. This process is described as follows:

1. Capture request. The merchant software generates the capture
request, which includes the final amount of the transaction, the
transaction identifier, and other information about the transaction.
This message is then digitally enveloped using the payment
gateway’s public key and transmitted to the payment gateway.

2. Capture response. The capture response is generated after the
capture request is received and its contents verified. The capture
response includes information pertaining to the payment for the
transaction requested. This response is then digitally enveloped
using the merchant’s public key and is transmitted back to the
merchant.

263Application-Layer Security Protocols

Upon receipt of the capture response from the payment gateway, the
merchant software decrypts the digital envelope, verifying the signature
and message data.

NOTE:
The merchant software stores the capture response and uses it for recon-
ciliation with payment received from the acquirer.

Summary
Security protocols located at the application layer work slightly differ-
ently from those that operate on the IP (network) and TCP (transport)
layers. Whereas IPSec (see Chapter 7) is used to provide security for all
data being transferred across an IP network, S/MIME and SET are used
solely to provide security for certain applications.

In 1995, a consortium of application and security vendors, led by RSA
Data Security, Inc., designed the S/MIME protocol. Since then, the IETF
S/MIME working group has taken control of S/MIME to continue its
growth. S/MIME provides security not only for e-mail but also for any
data that is transferred via the MIME protocol. Since its creation,
S/MIME has continued to grow and improve its security services, adding
support for mailing lists, signing receipts, and security labels.

SET is an open specification that provides a framework for protecting
payment cards that are used in e-commerce transactions. Initiated by
Visa and MasterCard in 1996, SET was completed in 1997, with the help
of various other application developers and security vendors. The specifi-
cation is described in three books totaling more than 900 pages.

Note that this chapter and Chapter 7 discuss only four selected proto-
cols. Numerous others are available today, each of them supporting a spe-
cific security task.

Chapter 8264

Real-World Examples
Both S/MIME and SET have been incorporated in various applications.
For secure e-mail, many companies and individuals have chosen to use
S/MIME instead of a proprietary system such as PGP. In fact, many users
have S/MIME-enabled mailers that they have not taken advantage of.
S/MIME is incorporated in Microsoft’s Outlook and Outlook Express e-
mail applications as well as Netscape’s Messenger software.

SET has also gained widespread use. Many of the vendors that visitors
shop with daily across the Internet are SET-enabled. Currently, the mer-
chants worldwide who use SET number in the hundreds. SET products
are available not only for consumers but also for merchants, payment
gateways, and SET certificate authorities. For a list of current SET-
enabled products as well as the merchants that use them, visit
http://www.setco.org/.

For both of these protocols, many security vendors also provide crypto-
graphic APIs (application programming interfaces, or toolkits), which
developers can use to produce secured applications. RSA Security, Inc., is
one such company.

265Application-Layer Security Protocols

This page intentionally left blank.

Hardware Solutions:
Overcoming Software

Limitations

The performance of cryptosystems varies, and some of them come with a
significant computational expense to computer systems. One way to ad-
dress this problem is to apply cryptographic hardware. Cryptographic
accelerators, for example, offer performance enhancements (as well as pos-
sible pitfalls). Cryptographic hardware, including various kinds of tokens,
also plays a role in authentication, as does the old technology of biometrics,
now being applied in new ways.

Cryptographic Accelerators
Cryptographic accelerators provide a means of performing the computa-
tionally expensive workload that usually accompanies various algorithms
and protocols. Cryptographic accelerators work like math coprocessors:
They implement in hardware a set of functions usually handled by soft-
ware. Encoding these functions in silicon allows hardware to perform
these tasks much faster.

Cryptographic accelerators provide usefulness on two fronts. First and
most noticeable is increased speed, which is particularly important to

CHAPTER 9

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

e-commerce companies that interact with a considerable number of cus-
tomers daily. The second benefit is a spin-off of the first one: By reducing
the workload on the system’s CPU, accelerators allow the system to be
used more efficiently for other tasks. Figure 9-1 shows a typical Secure
Socket Layer (SSL) accelerator card.

Chapter 9268

Figure 9-1

A typical SSL
accelerator card

Another reason for the popularity of cryptographic accelerators is the
certifications associated with them. NIST, for example, has certified many
of them. The certification of each device depends on the safeguards that
were implemented in it during manufacture.

TE
AM
FL
Y

Team-Fly®

NOTE:
Cryptographic accelerators often serve to slow down cryptographic opera-
tions because accelerators are I/O-bound. For example, a Web server that
has farmed out private-key operations to a cryptographic accelerator
often performs slower in SSL handshakes when the load is high. The rea-
son for this is simple. I/O-bound operations are an order of magnitude
slower than CPU-bound operations because getting the data to the hard-
ware bus consumes an enormous amount of operating system and con-
text-switching resources. An operating system with poor multitasking
capabilities will likely be brought to its knees if it has to deal with a high
number of SSL handshakes farmed out to an accelerator. Each thread
must block and wait, and the CPU must manage all the blocked threads.
This leads to a great deal of thread thrashing and, simply put, kills per-
formance. For this reason, installing a cryptographic accelerator does not
necessarily give you an across-the-board increase in speed. Where and
how the accelerator is applied are of prime importance.

Authentication Tokens
In the realm of computer security, another important set of hardware
devices is authentication tokens. Authentication tokens provide a means
of authenticating and identifying an end user. Instead of memorizing
passwords, end users protect their identity using a physical object that is
unique to each user. An everyday analogy is the use of a driver’s license to
prove a person’s identity.

Many tokens are designed for use with automated authentication sys-
tems. To verify the identity of the token’s owner, the host system performs
its authentication protocol using information encoded on the token.
Because the uniqueness of the information is responsible for proving the
identity of its bearer, the information must be protected against duplica-
tion or theft. Advanced tokens usually contain a microprocessor and semi-
conductor memory, and they support sophisticated authentication
protocols that provide a high level of security.

269Hardware Solutions: Overcoming Software Limitations

In theory, authentication tokens enable the use of single sign-on (SSO)
systems. As the name implies, SSO systems allow users to use an authen-
tication token to sign on once to all applications they require access to. At
the moment, true SSO is more or less a theoretical concept. In reality,
even systems that use authentication tokens may have reduced sign-on
capabilities.

Token Form Factors

Authentication tokens come in a variety of physical forms. The size, shape,
and materials from which a token is manufactured are referred to collec-
tively as the token’s form factor. These parameters affect the durability,
portability, security, and convenience of a given type of token. For exam-
ple, some tokens have electrical contacts mounted on the outer surface of
the token’s casing. The electrical contacts are connected to an integrated
circuit embedded in the token. When an electrostatic discharge of suffi-
cient potential is applied to the contacts, the integrated circuit may be
damaged. Because the human body can accumulate a significant static
charge in dry weather, care must be taken in the design of such tokens to
minimize the risk of damage from static discharges. To compensate for
this, some types of tokens have contacts that are recessed in a conductive
plastic casing. This type of token is less susceptible to damage from stray
static discharges because the casing absorbs the charge before it reaches
the contacts.

A token’s form factor involves trade-offs that must be evaluated for a
specific application. Tokens that have recessed contacts usually require a
thicker casing than those that have surface-mounted contacts, and that
can make it harder to carry the token in a pocket. Customers can some-
times select from a number of different form factors with the same func-
tionality, making it possible to choose the form factor that is best suited to
a particular application. Figure 9-2 shows three form factors.

Noncontact Tokens

Noncontact tokens, as their name implies, require no electrical or physical
contact with a token reader device. Instead, noncontact tokens usually
operate by transmitting data to and receiving data from a terminal, or
they require that the user enter data that is then generated by the token.

Chapter 9270

Noncontact tokens include proximity cards, one-time password genera-
tors, and handheld challenge/response calculators.

Proximity Cards

Proximity cards are noncontact tokens that use radio frequency signals to
authenticate users. Proximity cards contain micro-miniature electronic
tuned circuits, a switching mechanism, and a power source. These cards
transmit a coded signal either when they come within a certain range of
a proximity reader or when someone activates them manually. Some prox-
imity devices are also designed to transmit continually. A user merely

271Hardware Solutions: Overcoming Software Limitations

Figure 9-2

Cryptographic
tokens from
(a) Rainbow
Technologies,
(b) Datakey, and
(c) RSA Security

(c)

(b)

(a)

holds a uniquely coded proximity token or card within a given distance of
a proximity reader, and the system reads the data within it. Figure 9-3
shows the XyLoc proximity card and reader from Ensure Technologies.

Chapter 9272

Figure 9-3

XyLoc proximity
card and reader

NOTE:
Theoretically, authentication data (a coded signal in this case) is suscep-
tible to replay attacks. That is, an outsider could conceivably record the
signal being transmitted and replay it at a later time to gain access.

One-Time Password Generators

One-time password generators have proven to be one of the most success-
ful types of authentication tokens to date. RSA Security, Inc., has proven
this fact through its sales of the ACE/Server and SecurID products. The
system has proven to be portable and to provide a very high level of secu-
rity. Figure 9-4 shows a SecurID token in one of its (a) original form fac-
tors and (b) running on the Palm OS.

RSA’s solution is made up of two components, which work in concert
with each other. The ACE/Server is a back-end server application that
houses a user’s seed record. In turn, this seed is used by the ACE/Server
application to produce a random six-digit numeric code on a configurable

time scale (for example, every 60 seconds a new six-digit numeric code is
produced). The second component, the SecurID token, is also aware of the
user’s seed record. Like the ACE/Server, the SecurID produces a random
numeric code. Figure 9-5 illustrates the user interaction with one-time
passwords for authentication.

When users log in, they enter a four-digit PIN (known only to them) as
well as the six-digit random code displayed by their token at that

273Hardware Solutions: Overcoming Software Limitations

Figure 9-4

(a) SecurID
token;
(b) SecurID on
Palm OS

(a) (b)

Figure 9-5

Authentication
via a one-time
password
generator

moment. In this way, the system can authenticate the user’s entry against
the entry in the back-end server.

Challenge/Response Calculators

Challenge/response calculators work on a premise similar to that of one-
time password generators. Through the use of a back-end server compo-
nent and a handheld device, an initial seed record is synchronized. In the
case of challenge/response calculators, however, there is slightly more
user intervention.

As users log in, they are prompted with a random challenge from the
host system. The users must then enter the displayed challenge into their
calculator, which performs a cryptographic operation on the challenge
password and displays the result. In turn, users enter this result (the
response) into the host system to gain access. Figure 9-6 illustrates the
common component setup and user intervention involved with chal-
lenge/response calculators.

Chapter 9274

Figure 9-6

User intervention
in challenge/
response
calculators

NOTE:
Challenge/response calculators tend to be protected by a PIN that the
user must enter before the challenge/response sequence.

Contact Tokens

To transfer data, most tokens must make physical contact with the reader
device. For example, magnetic stripe tokens (the kind used in automated
teller machines) are inserted into a reader so that the magnetic stripe
makes contact with an electromagnetic sensing device. Most integrated
circuit tokens require an interface in which electrical contacts located on
the token physically touch matching contacts on the reader to supply such
functions as power, ground, and data signals. The physical arrangement
and functional definition of these contacts have an impact on the interop-
erability of tokens and reader devices because these devices cannot com-
municate unless the contacts are defined in the same way.

Smart Cards
A smart card, an intelligent token, is a credit card-sized plastic card that
contains an embedded integrated circuit chip. It provides not only mem-
ory capacity but also computational capability. The self-containment of
smart cards makes them resistant to attack because they do not depend
on potentially vulnerable external resources. Because of this characteris-
tic, smart cards are often used in applications that require strong security
protection and authentication.

For example, a smart card can act as an identification card to prove the
identity of the cardholder. It also can be used as a medical card that stores
the cardholder’s medical history. Furthermore, a smart card can be used as
a credit or debit bankcard and used for offline transactions. In all these
applications, the card stores sensitive data, such as biometrics information
of the card owner, personal medical history, and cryptographic keys for
authentication. Figure 9-7 shows a Datakey smart card and RSA smart card.

275Hardware Solutions: Overcoming Software Limitations

Figure 9-7

(a) Datakey
smart card; (b)
RSA smart card

(b)(a)

Smart Card Standards

Smart card standards govern the physical properties and communication
characteristics of the embedded chip. ISO 7816 is the international stan-
dard for smart cards. The standard itself is made up of six parts, each
describing everything from electrical properties to card dimensions. The
following is a description of each part of the ISO 7816 standard:

� ISO 7816-1 Defines the physical dimensions of contact smart cards
and the placement of chips, magnetic stripes, and any embossing on
the cards. It also describes the required resistance to static
electricity.

� ISO 7816-2 Defines the location, purpose, and electrical
characteristics of the smart card’s contacts.

� ISO 7816-3 Describes electronic signals and transmission protocols,
defining the voltage and current requirements for the electrical
contacts defined in ISO 7816-2.

� ISO 7816-4 Across all industries, defines a set of commands to
provide access, security, and transmission of card data (that is, the
card reads and writes to its memory).

� ISO 7816-5 Defines Application Identifiers (AIDs), which are used
to identify a specific application.

� ISO 7816-6 Describes encoding rules for data needed in many
applications.

Currently Europay International, MasterCard International, and Visa
International (EMV) are cooperatively developing specifications to facili-
tate the use of smart cards for payments worldwide. These specifications
build upon the ISO 7816 standards that have been developed for smart
cards that use electrical contacts.

Yet another standard, which has helped to ensure interoperability, is
public-key cryptography standard PKCS #11. PKCS #11 provides func-
tional specification for personal cryptographic tokens.

Types of Smart Cards

A variety of smart cards are available, each defined according to the type
of chip it uses. These chips range in their processing power, flexibility,

Chapter 9276

memory, and cost. The two primary categories of smart cards—memory
cards and microprocessor cards—are described in the following sections.

Memory Cards

Memory cards have no sophisticated processing power and cannot man-
age files dynamically. All memory cards communicate with readers
through synchronous protocols. There are three primary types of memory
cards:

� Standard memory cards These cards are used solely to store
data and have no data processing capabilities. These cards are the
least expensive per bit of user memory. They should be regarded as
floppy disks of varying sizes without the lock mechanism. Memory
cards cannot identify themselves to the reader, so the host system
must recognize the type of card that is being inserted into a reader.

� Protected/segmented memory cards These cards have built-in
logic to control access to memory. Sometimes referred to as intelligent
memory cards, these devices can be set to write-protect some or all of
the memory array. Some of these cards can be configured to restrict
access to both reading and writing, usually through a password or
system key. Segmented memory cards can be divided into logical
sections for planned multifunctionality.

� Stored value memory cards These cards are designed to store
values or tokens and are either disposable or rechargeable. Most
cards of this type incorporate permanent security measures at the
point of manufacture. These measures can include password keys and
logic that are hard-coded into the chip. The memory arrays on these
devices are set up as decrements, or counters, and little or no memory
is left for any other function. When all the memory units are used, the
card becomes useless and is thrown away or recharged.

CPU/MPU Microprocessor Multifunction Cards

These cards have on-card dynamic data processing capabilities. Multi-
function smart cards allocate card memory into independent sections
assigned to specific functions or applications. Embedded in the card is a
microprocessor or microcontroller chip that manages this memory alloca-
tion and file access. This type of chip is similar to those found inside per-
sonal computers; when implanted in a smart card, the chip manages data
in organized file structures via a card operating system (COS). Unlike

277Hardware Solutions: Overcoming Software Limitations

other operating systems, this software controls access to the on-card user
memory. As a result, various functions and applications can reside on the
card. This means that businesses can use these cards to distribute and
maintain a range of products.

These cards have sufficient space to house digital credentials (that is,
public and private key-pairs). Further, through the use of the use of the
on-card microprocessor chip, many of the needed cryptographic func-
tions can be provided. Some cards can even house multiple digital cre-
dential pairs.

Readers and Terminals

Smart cards can be plugged in to a wide variety of hardware devices. The
industry defines the term reader as a unit that interfaces with a PC for
the majority of its processing requirements. In contrast, a terminal is a
self-contained processing device.

Terminals as well as readers can read and write to smart cards. Read-
ers come in many form factors and offer a wide variety of capabilities. The
easiest way to describe a reader is according to the method of its interface
to a PC. Smart card readers are available that interface to RS232 serial
ports, Universal Serial Bus (USB) ports, PCMCIA slots, floppy disk slots,
parallel ports, IRDA (infrared data) ports and keyboards, and keyboard
wedge readers. Another way to distinguish reader types is according to
onboard intelligence and capabilities. Extensive price and performance
differences exist between an industrial-strength intelligent reader that
supports a wide variety of card protocols and a home-style Windows
based-card reader that works only with microprocessor cards and per-
forms all the data processing in the PC.

The options available in terminals are equally numerous. Most units
have their own operating systems and development tools. They typically
support other functions such as magnetic stripe reading, modem func-
tions, and transaction printing.

The Pros and Cons of Smart Cards

There is sufficient evidence in the computer industry that smart cards
greatly improve the convenience and security of any transaction. They
provide tamperproof storage of user and account identity. They protect
against a full range of security threats, from careless storage of user pass-

Chapter 9278

TE
AM
FL
Y

Team-Fly®

words to sophisticated system hacks. But smart cards, like other authen-
tication systems, are vulnerable to various attacks.

Moreover, a major drawback of smart card technology is price. The cost
is considerably higher than that of software-based access control (such as
passwords), creating a barrier to widespread distribution of smart card
technology. As more units are sold, however, we should begin to see prices
fall, making smart cards and their associated hardware more affordable.

JavaCards
A JavaCard is a typical smart card: It conforms to all smart card stan-
dards and thus requires no change to existing smart card-aware applica-
tions. However, a JavaCard has a twist that makes it unique: A Java
Virtual Machine (JVM) is implemented in its read-only memory (ROM)
mask. The JVM controls access to all the smart card resources, such as
memory and I/O, and thus essentially serves as the smart card’s operating
system. The JVM executes a Java bytecode subset on the smart card, ulti-
mately allowing the functions normally performed off-card to be per-
formed on-card in the form of trusted loyalty applications. For example,
instead of using the card to simply store a private key, you can now use
that private key to perform a digital signature.

The advantages of this approach are obvious. Instead of programming
the card’s code in hardware-specific assembly language code, you can
develop new applications in portable Java. Moreover, applications can be
securely loaded to the card post-issuance—after it’s been issued to the
customer. In this way, vendors can enhance JavaCards with new functions
over time. For example, bankcards that initially give customers secure
Internet access to their bank accounts might be upgraded to include
e-cash, frequent flier miles, and e-mail certificates.

History and Standards

Schlumberger, a leading smart card manufacturer, provided one of the
first working prototypes of a Java-based card in 1996. The original imple-
mentation was made up of a smart card that housed a lightweight Java
bytecode interpreter. As work continued in this field, SUN Microsystems

279Hardware Solutions: Overcoming Software Limitations

issued the first JavaCard specification in October 1996. This specification
was based on Schlumberger’s experience.

It was not until February 1997 that the concept of a JavaCard finally
took off, at which time Schlumberger and other smart card manufacturers
formed the JavaCard Forum. By the end of 1997, the JavaCard Forum had
released a new specification, JavaCard 2.0. This specification answered
many of the shortcomings of the original specification and included many
new concepts.

Another standard, which is of importance to JavaCards as well as to
smart cards, is the OpenCard Framework (OCF). OCF, which was created
by the OpenCard Consortium, is made up of many of the leading smart
card and JavaCard manufacturers, as well as many application develop-
ers, such as Dallas Semiconductors, Gemplus, IBM Corp., Visa Interna-
tional, SUN Microsystems, and others.

OCF, similar to the JavaCard Forum, has been the driving force for the
development Java-based systems. Unlike the JavaCard Forum, which pro-
vides development specifications for applications to be run on-card, OCF
provides the development specifications for applications to be run in com-
puters and terminals.

NOTE:
The application specifications provided by OCF are for use by systems
that will communicate not only with JavaCards, but also with any smart
card that follows the PKCS #11 standard.

JavaCard Operations

A JavaCard operates like a typical smart card. When the smart card
reader sends a command, the JavaCard processes it and returns an
answer. To maintain compatibility with existing applications for smart
cards, a single JavaCard can process only one command at a time. Fig-
ure 9-8 illustrates the JavaCard components.

Chapter 9280

Other Java Tokens
Another great advancement that has taken off because of JavaCard tech-
nology is the advent of other kinds of Java tokens, including Java rings.
Java rings offer the most personal of tokens: jewelry. The ring is a steel
casing that houses an 8-bit microprocessor called Crypto iButton. This
microprocessor is similar to one you might find on smart card. It has its
own real-time clock and a high-speed math accelerator to perform
1,024-bit public-key operations. Conceivably, it can hold additional infor-
mation (such as a passport, driver’s license, or medical data). The Crypto
iButton microprocessor is not specific to Java rings and can be found in a
number of other form factors, as shown in Figure 9-9.

281Hardware Solutions: Overcoming Software Limitations

Trusted Applet Trusted AppletFigure 9-8

JavaCard
components

Figure 9-9

Crypto iButton
form factors:
(a) wristwatch;
(b) dogtag-type
token; (c) Java
ring

(a) (b) (c)

Biometrics
Biometrics is the science of measuring a characteristic of the human body;
in its commercial application, such measurements are used to verify the
claimed identity of an individual. Physical characteristics such as finger-
prints, retinas and irises, palm prints, facial structure, and voice are some
of the many methods being researched. Because these characteristics are
relatively unique to each individual, biometrics provides an excellent
means of authentication. As explained in the following sections, this tech-
nology is particularly useful for authentication when applied to commerce
over the Internet.

Biometric systems are believed to provide a higher level of security
than other forms of authentication, such as the use of passwords or PINs.
One reason is that a biometric trait cannot be lost, stolen, or duplicated,
at least not as easily as a password or PIN. Second, the use of biometrics
provides nontransferable authentication. Simply stated, all other types of
authentication, such as a key, are transferable. You can give someone your
private key, but not your eyeball or finger (we hope).

Biometric Systems Overview

The various biometric recognition mechanisms typically operate in two
modes: enrollment and verification. In the enrollment process, the user’s
biological feature (physical characteristic or personal trait) is acquired
and stored for later use. This stored characteristic, commonly known as a
template, is usually placed in a back-end database for later retrieval. The
verification process is as you might expect. The user’s characteristic is
measured and compared against the stored template. The following sec-
tions describe these processes in greater detail.

Enrollment

For initial use of the biometric, each user must be enrolled by a system
administrator, who verifies that each individual being enrolled is an
authorized user. The biological feature is acquired by a hardware device,
known as a sensor, which typically resides at the front end of the biomet-
ric authentication mechanism. When a physical feature is presented to
the sensor, the sensor produces a signal that is modulated in response to
variations in the physical quantity being measured. If, for example, the

Chapter 9282

sensor is a microphone used to capture a voice pattern, the microphone
produces a signal whose amplitude (voltage or current) varies with time
in response to the varying frequencies in a spoken phrase.

Because the signals produced by most biometric sensors are analog,
they must be converted into digital form so that they can be processed by
computer. An analog-to-digital converter is therefore the next stage in
most systems. Analog-to-digital converters take an analog input signal
and produce a digital output stream, a numeric representation of the orig-
inal analog signal. Rather than use raw data from the sensor, biometric
systems often process the data to extract only the information relevant to
authentication. Further processing may be used to enhance differences
and compress data. When the digital representation has been processed to
the desired point, it is stored. Most biometric devices take multiple sam-
ples during enrollment to account for degrees of variance in the measure-
ment. Figure 9-10 illustrates a typical enrollment process.

283Hardware Solutions: Overcoming Software Limitations

Figure 9-10

Enrollment
process

Verification

After users are enrolled, their biometrics are used to verify their identity.
To authenticate someone, his or her biological feature is acquired from the
sensor and converted to a digital representation, called a live scan. Then
the live scan is compared to the stored biometric template. Typically, the
live scan does not exactly match the user’s stored template. Because bio-
metric measurements almost always contain variations, these systems

cannot require an exact match between the enrollment template and a
current pattern. Instead, the current pattern is considered valid if it falls
within a certain statistical range of values. A comparison algorithm is
used to determine whether the user being verified is the same user that
was enrolled.

The comparison algorithm yields a result that indicates how close the
live scan is to the stored template. If the result falls into an “acceptable”
range, an affirmative response is given; if the result falls into an “unac-
ceptable” range, a negative response is given. The definition of “accept-
able” differs for each biometric. For some biometrics, the system
administrator may set the level of the acceptable range. If this level is set
too low, however, the biometric fails to be a valid authentication mecha-
nism. Similarly, if it is set too high, the authorized users may have trou-
ble being authenticated. Pattern matching is fundamental to the
operation of any biometric system and therefore should be considered a
primary factor when you’re evaluating a biometric product. Figure 9-11
illustrates a typical verification process.

Chapter 9284

Figure 9-11

Verification
process

Templates

In general, most available biometric authentication mechanisms function
as explained in the preceding sections. One key feature of biometrics is
the template. The accumulated templates of all users are referred to as
the template database. These databases require the same protections as
password databases. The size of the templates vary from system to sys-

tem. When you’re testing these systems for accuracy, you should examine
the templates to determine whether unique biometric features are ade-
quately represented.

Another aspect of templates that affects biometric authentication is the
approach taken by the comparison algorithm in using the template. Most
devices use the template for verification, but some use it for identification.
In the latter, the device takes a live scan and then compares it against the
entire template database to determine whether any of the stored repre-
sentations falls within the acceptable comparison algorithm range. In con-
trast, a biometric verification compares the live scan only against the
single template of the person whom the user claims to be. For example, a
user types a user name and then submits to a live scan for verification.
The comparison algorithm compares the scan only to the template associ-
ated with that user name. Typically, verification biometrics are faster
because they do not have to compare the live scan against the entire tem-
plate database.

Recognition Methods

Just as every human body has countless unique characteristics, countless
recognition methods can be used in biometrics. Let’s look at some of the
common biometric recognition methods in use.

Fingerprint Recognition

Fingerprint recognition is probably the most common form of biometrics
available. This form of data encryption has evolved from the use of finger-
prints for identification over the past several decades. By having an individ-
ual scan a fingerprint electronically to decode information, the transmitter
of the data can be certain that the intended recipient is the receiver of the
data. When scanned electronically, fingerprints provide a higher level of
detail and accuracy than can be achieved with manual systems.

Another strength of fingerprint biometrics is that giving fingerprints is
more widely accepted, convenient, and reliable than other forms of physi-
cal identification, especially when technology is used. In fact, studies have
shown that fingerprint identification is currently thought to be the least
intrusive of all biometric techniques. One concern of fingerprint biomet-
rics is that latent prints left on a scanning medium will register a prior
user; however, units exist that do not operate unless a “live” finger is on

285Hardware Solutions: Overcoming Software Limitations

the medium, and they register only the later imprint. The error rate expe-
rienced with this form of encryption is approximately 1 in 100,000 scans.

One of the most important features of fingerprint biometrics is its low
cost. Scanners are fairly inexpensive, and as the technology becomes more
common the cost should only decrease. In fact, in anticipation of wide-
spread use of this technology in the future, some mouse manufacturers
are developing products with built-in fingerprint scanner technology.

Optical Recognition

There are two common types of optical biometrics: retinal and iris. These
devices are more accurate than fingerprint and hand devices because both
the retina and the iris have more characteristics to identify and match
than those found on the hand. Retinal and iris scanning devices have
come a long way in recent years and now allow individuals to be scanned
even through eyeglasses or contact lenses. The error rate for a typical
retina or iris scanner is about 1 in 2,000,000 attempts, something that
further demonstrates the reliability of this technology. Two drawbacks to
these devices, however, are that they have difficulty reading images of
those people who are blind or have cataracts and that they currently are
cumbersome to use.

The cost of these systems averages $6,500, making them somewhat
unattractive for network users. But as this technology becomes more stan-
dardized and accepted, the cost should fall and become less of a factor in
decision making.

Facial Recognition

In this form of biometrics, an image is examined for overall facial struc-
ture. This approach is often less reliable than more common forms such as
fingerprints and iris scans. Moreover, the interpretative functions per-
formed by the computer are much more subjective using this technology.
Although one benefit of facial biometrics is that it can be applied at either
at close range or over greater distances, it loses accuracy progressively as
the distance increases between the individual and the scanner. Changes
in lighting can also increase the error rate.

An attractive feature of facial recognition products is their low cost.
Units can typically be purchased for as little as $150. At this price, this
technology might lend itself to electronic commerce, but the units can be
cumbersome to use and still are not as reliable as other forms of biomet-
rics for encryption purposes.

Chapter 9286

Voice Recognition

Voice recognition offers several advantages for use in encryption. Not only
is voice biometrics perfect for telecommunications applications, but also
most modern personal computers already have the necessary hardware to
use the applications. Even if they don’t, sound cards can be purchased for
as little as $50, and condenser microphones start at about $10. This
means that for less than $100, individuals can possess the technology
needed to have fairly reliable biometric encryption technology for use over
the Internet.

This type of biometric is not as accurate, however, as some other forms.
The error rate for voice recognition ranges between two percent and five
percent. However, it lends itself well to use in the public telephone system
and is more secure than PINs.

Some drawbacks to this technology are that voiceprints can vary over
the course of the day, and if a user has a health condition such as a cold or
laryngitis, it can affect verification.

Signature Recognition

Most adults are familiar with the signing of documents. In our personal
lives we sign everything from personal checks to birthday cards. In the
business world we sign things such as expense accounts and other official
documents. This widespread practice lends itself well to the use of signa-
ture recognition as a means of biometric verification in electronic com-
merce. This type of signature identification, however, is different from the
normal two-dimensional signature that you find on a form or document.
Biometric signature recognition operates in a three-dimensional environ-
ment that uses measurements not only of the height and width but also
the amount of pressure applied in a pen stroke; the latter measurement
gauges the depth of the stroke as if it were made in the air. This extra
dimension helps to reduce the risk of forgery that can occur in two-dimen-
sional signatures.

One drawback to signature recognition is that people do not always
sign documents in exactly the same manner. The angle at which they sign
may be different because of their seating position or their hand placement
on the writing surface. Therefore, even though the three-dimensional
approach adds to its ability to discern impostors, this method is not as
accurate as other forms of biometric verification.

Signature recognition systems are not as expensive as some of the
higher-end systems such as iris scanners; they are priced more in the

287Hardware Solutions: Overcoming Software Limitations

range of voice and fingerprint scanners, and that makes them affordable
for network use.

Keystroke Recognition

This technology is not as mundane as it sounds. The concept is based on a
password or PIN system but adds the extra dimension of keystroke
dynamics. With this technology, not only must intruders know the correct
password, but they must also be able to replicate the user’s rate of typing
and intervals between letters. Even if an unauthorized person is able to
guess the correct password, it’s unlikely that he will be able to type it with
the proper rhythm unless he has the ability to hear and memorize the cor-
rect user’s keystrokes.

Keystroke recognition is most likely one of the least secure of the new
biometric technologies that have evolved in recent years, but it is also
probably one of the least expensive and easiest to implement. It probably
won’t gain much attention for use in electronic commerce because simi-
larly priced systems offer far more reliability.

Biometric Accuracy

When you’re choosing a biometric authentication system, an important
consideration is its accuracy. The accuracy of biometric authentication
systems can be categorized by two measures: the false acceptance rate
(FAR) and the false rejection rate (FRR). A system’s FAR reflects the situ-
ation in which a biometric system wrongly verifies an identity by match-
ing biometric features from individuals who are not identical. In the most
common context, false acceptance represents a security hazard. Similarly,
a system’s FRR reflects the situation in which a biometric system is not
able to verify the legitimate claimed identity of an enrolled person. In the
most common context, the user of a biometric system will experience false
rejection as inconvenience.

Suppliers of biometric systems often use FAR together with FRR to
describe the capabilities of the system. Obviously, FRR and FAR are
dependent on the threshold level. Increasing the threshold will reduce the
probability of false acceptance and therefore enhance security. However,
system availability will be reduced due to an increased FRR.

How these rates are determined is fundamental to the operation of any
biometric system and therefore should be considered a primary factor

Chapter 9288

TE
AM
FL
Y

Team-Fly®

when a biometric system is evaluated. You should be aware that manu-
facturers’ FAR and FRR numbers are extrapolated from small user sets,
and the assumptions for the extrapolations are sometimes erroneous.

You should assess these performance factors with an eye toward the
type of users who will use the system. For a proper live scan to be taken,
users must become familiar with the device. You can expect it to take two
weeks before the false rejection rate drops off. Another user consideration
is that not all users may be able to use the biometric—for example,
because of an impairment that prevents them from taking an acceptable
scan. In that case, you may need to provide an alternative method to grant
those users access, or you may have to select a biometric based on the
needs of each set of users. When selecting a biometric, also consider user
acceptance. Some biometrics have met with resistance from users
because the technology is too invasive.

Combining Authentication Methods
Passwords, authentication tokens, and biometrics are subject to a variety
of attacks. Passwords can be guessed, tokens can be stolen, and even bio-
metrics have certain vulnerabilities; these threats can be reduced by
applying sound design principles and system management techniques
during the development and operation of your authentication system. One
method that can substantially increase the system’s security is to use a
combination of authentication techniques.

For example, an authentication system might require users to present
an authentication token and also enter a password. By stealing a user’s
token, an attacker would still not be able to gain access to the host system
because the system would require the user’s password in addition to the
token. Although it might be possible to guess the user’s password, the host
system can make this extremely difficult by locking the user out after a
specified number of invalid passwords have been presented in succession.
After a user’s account has been locked in this manner, only the appropri-
ate system administrator or security officer should be able to unlock the
account.

Tokens can also be used to store biometric templates for user authenti-
cation. After enrollment, the user’s unique template could be stored on a
token rather than in a file on the host system. When the user requests
access to the system, a current template is generated and compared to the

289Hardware Solutions: Overcoming Software Limitations

enrollment template stored on the user’s token. It would be preferable for
this comparison to be carried out internally by the token because in that
way the enrollment template would never need to leave the token. How-
ever, often this method is not possible because of the complexity of the
algorithms used for the comparison. The microprocessors typically used
in smart tokens cannot execute these algorithms in a reasonable time. If
the template comparison is done by the host system, the host must pro-
vide adequate assurance that users’ templates cannot be compromised.
In addition, the token and host system should implement an authentica-
tion protocol that ensures two things: that the host system is obtaining
the template from a valid token and that the token is submitting the tem-
plate to a valid host. The ideal situation is to have both the biometric sen-
sors and the comparison algorithm implemented on the token. In that
case, the token can perform the entire biometric authentication process.
Figure 9-12 shows one of the newer products available on the market,
which combines authentication methods.

Chapter 9290

Figure 9-12

BioMouse Plus
from American
Biometric
Company

Summary
A wide variety of cryptographic hardware is available on the market. Var-
ious tokens can be used for authentication, as can various microprocessor
cards, biometrics, and accelerators. Each of these approaches has its place,
for the right price.

Vendors
A great many vendors manufacture and sell cryptographic accelerators,
tokens, smart cards, and biometric devices. Table 9-1 lists some of the
manufacturers and the products they sell.

291Hardware Solutions: Overcoming Software Limitations

2
9

2 Companies/ Tokens/
Device Accelerators Smart cards Biometrics

nCipher Nfast
http://www.ncipher.com/

Compaq AXL300
http://www.compaq.com/

Rainbow CryptoSwift, iKey, Sentinel
Technologies NetSwift
http://www.rainbow.com/

RSA Security, Inc. SecurID
http://www.rsasecurity.com/

DataKey Datakey

http://www.datakey.com/

Ensure Technologies XyLoc Security Server
http://ensuretech.com/
cgi-bin/dp/framesethome.dt/

Dallas Semiconductor iButton
http://www.dalsemi.com/index.html

GemPlus GemClub-Micro,
http://www.gemplus.com/ GemStart, GemWG10

American Biometric
Company

http://www.abio.com/ BioMouse Plus

AuthenTec, Inc. FingerLoc,
http://www.authentec.com/ EntrePad

Table 9-1

Cryptographic
Manufacturers

Digital Signatures:
Beyond Security

Thanks to the Internet, e-commerce has dramatically changed our ways of
conducting business. As each day passes, paper-based transactions—
including agreements that have legal force—are becoming obsolete as the
use of electronic agreements transmitted over the Internet increases in pop-
ularity. The main motivation for this change is convenience. Distance, for
example, is no longer a barrier to getting an agreement signed. Within sec-
onds, an electronic agreement can travel across the world, receive an elec-
tronic (or digital) signature, and be returned completed. But this new
world of e-commerce requires close attention to legal and technical issues.

Users’ experiences with digital signatures (see Chapter 5) have shown
that this technology can save e-commerce parties time and money. Com-
pared with paper signatures, digital signatures offer a number of benefits:

� Message integrity A digital signature is superior to a handwritten
signature in that it attests to the contents of a message as well as to
the identity of the signer. As long as a secure hash function is used,
there is no way to take someone’s signature from one document and
attach it to another, or to alter the signed message in any way. The
slightest change in a signed document will cause the digital
signature verification process to fail. Thus, authentication allows
people to check the integrity of signed documents. Of course, if

CHAPTER 10

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

signature verification fails, it may be unclear whether there was an
attempted forgery or simply a transmission error.

� Savings The use of open systems (such as the Internet) as
transport media can provide considerable savings of time and money.
Furthermore, adding automation means that data can be digitally
signed and sent in a timely manner.

� Storage Business data (contracts and similar documents) can be
stored much more easily in electronic form than in paper form.
Furthermore, in theory an electronic document that has been
digitally signed can be validated indefinitely. If all parties to the
contract keep a copy of the time-stamped document, each of them can
prove that the contract was signed with valid keys. In fact, the time
stamp can prove the validity of a contract even if one signer’s key
becomes compromised at some point after the contract was signed.

� Risk mitigation If properly implemented, digital signatures
reduce the risk of fraud and attempts by a party to repudiate
(disavow) the contract.

Before companies and individuals adopt these new techniques, how-
ever, they must first address a few legal and technical concerns. In U.S.
federal law, under the Statutes of Frauds, a party that claims that a con-
tract was made must provide proof. The traditional method of proof is the
document with a handwritten signature. The question is whether an elec-
tronic document containing a digital signature is secure and therefore
reliable as proof. The Federal Rules of Evidence allow computer data to be
admitted as business records if a foundation is established for their relia-
bility. As this book is being written, new federal legislation has taken
effect. This legislation provides that an electronic signature has the same
legal status as a handwritten signature. It should be noted, however, that
these new laws are still untested.

This chapter provides insight into the many aspects of digital and elec-
tronic signatures as they apply to e-commerce. We discuss concepts and
requirements, legal and technical, that users must completely understand
if they hope to apply these signatures. We also look at the various relevant
laws, including the newly enacted federal Electronic Signatures in Global
and National Commerce (E-SIGN) Act. Finally, we discuss the differences
between electronic and digital signatures and how each falls short if the
proper concepts and requirements aren’t used.

Chapter 10294

Legislative Approaches
As we’ve discussed, digital signatures offer a range of benefits for busi-
nesses and consumers alike. For digital signatures to make their way into
mainstream, however, two barriers must be overcome:

� How to give documents that exist only in electronic form the same
legal status as paper documents

� How to provide a secure, reliable, and legally sanctioned method for
“signing” electronic documents that will eliminate the need to
generate and sign paper documents, thereby encouraging and
facilitating electronic commerce

Both problems require legislative solutions.

Legal Guidelines from the American
Bar Association

The American Bar Association (ABA), the organization that represents
the legal profession in the United States, has done considerable work on
the legal aspects of digital signatures. In 1996, the ABA’s Information
Security Committee, Section of Science and Technology, published a docu-
ment titled “Digital Signature Guidelines.” These guidelines were origi-
nally drafted to provide “general, abstract statements of principle,
intended to serve as long-term, unifying foundations for digital signature
law across varying legal settings.” Many states have chosen to model their
own digital signature legislation after these guidelines.

Many legal professionals, with the exception of the ABA special inter-
est legal groups, are playing catch-up in the fast evolving and sometimes
complicated digital world. As the number of e-commerce sites using digi-
tal signatures increases, so will the need for lawyers who can render
sound legal advice. Clients will begin to look to attorneys and others for
guidance about the appropriate level of security for a given line of elec-
tronic business and other transactions.

It will be of the utmost importance for attorneys to cooperate closely
with business and technical specialists in the procurement and deploy-
ment of computer security systems generally, and specifically those sys-
tems that require electronic signatures. The legal consequences that flow

295Digital Signatures: Beyond Security

from the presence or absence of particular elements of data security will
constitute risks, liabilities, and other potential costs that should be taken
into account from the beginning.

Legal Concepts Related to Digital Signatures
Because electronic documents can be easily copied and modified without
detection, they cannot automatically be assumed to be authentic. More-
over, unlike hand-written characters, digitally encoded characters are not
unique. The signature on an electronic document is not physically con-
nected to the document’s content.

To withstand both legal and technical tests, the recipient of an elec-
tronic document containing a digital signature must be able to prove to an
impartial third party (a court, a judge, or a referee before whom the par-
ties have agreed to submit for resolution any issue or dispute) that the
contents of the document are genuine and that it originated with the
sender. In addition, the signature must be such that the sender cannot
later disavow the contents of the document.

Before we go any further, let’s review the concepts of nonrepudiation
and authentication, which have been described earlier (see Chapters 5
and 6). These concepts play a key role in the legalities of digital signa-
tures, and it is important to understand how they differ in the digital
world compared with the paper world.

Nonrepudiation

Nonrepudiation, at its most basic, is the ability to prove to an impartial
third party—after the fact—that a specific communication originated
with and was submitted by a certain person or was delivered by a certain
person. Nonrepudiation, then, defines the means that are used to prevent
illegitimate breaches of contract on the same grounds. This means that
evidence exists thst ties the identity of a party to the substance of a mes-
sage or transaction at a certain point in time and that the evidence is suf-
ficiently strong to prevent or rebut that party’s subsequent denial of it.

The 1988 ISO Open Systems Interconnection Security Architecture
standard provides a limited definition of nonrepudiation as a security ser-

Chapter 10296

vice that counters repudiation, where repudiation is defined as “denial by
one of the entities involved in a communication of having participated in
all or part of the communication.” Signatures, seals, recording offices, cer-
tified mail, letters of credit, notaries, auditors, and collateralized bills of
lading are examples of nonrepudiable business practices traditionally
employed to support legally binding business transactions.

These elements of nonrepudiation must now be incorporated into the
electronic environment—in real time, with full assurance, and without a
paper trail.

In the absence of this kind of rigor, how can businesses operating at
Internet speed avoid or resolve disputes? It is only with a full set of digi-
tal nonrepudiation elements that irrefutable evidence can be shown in a
court of law. Otherwise, businesses aren’t protected against breach of con-
tract, fraud, currency fluctuations, insolvency, credit risks, incomplete
funds delivery, and operational failure.

Nonrepudiation services provide trusted evidence that a specific action
occurred. The concept of nonrepudiation, as it pertains to information
security and digital signatures, can be broken into three types: nonrepu-
diation of origin, nonrepudiation of submission, and nonrepudiation of
delivery.

� Nonrepudiation of origin This concept protects the recipient of a
communication by guaranteeing the identity of the originator of a
communication. It further confirms the time the message was sent
and ensures that the message was not tampered with during
transmission.

� Nonrepudiation of delivery This concept protects the sender of a
communication by guaranteeing essentially the same elements as
does nonrepudiation of origin. As with nonrepudiation of origin, it can
be used to provide the time a message was sent and to indicate
whether the data was tampered with during transmission.

� Nonrepudiation of submission This concept is similar to
nonrepudiation of origin and delivery except that it is used to protect
the sender against any claim by the recipient that the data wasn’t
sent or wasn’t sent at a specific time.

297Digital Signatures: Beyond Security

Authentication

For the purposes of this chapter, and in relation to digital signatures, two
types of authentication must be understood: signer authentication and
data authentication.

For a document to have any legal force, the signer of the document
must be authenticated; this concept is called signer authentication. If
someone signs a loan certificate, for example, the bank can store the bor-
rower’s signature for use later in legal ways because the signature is
believed to authenticate the borrower with a high probability. A signature
should indicate who signed a document, message, or record, and it should
be difficult for another person to produce the signature without autho-
rization. If a public/private key pair is associated with an identified
signer, the digital signature attributes the message to the signer. The dig-
ital signature cannot be forged unless the signer loses control of the pri-
vate key (a “compromise” of the private key), such as by divulging it or
losing the medium or device in which it is contained.

Data authentication is comparable to stamping a document in a way
that disallows all future modifications to it. Data authentication is usu-
ally accompanied by data origin authentication, which binds a concrete
person to a specific document (for example, by limiting the number of per-
sons who use the stamp). A signature should identify what is signed, mak-
ing it impracticable to falsify or alter either the signed matter or the
signature without detection. The digital signature also identifies the
signed message, typically with far greater certainty and precision than
paper signatures. Verification reveals any tampering because the com-
parison of the hash results (one made at signing and the other made at
verifying) shows whether the message is the same as when signed.

Signer authentication and data authentication are used to exclude
impersonators and forgers, and they are essential ingredients in what is
often called a nonrepudiation service. A nonrepudiation service provides
assurance of the origin or delivery of data in order to protect the sender
against false denial by the recipient that the data has been received, or to
protect the recipient against false denial by the sender that the data has
been sent. Thus, a nonrepudiation service provides evidence to prevent a
person from unilaterally modifying or terminating legal obligations aris-
ing from a transaction effected by computer-based means.

Chapter 10298

TE
AM
FL
Y

Team-Fly®

Written Versus Digital Signatures

Although digital and written signatures can serve the same purposes,
there are obvious physical differences. Let’s look at the differences
between the signatures applied to written and digital documents.

Written Documents

Traditionally, someone’s signature on a literal document authenticates
the origin of the data contained in it. Because people sign various docu-
ments during their lifetimes, their signatures become a part of their iden-
tity over time. By using a unique combination of pencil strokes that is
very difficult for anyone else to forge, they can sign anything, almost with-
out thinking. Additionally, loan certificates (and other documents that
may have legal force) have been designed to guard against forging of a
signed document. Examples include documents that use watermarks,
embossing, and special ink treatment, all of which provide protection
against photocopies and other forgeries.

Digital Documents

Electronic documents can easily be copied and modified without detection.
To generalize this consideration, digital information is usually defined
(loosely) as the kind of information not bounded to any concrete carrier,
such as the ink on a piece of paper. Additionally, the digital information
lacks personality (a file saved by someone can be easily updated by some-
one else having the appropriate permissions).

Clearly, the traditional methods of signing by appending the signature
to an existing document do not work for electronic documents. Anyone can
simply modify the document and append the same signature to it.

Requirements for the Use of Digital Signatures
For current digital signature legislation to withstand the test of litigation,
a number of important issues must be resolved. The American Bar Asso-
ciation’s “Guidelines for Digital Signatures” is an excellent foundation,
but corporations and individuals might wish to focus on concerns not
addressed in the guidelines. The following sections describe those require-
ments, which are essential if digital signatures are to stand up.

299Digital Signatures: Beyond Security

Public Key Infrastructures

To effectively incorporate digital signatures within an e-commerce frame-
work, an organization should create and maintain a public-key infra-
structure (PKI), as described in Chapter 6. To a point, having a PKI
ensures that only valid keys are used in signing and verifying electronic
documents.

The PKI must enforce policies whereby properly administered certifi-
cation authorities (CAs) and registration authorities (RAs) are used,
requiring end users to show reliable proof that authenticates them. Fur-
thermore, public-key certificates can be housed in a central location that
can be accessed by any relying party. Finally, a PKI serves to revoke or
suspend certificates as needed.

Control of Key Revocation

Another important issue related to the use of digital signatures is the man-
agement of private signature keys. If an unauthorized person gains access
to a private key, the thief will be able to forge the owner’s signature on elec-
tronic documents. To prevent this, a user should be able to revoke a com-
promised signature key in the public directory. Here are some guidelines:

� All users should be able to revoke their public keys from the
directory at any time. For this policy to work, CAs should save (in
the public directory) information about all revoked keys.

� An authority should be able to revoke the signatures issued for its
employees. A separate CA could certify digital signatures for
employees of a given company.

� Online Certificate Status Protocol (OCSP), which was explained in
Chapter 6, should be used to ensure that verifiers receive the most
current revocation status.

Time-Stamping

Another issue is time-stamping. Digital signatures provided through the
use of public-key technology can be called into question for a simple rea-
son: If the signer of a particularly important document (for example, a

Chapter 10300

loan agreement) later wishes to repudiate her signature, she can dishon-
estly report the compromise of her private key and ask it to be revoked. A
later verifier will not be able to certify whether the signing happened
before or after the revocation.

Time-stamping is a set of techniques that enable you to ascertain
whether an electronic document was created or signed at (or before) a cer-
tain time. In practice, most time-stamping systems use a trusted third
party called a time-stamping authority (TSA). A time stamp is the TSA’s
digital attestation that an identified electronic document was presented to
the TSA at a certain time.

A time-stamping service (TSS) is a collection of methods and techniques
providing long-term authentication of digital documents. The object of a
TSS is to authenticate not only the document but also the moment in time
at which the document is submitted for authentication. Figure 10-1 illus-
trates the interaction between end-users and a trusted time-stamping
server available from Datum.

301Digital Signatures: Beyond Security

Figure 10-1

Time-stamping
components

The importance of time-stamping becomes clear when there is a need
for a legal use of electronic documents with a long lifetime. Without time-
stamping, you cannot trust signed documents after the cryptographic
primitives used for signing have become unreliable, nor can you resolve
cases in which the signer repudiates the signing, claiming to have acci-
dentally lost the signature key.

During recent years, especially in the context of legal regulation of the
use of digital signatures, the organizational and legal aspects of time-
stamping have become the subject of worldwide attention. Time-stamping
helps to significantly lower the level of trust currently required of a PKI
by making it possible to prove that a document was signed before the cor-
responding signature key was revoked. For that reason, organizations
often depend on time-stamping to resolve the status of documents.

Current and Pending Legislation
Digital signature legislation has been an ongoing issue for some time.
Worldwide, especially in Europe, digital signature laws have been in effect
for about a decade. The United Nations Commission on International Trade
Law (UNCITRAL), a model law on electronic commerce, took effect in 1996
and has had a major influence on signature laws worldwide. The UNCI-
TRAL model law takes a high-level, enabling approach to electronic signa-
tures and records, with no mention of digital signatures or cryptography.

Only during the past five years has the United States gained momen-
tum in this legal arena. The first state law, enacted in Utah in 1995 and
amended in March 1996, is widely recognized as an important and posi-
tive first step toward legal recognition of digital signature technology. The
Utah act provides for the licensure of certification authorities by the Utah
Department of Commerce. Utah’s law also details the rights and liabilities
of parties to a transaction using public-key cryptography and a licensed
certification authority. In 1996, Washington state adopted legislation
closely resembling the Utah law. Other states, most notably Georgia,
began considering bills modeled after the Utah law, and, for a time, it
seemed that a consensus was developing among the states.

Now, however, various policy issues have increasingly moved states
toward approaches that are less regulatory, less technology-specific, and
more incremental. For example, California and Arizona enacted legisla-
tion permitting the use of digital signatures for transactions involving
state entities. This legislation authorized the two states’ secretaries of
state to promulgate regulations to achieve the purpose of the act. Still
other states have passed laws permitting the use of electronic signatures
for particular purposes, such as for medical records (Connecticut) or for
budget and accounting purposes, such as electronic check signing by the
treasurer (Delaware). Georgia, along with a number of states that had leg-
islation resembling the Utah act, have allowed the bills to die and opted
for further study.

The effort in Massachusetts exemplifies an attempt to craft laws that
directly address the legal issues raised by electronic commerce but do not
exclusively codify public-key cryptography in statute. This approach seeks
generally to remove legal obstacles to electronic communications and
transactions by giving legal effect to electronic signatures and electronic
records. The law would also specifically provide for the admissibility of
electronic signatures and records.

Chapter 10302

The problem with the state laws, however, is that no two sets of laws are
the same. Building on the work in Massachusetts, the federal government
is trying to provide a solution by working on new federal legislation. The
U.S. House and Senate, after long negotiations, compromised on a new
electronic signature bill, the Electronic Signatures in Global and National
Commerce (E-SIGN) Act, on June 9, 2000. The E-SIGN Act makes elec-
tronic, or online, signatures as legally binding as ink-and-paper signatures
and states that they can be used as evidence in legal proceedings.

The E-SIGN Act

President Bill Clinton signed the E-SIGN Act on June 30, 2000. E-SIGN
gives legal recognition and effect to electronic signatures, contracts, and
records, and it empowers the use of online contracts and provision of
notices. The law became effective October 1, 2000, except for certain pro-
visions affecting the use of electronic records to satisfy records retention
requirements, which became effective March 1, 2001. E-SIGN requires a
consumer to agree to electronically signed contracts and consent to receiv-
ing records over the Internet. Companies must verify that customers have
an operating e-mail address and other technical means of receiving infor-
mation. Some notices, such as evictions, health insurance lapses, or elec-
tricity lapses, must still come in paper form.

Under E-SIGN, federal agencies are given authority allowing them to
unconditionally exempt specified types of records from the consumer
consent provisions. Most notably, the legislation directs the Securities
and Exchange Commission (SEC) to use this authority to issue a regula-
tion that effectively allows mutual funds to provide prospective investors
with an electronic fund prospectus at or before the time they access elec-
tronic sales literature, without first obtaining investor consent to the
electronic format of the prospectus. In this way, funds can continue the
practice, permitted under the SEC’s interpretive releases, of using
hyperlinks on their Web sites to give prospective investors simultaneous
access to both sales literature and the fund’s prospectus.

E-SIGN was originally designed to boost Internet e-commerce transac-
tions, for both business-to-business (B2B) and business-to-consumer (B2C)
markets, by eliminating paperwork arising from contracts. The effect of
the E-SIGN Act is uniform nationwide legislation enabling the use of elec-
tronic records and signatures for interstate and international commerce.

303Digital Signatures: Beyond Security

Chapter 10304

Electronic Versus Digital Signatures:
What’s the Difference?
Simply put, an electronic signature is any symbol or method, accom-
plished by electronic means, that is executed or adopted by a party
with present intention to be bound by or to authenticate a record.An
electronic signature can be created by any electronic means. For
example, the output of a sophisticated biometric device, such as a
fingerprint computer recognition system, could qualify as an elec-
tronic signature, and so would the simple entry of a typed name at
the end of an e-mail message. The principle is that the symbol or
method was executed or adopted by the signer with a present intent
to sign the record. This definition focuses on the traditional legal
purposes of a signature and not on the particular medium or manner
chosen to effect the signature.

In contrast, a digital signature refers to a particular implemen-
tation of public-key cryptography (such as the implementation
described in Chapter 5). More formally, a digital signature can be
defined as the transformation of a record using an asymmetric cryp-
tosystem and a hash function such that a person having the initial
record and the signer’s public key can accurately determine (a)
whether the transformation was created using the private key that
corresponds to the signer’s public key and (b) whether the initial
record has been altered since the transformation was made.

In other words, a digital signature is created by use of a public-
key system, whereas an electronic signature is produced by any com-
puter method, including public-key systems. Digital signatures are
technology-specific. Electronic signatures are technology-neutral.

The use of low-security electronic signatures, such as simply typ-
ing one’s name on an e-mail, raises serious questions of proof regard-
ing the authenticity of such a signature. However, there are times
when little or no security is warranted. A given transaction or mes-
sage may be informal, of little or no value, or otherwise not reason-
ably likely to form the basis of subsequent dispute. For example, it’s
common practice to conclude purely social e-mail messages with the
typing of the sender’s name. In this case, the name is a symbol
intended to authenticate the document but not necessarily mani-
festing intent to be bound by the content—assuming there exists

Following is a description of various E-SIGN provisions:

� Technology E-SIGN requires that parties to a contract decide on the
form of electronic signature technology. From a scanned handwritten
signature to biometric-protected smart cards, E-SIGN allows the use of
various forms of technology as long as both parties agree.

� Notification The E-SIGN Act provides the following with regard to
notification:

1. The consumer decides whether to use an e-signature or
handwritten signature; the consumer must give consent before
receiving bills and other documents only in electronic form.

2. Cancellation and foreclosure notices must be sent on paper.
3. The vendor must conduct test e-mailings before sending

subsequent e-mail notifications.
4. The law does not allow e-signatures on adoptions, wills, and

product safety recalls.

305Digital Signatures: Beyond Security

any particular content at all. In this context, the word “authenticate”
means merely the intention to represent that the signer was the
sender. In common practice, e-mail among friends and close col-
leagues is often concluded with the initials of the sender alone.

For more formal, but low-risk, electronic transactions, a more
robust signature system may be desirable. This does not necessarily
mean that a full-fledged public-key solution is required. For exam-
ple, some business and professional online services require entry of
a user name and password to access their systems. After users are
on the system, they may be entitled to additional information or ser-
vices, such as online dialog with an expert or authorization to view
value-added proprietary documents. Here, the electronic signature
is created by use of a user name and password, probably relying on
access control technology far less expensive and simpler to use than
public-key cryptosystems. Depending on the understanding of the
parties as evidenced by contracts, disclaimers, or other conditions of
use, the use of this system may authenticate the user and also by
implication, or perhaps expressly, express intent to be bound by
billing rates or other terms.

� Rights Consumers must be made aware of any right or option to
receive a disclosure in paper form and what they must do to obtain
paper copies. Furthermore, consumers must be made aware of the
right to withdraw consent to have records provided electronically,
including any conditions, consequences, or fees associated with doing
so. The organization must describe the procedures for withdrawing
consent and for updating information needed to contact the consumer
electronically.

� Consent Consumers must be presented with and must confirm the
hardware and software requirements for access and retention of
electronic records and must confirm consent to the contract. Both
confirmations must be visibly and conspicuously separate from all
other terms and agreements.

� Consumer obligations The consumer is obligated to inform
electronic records providers of any change in e-mail address or other
location to which the electronic records may be provided.
Furthermore, the consumer is obligated to notify the electronic
records provider before withdrawal of consent.

� Enforcement The E-SIGN Act provides for its enforcement by
giving authority to government agencies as needed to protect the
public interest.

Dealing with Legal Uncertainties
Because the E-SIGN Act does not prescribe the technology that must be
used to sign and verify an electronic document, an electronic signature
could simply be a person’s typed name on e-mail. All that is required is for
both parties to agree to the technology. To the best of our knowledge, such
a signature in no way fosters nonrepudiation and authentication, which
have always been the foundation for commerce as we know it.

Ultimately, we believe that a more solid foundation will be needed. The
concepts of authentication and nonrepudiation are crucial to the opera-
tion of business transactions. To separate authorized users of information
from unauthorized users, there must be a reliable way to ascertain the
identity of the user. The Internet was not designed with adequate techni-
cal means to achieve this identification. In fact, without the existence of
the requirements listed in “Requirements for the Use of Digital Signa-
tures,” it is easy impersonate someone else.

Chapter 10306

Finally, because the validity of documents with these new electronic
signatures has never been challenged in court, their legal status is truly
not yet defined. It’s likely that through such challenges, we will see the
courts issue rulings that will better define which methods, key sizes, and
security precautions are acceptable for electronic signatures to be legally
binding.

Summary
Digital signatures have the potential to possess greater legal authority
than handwritten signatures. Why? Digital signatures may provide a
higher degree of nonrepudiation and authenticity than their handwritten
counterparts. For example, if a ten-page document is signed by hand on
the tenth page, one cannot be sure that the first nine pages have not been
altered. However, if an electronic document is signed with a digital signa-
ture, a third party can verify that not one byte of the contract has been
altered. For this and other reasons, digital signatures also save the parties
time and money.

However, if digital signatures are to replace handwritten signatures,
serious issues—some of which revolve around current legislation—must
be answered. For example, is the current E-SIGN Act enough? Do elec-
tronic signatures provide the same level of nonrepudiation and authen-
ticity provided by handwritten signatures?

E-SIGN is a great leap forward for both interstate and international
Internet commerce. However, E-SIGN should be seen more as a founda-
tion on which to build with current and emerging technologies, such as
the use of public-key technology, PKIs, and digital notaries.

Real-World Examples
A number of relevant products can be purchased or downloaded free from
the Internet. They range from enabling software to hardware that allows
users to authenticate themselves to their private signing key. Following
are only a couple of the available solutions.

307Digital Signatures: Beyond Security

� RSA Security, Inc., as well as a number of other security software
vendors, offers developer software development kits (SDKs) and
products. BSAFE Cert-C and Cert-J, for example, allow developers to
use public-key certificates for a number of security services such as
digital signatures.

� Datum carries an excellent time-stamp device to be used in
conjunction with digital notaries or time-stamp authorities or to
provide in-house time-stamp services.

In addition to security vendors that sell products designed for users
and developers, we will likely see the advent of more businesses that will
offer services to support digital signatures. Such services include certifi-
cation authorities and time-stamp and digital notary services. Here are
some examples:

� Digisign is one company that has already begun selling time-stamp
and digital notary services.

� VeriSign is a certification authority that issues public-key certificates
to end users.

Finally, we should not forget legal professionals. A great many legal
professionals have taken the time to become technically savvy, and we
expect to see this number increase as more related legal cases are seen in
the future.

Chapter 10308

TE
AM
FL
Y

Team-Fly®

Doing It Wrong:
The Break-Ins

Over the past two decades, the computer industry has really taken off,
and the number of security incidents has increased significantly. Corpo-
rations as well as individuals have learned the hard way that data can
easily be accessed, disclosed, modified, or even deleted if proper security
is not provided.

Over the years, companies have fallen short in their efforts to imple-
ment cryptographic solutions both in their own products and services and
in attempts to protect their internal enterprise from intruders. This chap-
ter summarizes the various types of losses that occur when a system is not
properly secured. We also outline the kinds of threats and intruders that
have come to be widely reported. Finally, we look at a number of case stud-
ies in which security was either overlooked or failed because of improper
implementation. (We describe successful case studies in Chapter 12.)

Measuring Losses
The kinds of losses that organizations can experience because of lapses in
computer security can be counted in a number of ways. Many people think

CHAPTER 11

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

first of the direct forms of loss, such as the loss of data. However, when you
look closely at what is at stake, loss of data is only the beginning. Follow-
ing is a short list of the types of losses that occur:

� Loss of data or secrets When people hear the word “hacker,” this
is perhaps one of the first types of loss that they think of. This cate-
gory includes the loss of user credit card numbers, compromise of
financial reports, and unauthorized access to medical information.

NOTE:
The data itself need not have been stolen for a serious loss to result.
Instead, an attacker may manipulate the data in such a way that it is
rendered inaccurate or unusable.

� Loss of reputation After a successful breach of security, end users
may abandon a service or product because they’re afraid to use it. Yet
another aspect of this type of loss is the effect it has on assessments
of a corporation by financial analysts. Sometimes an analyst’s
negative evaluation can have as great an impact as the break-in
itself. This may be one of the main reasons that corporations seldom
report break-ins and theft of data.

� Financial losses In addition to direct financial thefts, loss of data
and loss of reputation will result in financial losses. Financial losses
can be one of the most difficult to quantify. One reason is that no one
knows exactly how many current customers will not return following
a break-in or, worse yet, how many potential new customers will
never make the attempt.

Types of Security Threats
To implement security effectively, corporations as well as individuals need
to be aware of a variety of potential threats. Let’s take a look at each these
threats.

Chapter 11310

NOTE:
Each of the following threats does not necessarily require direct human
interaction. Through the use of computer viruses or Trojan Horse applica-
tions, data can easily be destroyed, manipulated, or sent to an intruder
for viewing.

Unauthorized Disclosure of Data

Unauthorized disclosure of data results from an individual accessing or
reading information and revealing it either accidentally or intentionally.
Corporations and individuals are making greater use of networks, includ-
ing private networks such as local area networks (LANs) and wide area
networks (WANs) and public networks such as the Internet. As a result,
some of the data stored or processed on the network may require some
level of protection to ensure confidentiality. Network data or software may
be compromised when it is accessed, read, and possibly released to an
unauthorized individual.

A common cause of unauthorized access is the failure to encrypt sensi-
tive information. Data can be compromised by exploiting the following
types of vulnerabilities:

� Storing data in the clear (i.e., unencrypted) when it is considered
sensitive enough to warrant encryption

� Failing to implement, monitor, and enforce appropriate authorization
and access-control mechanisms where sensitive data is stored

Unauthorized Modification of Data

Information in digital form is often shared between many users and
stored on numerous shared devices. The unauthorized modification of
data includes the modification, deletion, or destruction of data or software
in an unauthorized or accidental manner.

A particularly insidious event is data modification that goes unde-
tected. When such modifications are present for long periods of time, the
modified data may be spread throughout the network, possibly corrupting
databases, spreadsheet calculations, and other forms of application data.

311Doing It Wrong: The Break-Ins

This kind of damage can compromise the integrity of application infor-
mation. When undetected software changes are made, all system software
can become suspect, warranting a thorough review (and perhaps rein-
stallation) of all related software and applications.

These kinds of unauthorized changes can be made in simple command
programs (for example, in PC batch files), in utility programs used on
multiuser systems, in major application programs, or in any other type of
software. They can be made by unauthorized outsiders as well as those
who are authorized to make software changes (although not, of course, the
damaging changes we are speaking of here). These changes can divert
information (or copies of the information) to other destinations, corrupt
the data as it is processed, and impair the availability of system or net-
work services.

The unauthorized modification of data and software can easily take
place when data integrity services are not provided.

Unauthorized Access

Unauthorized access occurs when someone who is not authorized to use
a system or network gains access, usually by posing as a legitimate user
of the network. Three common methods are used to gain unauthorized
access: password sharing, general password guessing, and password
capture.

Password sharing allows an unauthorized user to assume the network
access and privileges of a legitimate user with the latter’s knowledge and
acceptance. General password guessing is not a new means of unautho-
rized access. In password capture, a legitimate user is tricked into
unknowingly revealing his or her login ID and password. Methods of pass-
word capture include the use of a Trojan Horse program. To a user, this
program looks like a legitimate login program; however, it’s designed
solely to capture passwords.

Another method used to ultimately gain network access is to capture a
login ID and password as they are transmitted across the network unen-
crypted. A number of methods for capturing cleartext network traffic,
including passwords, are readily available.

Intruders can gain unauthorized network access by exploiting the fol-
lowing types of vulnerabilities:

Chapter 11312

� Lack of, or insufficient, identification and authentication schemes

� Password sharing

� The use of poor password management or easy-to-guess passwords

� Failure to patch known system holes and vulnerabilities

� The storage of network access passwords in batch files on PCs

� Lack of a time-out for login and log-off attempts

Disclosure of Network Traffic

Many users realize the importance of protecting confidential information
when it is stored on their workstations or servers; however, it’s also
important to maintain confidentiality as the information travels across
the network. The disclosure of network traffic occurs when someone who
is unauthorized reads, or otherwise obtains, information as it traverses
the network. Intruders can easily compromise network traffic by listen-
ing to and capturing traffic transmitted over the network transport
media. Examples of attack methods include tapping into a network cable
with the use of a hardware device that analyzes network traffic as it is
transmitted.

Traffic analyzing software, or sniffers, allow intruders to access the net-
work the traffic is traversing. One such application is Sun Microsystems’
“snoop” utility, which was originally created to allow administrators to
verify traffic flow across the network. But it also allows intruders running
the Solaris operating system to watch the flow of network traffic.

Information that can be compromised in this way includes system and
user names, passwords, electronic mail messages, application data, health
records, and so on. For example, even if patient records are stored on a
system in an encrypted form, they can be captured in plaintext as they are
sent from a workstation or PC to a file server. Electronic mail message
files, which usually have strict access rights when stored on a system, are
often sent in plaintext across a wire, making them an easy target for cap-
turing.

Disclosure of network traffic is usually the result of data sent in the
clear, across both public and private networks.

313Doing It Wrong: The Break-Ins

Spoofing of Network Traffic

It’s a basic principle of network security that data that is transmitted over
a network should not be altered in an unauthorized manner—either by
the network itself or by an intruder—as a result of that transmission.
Network users should have a reasonable expectation that any messages
they send will be received unmodified. A modification occurs when an
intentional or unintentional change is made to any part of the message,
including the contents and addressing information.

Spoofing of network traffic involves (1) the ability to receive a message
by masquerading as the legitimate receiving destination or (2) mas-
querading as the sending machine and sending an unauthorized message
to a destination. For an attacker to masquerade as a receiving machine,
the network must be persuaded that the destination address is the legit-
imate address of the machine. (Network traffic can also be intercepted by
listening to messages as they are broadcast to all nodes.) To masquerade
as the sending machine and deceive a receiver into believing the message
was legitimately sent, attackers can masquerade the address or mount
a playback attack. A playback involves capturing a session between a
sender and a receiver and then retransmitting the message (with either
a new header, new message contents, or both).

Intruders can spoof or modify network traffic by exploiting the follow-
ing types of vulnerabilities:

� Transmitting network traffic in plaintext

� Lack of a date/time stamp (showing sending time and receiving time)

� Failure to use message authentication codes or digital signatures

� Lack of a real-time verification mechanism (to use against playback)

Identifying Intruders
Every day, undesirable intruders make unauthorized entry into computer
systems and networks. Who exactly are the intruders? These individuals
range from recreational hackers to foreign intelligence agencies. Each of
these groups has its own agenda and motivations. The following sections
paraphrase the descriptions of various intruders that were noted in a
recent Federal Bureau of Investigation Congressional statement titled
“Cybercrime.”

Chapter 11314

Insiders

Most corporations want to believe that their employees are the cream of
the crop and would never violate corporate security. In reality, however,
some employees are not what they seem. People who commit security
crimes against their employers are motivated by a number of reasons; the
disgruntled insider (a current or former employee) is a principal source of
computer crimes for many companies. Insiders’ knowledge of the target
company’s network often allows them to gain unrestricted access and
damage the system or steal proprietary data. The 2000 survey by the
Computer Security Institute and FBI reports that 71 percent of respon-
dents detected unauthorized access to systems by insiders.

Hackers

Virtually every day we see news reports about recreational hackers, or
“crackers,” who crack into networks for the thrill of the challenge or to
gain bragging rights in the hacker community. Remote cracking once
required a fair amount of skill and computer knowledge, but recre-
ational hackers can now download attack scripts and protocols from the
World Wide Web and launch them against victim sites. Thus, even
though attack tools have become more sophisticated, they have also
become easier to use.

Terrorists

Increasingly, terrorist groups are using new information technology and
the Internet to formulate plans, raise funds, spread propaganda, and com-
municate securely. Moreover, some terrorist groups, such as the Internet
Black Tigers (who reportedly are affiliated with the Tamil Tigers), have
been known to engage in attacks on foreign government Web sites and
e-mail servers. “Cyber terrorism”—by which we mean the use of cyber
tools to shut down critical national infrastructures (such as energy, trans-
portation, or government operations) for the purpose of coercing or intim-
idating a government or civilian population—is thus a very real, although
still largely potential, threat.

315Doing It Wrong: The Break-Ins

Foreign Intelligence Services

Not surprisingly, foreign intelligence services have adapted to using cyber
tools as part of their espionage tradecraft. As far back as 1986, before the
worldwide surge in Internet use, the KGB employed West German hack-
ers to access U.S. Department of Defense systems in the well-known
“Cuckoo’s Egg” case. Foreign intelligence services increasingly view com-
puter intrusions as a useful tool for acquiring sensitive U.S. government
and private sector information.

Hactivists

Recently there has been a rise in what has been dubbed “hactivism”—
politically motivated attacks on publicly accessible Web pages or e-mail
servers. These groups and individuals overload e-mail servers and hack
into Web sites to send a political message. Although these attacks gener-
ally have not altered operating systems or networks, they damage ser-
vices and deny the public access to Web sites containing valuable
information; and they infringe on others’ right to communicate.

One such group, the Electronic Disturbance Theater, promotes civil dis-
obedience online in support of its political agenda regarding the Zapatista
movement in Mexico and other issues. In the spring of 2000, the group
called for worldwide electronic civil disobedience, and it has taken what it
terms “protest actions” against White House and Department of Defense
servers. Supporters of Kevin Mitnick, recently convicted of numerous
computer security offenses, hacked into the Senate Web page and defaced
it in May and June 2000.

The Internet has enabled new forms of political gathering and infor-
mation sharing for those who want to advance social causes; that is good
for the promotion of democracy worldwide. But illegal activities that dis-
rupt e-mail servers, deface Web sites, and prevent the public from access-
ing information on U.S. government and private sector Web sites should
be regarded as criminal acts that deny others their human rights to com-
municate rather than as an acceptable form of protest.

Chapter 11316

Intruder Knowledge

How have intruders gained the knowledge that allows them to commit
such serious break-ins? For the most part, few of the intruder types we’ve
discussed have extensive knowledge of the inner workings of today’s com-
puter systems. Many of these intruders do nothing more than use the
information and tools built by other intruders in the past. Many Web sites
provide them with all the information and tools needed to break in or
damage computer systems and networks.

This doesn’t mean that the information and tools downloaded by
intruders were created for the purpose of aiding such attacks. On the con-
trary, much of this knowledge is designed to help administrators and secu-
rity officers recognize potential security holes within their systems and
networks—such was the case with Sun Microsystems’ snoop utility,
described earlier in this chapter. It’s through the use of these tools, how-
ever, that intruders are able to exploit the weaknesses inherent in many
systems.

Case Studies
The following case studies illustrate various ways in which security can
be improperly implemented. Each example is based on an actual account
of a real corporation, although the names have not been used. In general,
these real-word examples demonstrate that security breaches often focus
on four areas: data at rest, data in transit, authentication, and improper
implementation. It is staggering how often these four elements are
involved in security lapses. By examining these cases in depth, we hope to
prevent these types of incidents from reoccurring.

Data in Transit

Many Web sites are still providing communications in the clear (i.e., not
encrypted). As a result, they make themselves vulnerable to attackers
using sniffers, who monitor and intercept clear traffic for their own pur-
poses. Worst yet, officials in many corporate enterprises feel that their
data is safe as long as it remains within their firewalls. The problem is
that with many employees within the same local area network, it is easy

317Doing It Wrong: The Break-Ins

for an employee with sinister intentions to view, destroy, or simply manip-
ulate all the data traveling up and down the lines.

For example, one software vendor that recently joined the ranks of the
“dot-com” world allowed for the unsecured transfer of data between its
internal servers. This meant that account numbers and cardholder infor-
mation flowed across their internal network completely visible to any
employee. This corporation, like many other corporations, felt that as long
as security was provided for information flowing across the Internet, there
was no need to enable internal security (behind their corporate firewall).

This particular corporation found out the hard way that there was need
for internal security. It turned out an employee had been saving customer
credit card numbers as they zoomed across their internal network.

When asked why, the employee simply stated that he could. What if the
employee had posted the credit card numbers on the Internet (for the
world to see)? If the press had gotten hold of that story, the corporation
would have most likely lost many customers. What if the employee had
used the credit card numbers to make purchases for himself? The credit
card corporations involved might have lost faith in the merchant and can-
celled their contracts. Fortunately, the corporation discovered the
employee’s file of saved credit card numbers before any real harm had
been done.

The corporation could have avoided this predicament by enabling SSL
(described in Chapter 7) and making use of secure e-mail through a pro-
tocol such as S/MIME (described in Chapter 8).

The need for security in such situations is so obvious that we honestly
don’t know why it is sometimes difficult for others to grasp. No corpora-
tion would have unlocked doors. We’d be willing to bet that the CEO keeps
his or her possessions under lock and key, as do the company’s employees.
The reason is obvious: People snoop, steal, or inadvertently look at things
they shouldn’t.

Data at Rest

A number of corporations that provide goods and services to Internet cus-
tomers actually do a great job protecting customer data in transit by mak-
ing use of the SSL protocol. However, they fail to realize (or maybe they
choose to forget) that data requires further protection once it’s at rest.
SSL does not protect data after it leaves the security of the protocol. After
data is received by either the client or the server, that data is decrypted.

Chapter 11318

TE
AM
FL
Y

Team-Fly®

Nevertheless, some companies fail to adequately protect such data. One
corporation, an online music vendor, recently had the misfortune of hav-
ing an unauthorized “guest” break in to its systems. The attack placed
more than three million credit card numbers from the company’s back-end
databases at risk of disclosure on the Internet. Fortunately, in this inci-
dent, it has been reported that the credit card numbers were never
obtained. Still, the potential for widespread credit card fraud was there.

In news reports, the corporation’s upper management stated that they
didn’t quite understand how the attack occurred. The company had pro-
vided for security through the use of SSL to secure connections. However,
this corporation could have and should have done more in the way of secu-
rity. For example, it could have encrypted the credit card numbers before
placing them in the database.

Authentication

Authentication is by far one of the easiest of the security services to imple-
ment, but many corporations limit their system and network security to
user ID/password schemes. Many applications, whether they reside
within an enterprise or at consumer sites, incorporate nothing more than
a simple password or, worse yet, a four-digit PIN.

It’s easy to experience firsthand the best example of the risk incurred
by companies that use inadequate authentication safeguards. All you
have to do is to sit down at someone’s computer who uses a certain travel-
services Web site. One of the authors of this book did just that. It was a
simple matter to go to the site and select the button Lost/Forgotten Pass-
word. Within one minute, the password was e-mailed directly to the user’s
account (which the author could easily open as well). Within all of five
minutes, he could have purchased two round-trip tickets to the Caribbean.
Even if an individual had to guess a password or a PIN to access the site
as another person, it would take a day at most.

In the digital age, with all the information provided in this book and
others like it, no new technology is needed to greatly improve authentica-
tion security. The cost of an authentication token is nothing in comparison
with the money that would be lost by a fraudulent purchase at such a site.

Another example occurred recently at a medical center, where the sys-
tem was hacked by an intruder who entered by using a common tool used
by network administrators known as VNC (virtual network computing).
Through the use of VNC, the intruder was able to enter the file system

319Doing It Wrong: The Break-Ins

and gain access to various medical records. In all, the hacker accessed
more than 4,000 cardiology patient records, 700 physical rehabilitation
records, and every admission, discharge, and transfer record of the med-
ical center within a five-month period.

Without regard to internal security and the sensitivity of medical
records, all this data was stored in the clear. But let’s focus on the more
important issue: how the network was accessed in the first place. VNC in
its current incarnation has very limited authentication mechanisms (i.e.,
user ID and password). This means that intruders need only try a number
of passwords before they gain access.

In a case concerning medical records, you can easily see the losses add
up. What if this sensitive data was released publicly across the Internet?
There is the obvious loss of patient confidence, as well as the very real pos-
sibility of lawsuits. Furthermore, what if the medical records were modi-
fied? While it sounds like something from a movie, this could easily
happen.

With that said, proper authentication could have been observed in this
case. True user ID/password schemes do provide authentication to a point,
but as the sensitivity of the data increases so should the degree of authen-
tication required. At the medical center, authentication would have been
best provided for by requiring the use of client-side certificates or a one-
time password token.

Implementation

Improper implementation can be seen in many examples of security
breaches. The fact is that it isn’t easy to implement security services using
cryptography. Considerable time and effort must be taken to ensure that
the newly implemented system is secure.

One well-known bug, which was recently discovered, belongs to one
widely used security application, which provides encryption and digital
signatures to its users. In attempting to create a new key-escrow scheme
(explained further in Chapter 6) that would be less intrusive to users, the
application developers made a simple error.

This simple error allowed for the possible disclosure of all data that had
been encrypted using its new functionality. Furthermore, the integrity of
any information, which was digitally signed by the software, could be
destroyed. In this case, the actual dollar losses may never be calculated,
simply because we do not know exactly when this bug was first discovered

Chapter 11320

(we would like to believe that it was announced as soon as it was found).
The corporation who originally developed the software must now spend
even more money fixing the problem that they created.

The entire incident could have been prevented by following existing
security protocols (in this case, sticking with none key-escrow schemes).
While we can appreciate the fact that the company went to the trouble of
implementing a new less-intrusive concept, we feel developers should first
have their work verified by an objective third party. There are a number
of security consultants and agencies that test and even certify the security
of products.

Information Security: Law Enforcement
Just as legal professionals are beginning to look at the legal ramifications
of information security (see Chapter 10), various law enforcement agen-
cies are studying related enforcement issues. Within the past year alone,
the FBI has begun increasing the number of field agents in its National
Infrastructure Protection Center (NIPC). Over the next two years, the
number of field offices nationwide is to be increased to 56.

Within the past year, the U.S. Department of Justice has also initiated
a new section devoted to investigating computer crime. The Computer
Crime and Intellectual Property Section (CCIPS) has a staff of attorneys
who advise federal prosecutors and law enforcement agents about various
issues raised by computer and intellectual property crime. Furthermore,
the staff provides ongoing work in the areas of e-commerce security, elec-
tronic privacy laws, and hacker investigation.

Various other agencies provide a broad range of security services. One
such agency is the Computer Emergency Response Team/Coordination
Center (CERT/CC). CERT/CC was originally created in 1988 by DARPA
(the Defense Advanced Research Projects Agency, part of the U.S. Depart-
ment of Defense) after the Morris Worm incident, which crippled 10 per-
cent of all computers on the Internet. CERT/CC works on a number of
initiatives, such as research into security vulnerabilities, improvement
of system security, and coordination of teams to respond to large-scale
incidents.

321Doing It Wrong: The Break-Ins

Summary
Efforts made to improve the security of computer networks provide bene-
fits beyond the reduction of risks for corporations. They also play an inte-
gral role in keeping fear at bay for the benefit of everyone who uses such
systems. To really see the B2B and B2C e-commerce markets take off, we
are going to have to see improvements in information security.

Various risks and vulnerabilities plague all the players in the new dig-
ital world. The number of intruders, ranging from internal employees to
teenage hackers who threaten computer systems, continues to grow. These
intruders are becoming more knowledgeable and finding better tools that
enable them to attack unsuspecting systems. Still, as the case studies
from this chapter have shown, corporations and developers alike often
refuse to do everything in their power to provide for proper security.
Although law enforcement agencies are quickly coming up to speed with
today’s technology, they are simply “fighting fires” when it comes to deal-
ing with digital attacks at this point. However, by incorporating proper
security from the onset, corporations, developers, and users can prevent
cybercrime before it happens.

Chapter 11322

Doing It Right:
Following Standards

A growing number of techniques are available to help organizations ensure
that they’ve incorporated adequate security in their products and services
as well as provided security for their own enterprises. Every security pro-
fessional should know certain important concepts. Various standards,
guidelines, and regulations have been developed, and various external
agencies and organizations can be called on, to help ensure that security is
implemented properly. The experiences of successful organizations can be
helpful in understanding how security can be properly incorporated into
everything from back-end enterprises to end-user products and services.

As you learned in Chapter 11, it seems as if there is no way around it:
Sooner or later your network will be broken into. It’s an excellent idea to
operate under this assumption. To a casual outsider or to those who are
new to the field of information security, this practice may seem a bit over-
board or even a little paranoid. But security experts think this way so that
they can stay ahead of the bad guys. In this chapter, you’ll learn the vari-
ous ways that companies are properly implementing security in the digi-
tal age.

CHAPTER 12

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Security Services and Mechanisms
A security service is a collection of mechanisms, procedures, and other
controls that are implemented to help reduce the risk associated with the
threat of data loss or compromise. Some services provide protection from
threats, and other services provide for detection of the occurrences of any
breach. For example, an identification and authentication service helps
reduce the risk posed by access to the system by an unauthorized user. An
example of a service that detects a security breach is a logging or moni-
toring service.

The following security services are discussed in this section:

� Authentication is the security service that can be used to ensure
that individuals accessing the network are authorized.

� Confidentiality is the security service that can be used to ensure
that data, software, and messages are not disclosed to unauthorized
parties.

� Integrity is the security service that can be used to ensure that
unauthorized parties do not modify data, software, and messages.

� Nonrepudiation is the security service that can be used to ensure
that the entities involved in a communication cannot deny having
participated in it. Specifically, the sending entity cannot deny having
sent a message (nonrepudiation with proof of origin), and the
receiving entity cannot deny having received a message
(nonrepudiation with proof of delivery).

NOTE:
Though not discussed in this chapter, access control is the security service
that helps ensure that network resources are being used in an authorized
manner.

Authentication

The first step in securing system resources is to implement a service to
verify the identities of users, a process referred to as authentication.
Authentication provides the foundation that determines the effectiveness

Chapter 12324

of other controls used on the network. For example, a logging mechanism
provides usage information based on user ID, and an access-control mech-
anism permits access to network resources based on the user ID. Both
controls are effective only under the assumption that the requester of a
network service is the valid user assigned to that specific user ID.

Identification requires that the user be known by the system or net-
work in some manner, usually based on an assigned user ID. However,
unless the user is authenticated, the system or network cannot trust the
validity of the user’s claim of identity. The use is authenticated by sup-
plying something possessed only by the user (such as a token), something
only the user knows (such as a password), or something that makes the
user unique (such as a fingerprint). The more of these kinds of authenti-
cation that the user must supply, the less risk there is that someone can
masquerade as the legitimate user.

On most systems and networks, the identification and authentication
mechanism is a scheme that combines a user ID with a password. Pass-
word systems can be effective if managed properly, but they seldom are
managed properly. Authentication that relies solely on passwords often
fails to provide adequate protection for systems for a number of reasons.
First, users tend to create passwords that are easy to remember and hence
easy to guess. On the other hand, passwords generated from random char-
acters are difficult to guess but also difficult for users to remember. As a
result, users may write down such passwords, and they are often found in
areas that are easy accessible. It’s not unusual, for example, to find pass-
words written on sticky notes mounted on computer monitors, where any-
one can find them and use them to gain access to the network. The
guessing of passwords is a science, and a great deal of research has been
published that details the ease with which passwords can be guessed.

Proper password selection—striking a balance between the password
being easy to remember for the user but difficult to guess for everyone else-
has always been an issue. Password generators have been developed that
produce passwords consisting of pronounceable syllables. Such passwords
have greater potential of being remembered than those made of purely
random characters. Some systems and network administrators require the
use of an algorithm that produces random pronounceable passwords. Pro-
grams called password checkers enable a user to determine whether a new
password is considered easy to guess and thus unacceptable.

Because of the vulnerabilities that still exist with the use of password-
only mechanisms, more robust mechanisms can be used, such as token-
based authentication or biometrics. A smart card–based or token-based

325Doing It Right: Following Standards

mechanism requires that a user be in possession of the token and addi-
tionally may require the user to know a PIN or password. These devices
then perform a challenge/response authentication scheme using real-time
parameters. The latter practice helps prevent an intruder from gaining
unauthorized access through a login session playback. These devices may
also encrypt the authentication session, preventing compromise of the
authentication information through monitoring and capturing.

Locking mechanisms can be used for network devices, workstations, or
PCs, requiring user authentication to unlock.These tools can be useful when
users must leave their work areas frequently. These locks allow users to
remain logged in to the network and leave their work areas (for an accept-
ably short period of time) without exposing an entry point into the network.

Confidentiality

Because access control through the use of proper authentication is not
always possible (because of shared drives and open networks), data confi-
dentiality services can be used when it’s necessary to protect the secrecy
of information. The use of encryption through symmetric or asymmetric
ciphers (or both) can reduce the risk of unauthorized disclosure, both in
the case of data at rest and data in transit, by making it unreadable to
those who may capture it. Only the authorized user who has the correct
key can decrypt the data.

Integrity

Data integrity services provide protection against intentional and acci-
dental unauthorized modification of data. This service can be used for
data while it is at rest on a back-end database or while it is in transit
across a network. This service can be provided by the use of cryptographic
checksums and highly granular access-control and privilege mechanisms.
The more granular the access-control or privilege mechanism, the less
likely it is that an unauthorized or accidental modification can occur.

Furthermore, data integrity services help to ensure that a message is
not altered, deleted, or added to in any manner during transmission
across a network. Most available security techniques cannot prevent the
modification of a message, but they can detect that a message has been
modified (unless the message is deleted altogether).

Chapter 12326

Nonrepudiation

Nonrepudiation helps to ensure that the entities in a communication can-
not deny having participated in all or part of the communication. When a
major function of the network is electronic mail, this service becomes cru-
cial. Nonrepudiation services can be provided through the use of public-
key cryptographic techniques using digital signatures.

Standards, Guidelines, and Regulations
Throughout this book, we’ve described a number of standards, guidelines,
and regulations. For example, Chapter 6 explains how the X.509 standard
can be used to provide for secure public-key operations, and Chapter 7
describes the SSL and IPSec protocols, which are used to provide various
security services. The following sections outline the various organizations
that have made the effort to ensure that each standard, guideline, and
regulation provides for a proper security implementation.

The Internet Engineering Task Force

The Internet Engineering Task Force (IETF) is an international commu-
nity of network designers, operators, vendors, and researchers. This group
is concerned with the smooth operation of the Internet and the evolution
of the Internet architecture.

The technical work of the IETF is done in its working groups, which
are organized by topic into several areas (routing, transport, security, and
so on). The working groups are managed by area directors (ADs), who are
members of the Internet Engineering Steering Group (IESG). Providing
architectural oversight is the Internet Architecture Board (IAB). The IAB
also adjudicates appeals when someone complains about the policies
adopted by the IESG. The IAB and IESG are chartered by the Internet
Society (ISOC) for these purposes. The general area director also serves
as the chair of the IESG and of the IETF and is an ex officio member of
the IAB.

327Doing It Right: Following Standards

ANSI X9

X9 is a division of the American National Standards Institute (ANSI) that
develops and publishes voluntary, consensus technical standards for the
financial services industry. X9’s voting membership includes more than
300 organizations representing investment managers, banks, software
and equipment manufacturers, printers, credit unions, depositories, gov-
ernment regulators, associations, consultants, and others.

X9 develops standards for check processing, electronic check exchange,
PIN management and security, the use of data encryption, and wholesale
funds transfer, among others. Standards under development include elec-
tronic payments via the Internet, financial image interchange, home
banking security requirements, institutional trade messages, and elec-
tronic benefits transfer.

X9’s procedures ensure that interested parties have an opportunity to
participate and comment on a developing standard before it is imple-
mented. X9 standards are also reviewed by ANSI before publication to
ensure that all requirements are met. ANSI conducts an audit of X9 oper-
ations every five years.

X9 is organized into seven subcommittees. At any given time the com-
mittee has 20 to 30 active working groups and more than 80 domestic and
international standards projects. Organizations that vote on more than
one subcommittee constitute a parent committee that sets policy and pro-
cedures.

National Institute of Standards and Technology

The National Institute of Standards and Technology (NIST) has published
many guidelines and standards on the topic of information security. One
of its key contributions to cryptography is the federal information-
processing standard (FIPS 140-1), which describes a standard for secure
cryptographic modules. FIPS 140-1 is discussed more fully in the follow-
ing section.

NIST also administers a certification process for software and hard-
ware cryptographic modules.

Chapter 12328

TE
AM
FL
Y

Team-Fly®

FIPS 140-1

FIPS 140-1 specifies the security requirements that are to be satisfied by
a cryptographic module that is used in a security system protecting
unclassified information in computer and telecommunication systems.
Cryptographic modules conforming to this standard must meet the applic-
able security requirements described in the standard.

The FIPS 140-1 standard was developed by a working group composed
of users and vendors and including government and industry partici-
pants. To provide for a wide spectrum of data sensitivity (such as low-
value administrative data, large funds transfers, and data related to
human life and safety) and a diversity of application environments (such
as a guarded facility, an office, and a completely unprotected location), the
working group identified requirements for four security levels for crypto-
graphic modules. Each security level offers an increase in security over
the preceding level. These four increasing levels of security are designed
to support cost-effective solutions that are appropriate for different
degrees of data sensitivity and different application environments.

Although the security requirements specified in this standard are
intended to maintain the security of a cryptographic module, conformance
to this standard does not guarantee that a particular module is secure. It
is the responsibility of the manufacturer of a cryptographic module to
build the module in a secure manner.

Similarly, the use of a cryptographic module that conforms to this stan-
dard in an overall system does not guarantee the security of the overall
system. The security level of a cryptographic module should be chosen to
provide a level of security that’s appropriate to the security requirements
of the application, the environment in which the module is to be used, and
the security services that the module is to provide. The responsible
authority in each agency or department must ensure that the agency or
department’s relevant computer or telecommunication systems provide
an acceptable level of security for the given application and environment.

NIST emphasizes the importance of computer security awareness and
of making information security a management priority that is communi-
cated to all employees. Because computer security requirements vary
among applications, organizations should identify their information
resources and determine the sensitivity to and potential impact of losses.
Controls should be based on the potential risks. Available controls include

329Doing It Right: Following Standards

administrative policies and procedures, physical and environmental con-
trols, information and data controls, software development and acquisi-
tion controls, and backup and contingency planning.

NIST has developed many of the needed basic controls to protect com-
puter information and has issued standards and guidelines covering both
management and technical approaches to computer security. These
include standards for cryptographic functions that are implemented in
cryptographic modules as specified in the FIPS 140-1 standard.This stan-
dard is expected to be the foundation for NIST’s current and future cryp-
tographic standards.

Common Criteria

A standard known as Common Criteria (CC) was developed as the result
of a series of international efforts to develop criteria for evaluation of
information security. It began in the early 1980s, when the Trusted Com-
puter System Evaluation Criteria (TCSEC) was developed in the United
States. Ten years later, a European standard, the Information Technology
Security Evaluation Criteria (ITSEC), was built on the concepts of the
TCSEC. Then in 1990, the International Organization for Standardiza-
tion (ISO) sought to develop a set of international evaluation criteria for
general use. The CC project was started in 1993 in order to bring these
(and other) efforts together into a single international standard for infor-
mation security evaluation.

The CC aims to build consumer confidence by testing and certifying
products and services. Typically, certifiers are commercial organizations
operating testing laboratories accredited by ISO. Accreditors are some-
times closely involved in the determination of functional and assurance
requirements for a system.

The Health Insurance Portability Act

Various regulations have been enacted at the local, state, and federal lev-
els, each of them specifying unique requirements for the various market
sectors. The Health Insurance Portability Act (HIPAA) is one such regula-
tion. Handed down by the federal government and signed into law in
1996, HIPAA addresses both health insurance reform and administrative
simplification. The latter section aims to standardize access to patient

Chapter 12330

records and the transmission of electronic health information between
organizations. Important among these administrative issues is the pro-
posed standard for security and electronic signatures, which mandates
requirements for the following:

� Confidentiality This requirement is designed to keep all transfers
of information private. Steps must be taken to ensure that
information is not made available or disclosed to unauthorized
individuals.

� Integrity This requirement ensures that data has not been
changed or altered en route or in storage.

� Authentication This mandate means that organizations must
make sure that the person sending the message is the person he or
she claims to be.

� Nonrepudiation This principle ensures that after a transaction
occurs, neither the originator nor the recipient can deny that it took
place.

� Authorization This requirement limits access to network
information and resources to users who have been authenticated
based on defined privileges.

When it comes to people’s most personal information—their medical
history—people have always been concerned about confidentiality. As
individuals, we are secretive about every aspect of our health, from weight
to illness to prescriptions to payments. When it comes to medical infor-
mation, it is essential that healthcare providers implement PKI security
infrastructures so that they can use digital certificates to securely store,
transmit, and access health records electronically. The thought of personal
information on a public network can be intimidating, and patients need to
be assured that their private medical histories continue to maintain
unparalleled confidentiality.

Developer Assistance
Many software developers, whether they’re implementing security for a
retail product or for the newest e-commerce site or they’re building appli-
cations for an enterprise, have chosen to outsource the security task. A
good number of security consultants, architects, and managed security

331Doing It Right: Following Standards

services are available for hire. These individuals and companies provide a
wide range of assistance in implementing security, allowing developers to
spend more time working on the unique aspects of their products (where
their talents are best used).

RSA Security, Inc., is one professional services organization that can
assist developers in the design and implementation of security. In addi-
tion, many organizations, including RSA, can also provide certification
when the system is completed.

Insurance

Many financial institutions and insurance companies have now begun
insuring e-commerce Web sites. Many of these new insurers look for cer-
tification and require security audits. One way to implement insurance
requirements is through the use of secure cryptographic modules (such as
BSAFE, a software product family line available from RSA Security, Inc.).

American International Group, Inc. (AIG), one such insurance provider,
has e-business divisions that offer insurance to companies with e-business
initiatives. RSA Security, Inc., and AIG partnered in January 2000 to pro-
vide e-security to corporations. The partnership means that customers can
take advantage of discounts offered by AIG for the use of RSA products.

Security Research

Sun Tzu stated it perfectly in The Art of War: “Know your enemy as you
know yourself, and in a thousand battles you shall never perish.” For orga-
nizations that are designing and implementing security systems, the most
successful approach is to learn what intruders know so that you can come
up with a way to stop them. The following list of Web sites is an excellent
place to start to learn what the enemy knows.

http://www.cert.org/ CERT/CC is a center of Internet
security expertise.

http://www.securityfocus.com/ Security Focus provides up-to-date
information on current bugs. It also
keeps an excellent collection of
hacker-related articles.

Chapter 12332

http://www.slashdot.org/ This site provides information
about current break-ins and
describes the various known system
vulnerabilities.

http://www.2600.org/ This site dubs itself the “Hacker
Quarterly,” providing its readers
with current information on system
hacks and cracks.

NOTE:
This list is by no means complete; it is merely a starting place where you
can gain knowledge about security issues.

Case Studies
In contrast to the case studies presented in Chapter 11, the following case
studies illustrate the ways in which corporations and developers took
steps to properly implement security, focusing specifically on their tech-
niques within the four commonly ignored areas described in Chapter 11:
data at rest, data in transit, authentication, and implementation. Each
case study shows how time and money can be saved by properly imple-
menting security before an incident arises.

Implementation

One major hardware manufacturer recently looked into implementing a
public-key infrastructure. After close analysis, company officials realized
that not all the applications that the company needed secured were “PKI-
ready;” that is, some of the applications did not support the use of public-
key certificates. After working with various security architects and
consultants, company officials learned that for this set of applications
they need to provide a front-end server application that handled certifi-
cates. The employees already had one of the easiest-to-use PKI clients: a
Web browser.

333Doing It Right: Following Standards

In this case, there is still a chance that sensitive data might be exposed
at points where the new server application communicates with the legacy
applications. However, the level of security at this company is now signif-
icantly higher than it was before the PKI was established.

Even if their systems and networks are never breached, this company
has saved a significant amount of both time and money. Each of their
legacy applications required a password to access, which meant they
needed a fully staffed help desk to assist users with logging in and reset-
ting forgotten passwords. Another cost advantage came through the use of
digital signatures on electronic ordering forms, which are now legally
binding (see Chapter 10).

Authentication

A California city government recently discovered that a typical city
employee had to establish and memorize six to nine passwords to access
various applications. With this number of passwords, city officials realized
that time and money were being wasted on administering the effort to
deal with lost and forgotten passwords. For those users who weren’t hav-
ing such problems, it was probably because they had written down the
passwords next to their computer terminals, creating a serious security
hazard.

The city quickly realized that they needed to reduce the average num-
ber of passwords required, while at the same time increasing security.
After seeking assistance from various security groups and reviewing a
variety of products, city officials decided on using biometrics. Through the
use of biometric technologies, this city provided fingerprint scanners at
each of its computer terminals, thereby eliminating the need for multiple
passwords. As a result, trouble calls are down substantially, amounting in
considerable savings. At the same time, concerns that sensitive data
might be disclosed have decreased significantly.

Another example of a company making authentication more secure
occurred in the banking industry. Think of how often you walk up to your
ATM machine, insert your card, enter your PIN, and perform a transac-
tion. And consider how many other PINs you may have, for example, for
your brokerage account or for accounts with other banks. The more PINs
you have the easier they are to forget, and having just one PIN for all your
accounts puts you at risk. One major bank realized that they were spend-
ing a considerable amount of time and money on customers who were for-

Chapter 12334

getting their PIN number. Still more time and money were lost because of
fraud (it is not uncommon for bank users to write their PIN code down in
their wallet, or worse yet, give the code to a friend who performs a trans-
action for them.)

Realizing the need for an authentication alternative, the bank searched
out security professionals and reviewed various software and hardware
packages. After a thorough look at the costs and return on investment, the
bank has decided implement a biometric system. Currently they are test-
ing both finger and iris scanners.

The actual dollar amount saved in decreased fraud was not disclosed;
however, you can only imagine how much the bank lost each year. Fur-
thermore, the costs of keeping a customer help desk to reset PINs as
needed has decreased significantly.

Data at Rest

Prior to last year, one federal law enforcement agency, which works closely
with the relocation of witnesses, had not provided any true security for
their field agent’s laptops. Imagine for a moment what exactly might hap-
pen if one of these laptops were lost or stolen?

After realizing the possibility of confidential data possibly being
exposed if one of these laptops were compromised, the agency added secu-
rity software that encrypts and decrypts files as needed. Furthermore, the
software requires strong, two-factor authentication through the use of a
one-time password token.

By simply taking the time to add strong security to each of these lap-
tops, this agency has more than likely saved not only time and money, but
possibly even lives.

Another example, although not as dramatic as the first one, involves a
major U.S. airline using encryption to provide confidentiality services to its
back-end databases. What is unique about this case is that the encryption
is applied not only to user information required for reservations, but also
to all information pertaining to users’ frequent flyer mileage accounts.

After the company began to recognize just how much these miles were
worth once they started adding up, they decided it was time to provide
security. Through the use of a symmetric-key algorithm, their customers’
information as well as the miles they had earned were safely secured.

You might think that customer information or frequent flyer miles are
not the most sensitive data in the world. However, this company realized

335Doing It Right: Following Standards

that if their customer accounts, especially corporate accounts, were ever
disclosed publicly on the Internet it could mean financial disaster—not to
mention the cost of paperwork if a customer’s reservation was changed or
removed from the database.

Data in Transit

One Canadian-based software corporation was providing a product to
pharmacists and doctors that allowed for quicker prescription fulfillment.
Their product simply transmitted the necessary patient data and pre-
scription from the physician to the pharmacy. However, until recently, the
data was not encrypted during transmission. The company felt that
because the data was traveling across a dial-up phone line it was unnec-
essary to provide security.

The software corporation quickly realized that even with a dial-up
phone connection, security was a necessity. However, the company was
afraid that if they were to add security, that doctors and pharmacists
might have difficulty using it (after all, doctors know medicine, not secu-
rity). After speaking with outside security professionals, the corporation
decided on the integration of the SSL protocol (discussed in Chapter 7) to
provide security. The SSL protocol is virtually transparent to the end-
users eliminating the difficulty factor.

The software company now knows they are selling a product that not
only can protect the data as it is communicated, but also, through the use
of SSL, can guarantee the data was not changed in transit. Furthermore,
their market has now expanded to cover not only physicians and phar-
macies using dial-up lines, but also those that use open networks (such as
the Internet).

Summary
At first glance, it may appear that protecting the security of data in a net-
work is a losing battle, but many developers, enterprises, and users have
been successful in achieving this goal. This chapter tells only a few of
many success stories in this arena.

As these case studies illustrate, security is a battle that you should not
face alone. Instead, you should take advantage of the expertise of other

Chapter 12336

professionals. Here you’ve seen a number of ways in which security can be
ensured through the use of existing standards, protocols, algorithms, and
assistance from consultants who have been shown to be of great help.
Through the certification process, many users can ensure that their secu-
rity methods (especially cryptography) are as well designed and well
implemented as possible. It is sometimes useful to consult with a trusted
third party or external agency to gain a different point of view.

Security is an important issue for businesses and other organizations
that are entrusted with personal data. In the long run, everyone benefits
when consumers can have faith in the technology that enables not only
the efficient storage of data, but also the potential for unprecedented com-
munication and human growth.

337Doing It Right: Following Standards

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

Bits, Bytes, Hex,
and ASCII

Throughout this book, we show data as hexadecimal (often shortened to
“hex”) numbers. Even if the data is a series of letters, it can be represented
in hexadecimal numbers. This appendix describes bits, bytes, and hexadec-
imal numbers and explains how ASCII characters are formed.

Using Decimal, Binary, and Hexadecimal
Numbers

A computer is a binary machine; everything is either “on” or “off,” reflect-
ing the fact that electric power is either flowing or not flowing through a
given circuit. The machine can be programmed to interpret the state of
being on or off as a 0 or a 1. If you string these 0s and 1s together, you can
represent anything. For example, you can represent the decimal number
105 as the binary number 1101001.

To see how binary numbers work, it might be helpful to recall how dec-
imal numbers work. A decimal number is composed of some number of
“ones,” “tens,” “hundreds,” and so on. As Figure A-1 shows, if you start

APPENDIX A

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

counting at zero and move from right to left, each place in a decimal num-
ber represents a number of 10ns (10 to the nth power). A computer does the
same thing except that it uses “two” as its base instead of “ten.” For each
place in a binary number, there can be only two possible values: a 0 or a 1.
In Figure A-1, the binary number is computed if you start counting at zero
and move from right to left to see how many “ones,” how many “twos,” how
many “fours,” and so on, each of which represents a power of 2.

Any value that can be represented as a decimal number can also be
represented as a binary number. The binary number will take up more
space, but any value can be expressed. Suppose you wanted to use the dec-
imal number 2,535,294,694. A computer would “think” of it as binary,
which would look like this:

1001 0111 0001 1101 1000 0110 1110 0110

Writing such numbers can be tedious, so programmers use hexadeci-
mal as a convenience. The word “decimal” has to do with “ten” (“dec”
means “ten,” as in “decade” or “decathlon”), whereas “binary” refers to
“two” (“bi” means “two,” as in “bicycle” or “bifocals”), and the word “hexa-
decimal” refers to “sixteen.” So binary numbers are “base two,” decimal

Appendix A340

Figure A-1

The number
8,614 is decimal,
comprising four
“ones,” one “ten,”
six “hundreds,”
and eight
“thousands.” The
number
10000110100110
is the binary
equivalent. The
numerals in the
positions indicate
the number of
powers of 1, 2, 4,
8, and so on

numbers are “base ten,” and hexadecimal numbers are “base sixteen.” The
digits used in binary numbers are

0 1

The digits used in decimal numbers are

0 1 2 3 4 5 6 7 8 9

And the digits used in hexadecimal numbers are

0 1 2 3 4 5 6 7 8 9 A B C D E F

Notice that each system has the same number of digits as what we’ve
referred to as the “base.” Base two uses two digits, base ten uses ten dig-
its, and base sixteen uses sixteen digits. Table A-1 is a conversion table for
numbers in the three bases.

341Bits, Bytes, Hex, and ASCII

Base Two Base Ten Base Sixteen

0 0 0

1 1 1

10 2 2

11 3 3

100 4 4

101 5 5

110 6 6

111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

Table A-1

Binary, Decimal,
and Hexadecimal
Equivalents

Hexadecimal is convenient because any group of four binary digits (a
binary digit is also known as a bit) can be represented in one hexadecimal
digit. This means that you can take a big binary number, break it into
groups of four digits, and rewrite it in hexadecimal. For example,

1001 0111 0001 1101 1000 0110 1110 0110

can be rewritten in hex as

0x97 1D 86 E6

The 1001 has been converted to 9 (see Table A-1), the 0111 has become 7,
and so on. The 0x at the front is a notational convention indicating that
the number is in hexadecimal.

It’s possible to think of that number as “six 1s,” “fourteen 16s,” “six
256s,” and so on. You start counting at zero and move from right to left,
and each place represents the number of 16ns.

Using Bits and Bytes
If you put eight bits together, you have one byte. The word “byte” is sim-
ply the technical jargon for a group of eight bits. For example, 1001 0111
is a byte. It can also be represented as 0x97, so two hex digits make up one
byte. The number 0x97 1D 86 E6 is 32 bits, or four bytes. A byte is also a
measure of space. If your computer has 1MB of memory, that means it has
space enough to load one million bytes of data into memory. A byte can
have 256 possible values, from 0 to 255 (0x00 to 0xFF).

NOTE:
Actually, a megabyte is 1,048,576 bytes, which is 220. Most quantities of
things in the computer industry come in powers of 2, either for technical
reasons or simply because. Computers are binary machines, so hardware
constraints may dictate that you use a power of 2, and in software, working
with numbers that are powers of 2 can often be more convenient than using
other numbers. But sometimes the only reason to use a power of 2 is that a
task is being computerized. For example, in cryptography, 104-bit symmet-
ric keys are secure enough, but that number is not a power of 2. So people
use 128-bit keys. There’s no technical cryptographic reason to use 128 bits
instead of 104, but 128 is a power of 2. People working in computer science
sometimes choose numbers simply because they are powers of 2.

Appendix A342

Using ASCII Characters
A computer chip can interpret only 1s and 0s and therefore does not have
a native way to represent letters of the alphabet. So in the 1960s, at the
beginning of the computer age, the American Standards Association, call-
ing on the contributions of computer manufacturers, programmers, and
others, came up with a standard way to represent letters as numbers.
Because A is the first letter of the English alphabet, it could have been
assigned the number 0x01; B could have been 0x02, and so on. It could
have been, but that’s not what the committee chose. The people involved
were interested in representing more than just letters of the alphabet.
They knew that computers would also need to interpret numerals, math
symbols, and punctuation marks. In addition, they would need uppercase
as well as lowercase letters.

Eventually, a standard was developed specifying that the bytes 0x20
through 0x7F would be used to represent the English alphabet, numerals,
certain symbols, and certain punctuation marks. That’s 96 standard char-
acters. Table A-2 shows the values and their characters. The standard is
called ASCII (pronounced ASK-ee), an acronym for American Standard
Code for Information Interchange.

As it turned out, the original 96 ASCII characters were not sufficient
because some languages had special marks on their letters (called dia-
critical marks), such as the umlaut (two dots) in ü or the cedilla (the
squiggle on the bottom) in ç. Other languages had larger alphabets. In
addition, values for more punctuation marks and control characters were
needed. Over the years, standards committees have generated additional
character sets. A byte can have only 256 possible values, and that is not
enough space to hold all the possible characters. As a result, some of the
new standards define characters in two bytes, allowing definition of as
many as 65,536 characters. Other standards specify four bytes per char-
acter, giving space for more than four million characters. Most character
sets include the original ASCII values along with the added values.

All this means that if a computer is operating on the expression
0x52 53 41 53, it could be the hex representation of the decimal number
1,381,187,923, or it could be the letters RSAS.

343Bits, Bytes, Hex, and ASCII

A
p
p
en

d
ix A

3
4

420 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

! “ # $ % & ‘ () * � , - . /

30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

0 1 2 3 4 5 6 7 8 9 : ; � � � ?

40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

@ A B C D E F G H I J K L M N O

50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

P Q R S T U V W X Y Z [\] ^ _

60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

` a b c d e f g h i j k l m n o

70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

p q r s t u v w x y z { | } � DEL

The character 0x20 is space, as in the space between two words. The character 0x7F is the DELETE key.

Table A-2

The Core 96-
Member ASCII
Character Set

Using Computers in Cryptography
Keep in mind that to a computer, numbers can represent many kinds of
meanings. For example, if a computer is looking at 0x42 A0 10 07, it might
be looking at the decimal number 1,117,786,119, or those bits might mean
something else. It could be an instruction, for example. A computer pro-
gram is a series of instructions, and because a computer stores everything
as binary numbers, instructions, too, can look like numbers. Moreover,
each chip has its own instruction set, so a number on one computer may
mean one instruction but on another computer may mean something else.
For example, on one machine the bits 0x42 A0 10 07 might be the com-
puter’s way of saying, “Add the contents of register 16 to the contents of
register 7 and store the result in register 7.” Other values could represent
memory addresses, other control characters, or some sort of data in
another format.

In cryptography, though, these kinds of values are simply bytes and
numbers. So when we talk about plaintext, we really mean bytes of data,
no matter what meaning the owner of the data attributes to the bytes. A
crypto algorithm looks at the data as bits to manipulate or numbers to
crunch. Cryptography makes no distinction between bytes that represent
letters of the alphabet and bytes that indicate instructions in a program.
They are simply bytes.

345Bits, Bytes, Hex, and ASCII

This page intentionally left blank.

A Layman’s Guide to a
Subset of ASN.1, BER,

and DER

An RSA Laboratories Technical Note
Burton S. Kaliski Jr.
Revised November 1, 1993

NOTE:
This document supersedes June 3, 1991 version, which was also pub-
lished as NIST/OSI Implementors’ Workshop document SEC-SIG-91-17.
PKCS documents are available by electronic mail to �pkcs@rsa.com�.

Abstract
This note gives a layman’s introduction to a subset of OSI’s Abstract Syn-
tax Notation 1 (ASN.1), Basic Encoding Rules (BER), and Distinguished
Encoding Rules (DER). The particular purpose of this note is to provide
background material sufficient for understanding and implementing the
PKCS family of standards.

APPENDIX B

Copyright © 1991–1993 RSA Laboratories, a division of RSA Data Security, Inc. License to
copy this document is granted provided that it is identified as “RSA Data Security, Inc.
Public-Key Cryptography Standards (PKCS)” in all material mentioning or referencing this
document. 003-903015-110-000-000

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Section 1: Introduction
It is a generally accepted design principle that abstraction is a key to
managing software development. With abstraction, a designer can specify
a part of a system without concern for how the part is actually imple-
mented or represented. Such a practice leaves the implementation open;
it simplifies the specification; and it makes it possible to state “axioms”
about the part that can be proved when the part is implemented, and
assumed when the part is employed in another, higher-level part. Abstrac-
tion is the hallmark of most modern software specifications.

One of the most complex systems today, and one that also involves a
great deal of abstraction, is Open Systems Interconnection (OSI,
described in X.200). OSI is an internationally standardized architecture
that governs the interconnection of computers from the physical layer up
to the user application layer. Objects at higher layers are defined
abstractly and intended to be implemented with objects at lower layers.
For instance, a service at one layer may require transfer of certain
abstract objects between computers; a lower layer may provide transfer
services for strings of 1’s and 0’s, using encoding rules to transform the
abstract objects into such strings. OSI is called an open system because it
supports many different implementations of the services at each layer.

OSI’s method of specifying abstract objects is called ASN.1 (Abstract
Syntax Notation 1, defined in X.208), and one set of rules for representing
such objects as strings of 1’s and 0’s is called the BER (Basic Encoding
Rules, defined in X.209). ASN.1 is a flexible notation that allows one to
define a variety data types, from simple types such as integers and bit
strings to structured types such as sets and sequences, as well as complex
types defined in terms of others. BER describes how to represent or
encode values of each ASN.1 type as a string of eight-bit octets. There is
generally more than one way to BER-encode a given value. Another set of
rules, called the Distinguished Encoding Rules (DER), which is a subset of
BER, gives a unique encoding to each ASN.1 value.

The purpose of this note is to describe a subset of ASN.1, BER, and
DER sufficient to understand and implement one OSI-based application,
RSA Data Security, Inc.’s Public-Key Cryptography Standards. The fea-
tures described include an overview of ASN.1, BER, and DER and an
abridged list of ASN.1 types and their BER and DER encodings. Sec-
tions 2-4 give an overview of ASN.1, BER, and DER, in that order. Section
5 lists some ASN.1 types, giving their notation, specific encoding rules,

Appendix B348

TE
AM
FL
Y

Team-Fly®

examples, and comments about their application to PKCS. Section 6 con-
cludes with an example, X.500 distinguished names.

Advanced features of ASN.1, such as macros, are not described in this
note, as they are not needed to implement PKCS. For information on the
other features, and for more detail generally, the reader is referred to
CCITT Recommendations X.208 and X.209, which define ASN.1 and BER.

Section 1.1: Terminology and Notation

In this note, an octet is an eight-bit unsigned integer. Bit 8 of the octet is
the most significant, and bit 1 is the least significant.

The following meta-syntax is used in describing ASN.1 notation:

BIT Monospace denotes literal characters in the type and value
notation; in examples, it generally denotes an octet value in
hexadecimal

n1 Bold italics denotes a variable

[] Bold square brackets indicate that a term is optional

{} Bold braces group related terms

| Bold vertical bar delimits alternatives within a group

. . . Bold ellipsis indicates repeated occurrences

� Bold equals sign expresses terms as subterms

Section 2: Abstract Syntax Notation 1
Abstract Syntax Notation 1, abbreviated ASN.1, is a notation for describ-
ing abstract types and values.

In ASN.1, a type is a set of values. For some types, there are a finite
number of values, and for other types there are an infinite number. A
value of a given ASN.1 type is an element of the type’s set. ASN.1 has four
kinds of types: simple types, which are “atomic” and have no components;
structured types, which have components; tagged types, which are derived
from other types; and other types, which include the CHOICE type and the
ANY type. Types and values can be given names with the ASN.1 assign-
ment operator (::=) , and those names can be used in defining other types
and values.

349A Layman’s Guide to a Subset of ASN.1, BER, and DER

Every ASN.1 type other than CHOICE and ANY has a tag, which consists
of a class and a nonnegative tag number. ASN.1 types are abstractly the
same if and only if their tag numbers are the same. In other words, the
name of an ASN.1 type does not affect its abstract meaning; only the tag
does. There are four classes of tags:

1. Universal, for types whose meaning is the same in all applications;
these types are only defined in X.208.

2. Application, for types whose meaning is specific to an application,
such as X.500 directory services; types in two different applications
may have the same application-specific tag and different meanings.

3. Private, for types whose meaning is specific to a given enterprise.

4. Context-specific, for types whose meaning is specific to a given
structured type; context-specific tags are used to distinguish between
component types with the same underlying tag within the context of
a given structured type, and component types in two different
structured types may have the same tag and different meanings.

The types with universal tags are defined in X.208, which also gives the
types’ universal tag numbers. Types with other tags are defined in many
places, and are always obtained by implicit or explicit tagging (see Section
2.3). Table B-1 lists some ASN.1 types and their universal-class tags.

ASN.1 types and values are expressed in a flexible, programming-
language-like notation, with the following special rules:

� Layout is not significant; multiple spaces and line breaks can be
considered as a single space.

� Comments are delimited by pairs of hyphens (--), or a pair of hyphens
and a line break.

� Identifiers (names of values and fields) and type references (names of
types) consist of upper- and lowercase letters, digits, hyphens, and
spaces; identifiers begin with lowercase letters; type references begin
with uppercase letters.

The following four subsections give an overview of simple types, struc-
tured types, implicitly and explicitly tagged types, and other types. Sec-
tion 5 describes specific types in more detail.

Appendix B350

Section 2.1: Simple Types

Simple types are those not consisting of components; they are the “atomic”
types. ASN.1 defines several; the types that are relevant to the PKCS
standards are the following:

� BIT STRING, an arbitrary string of bits (1’s and 0’s)

� IA5String, an arbitrary string of IA5 (ASCII) characters

� INTEGER, an arbitrary integer

� NULL, a null value

� OBJECT IDENTIFIER, an object identifier, which is a sequence of
integer components that identify an object such as an algorithm or
attribute type

� OCTET STRING, an arbitrary string of octets (eight-bit values)

� PrintableString, an arbitrary string of printable characters

351A Layman’s Guide to a Subset of ASN.1, BER, and DER

Tag Number Tag Number
Type (Decimal) (Hexadecimal)

INTEGER 2 02

BIT STRING 3 03

OCTET STRING 4 04

NULL 5 05

OBJECT IDENTIFIER 6 06

SEQUENCE and SEQUENCE OF 16 10

SET and SET OF 17 11

PrintableString 19 13

T61String 20 14

IA5String 22 16

UTCTime 23 17

Table B-1

Some Types and
Their Universal-
Class Tags

� T61String, an arbitrary string of T.61 (eight-bit) characters

� UTCTime, a “coordinated universal time” or Greenwich Mean Time
(GMT) value

Simple types fall into two categories: string types and nonstring
types. BIT STRING, IA5String, OCTET STRING, PrintableString,
T61String, and UTCTime are string types.

String types can be viewed, for the purposes of encoding, as consisting
of components, where the components are substrings. This view allows
one to encode a value whose length is not known in advance (e.g., an octet
string value input from a file stream) with a constructed, indefinite-length
encoding (see Section 3).

The string types can be given size constraints limiting the length of
values.

Section 2.2: Structured Types

Structured types are those consisting of components. ASN.1 defines four,
all of which are relevant to the PKCS standards:

1. SEQUENCE, an ordered collection of one or more types

2. SEQUENCE OF, an ordered collection of zero or more occurrences of a
given type

3. SET, an unordered collection of one or more types

4. SET OF, an unordered collection of zero or more occurrences of a
given type

The structured types can have optional components, possibly with default
values.

Section 2.3: Implicitly and Explicitly Tagged Types

Tagging is useful to distinguish types within an application; it is also com-
monly used to distinguish component types within a structured type. For
instance, optional components of a SET or SEQUENCE type are typically
given distinct context-specific tags to avoid ambiguity.

There are two ways to tag a type: implicitly and explicitly.

Appendix B352

� Implicitly tagged types are derived from other types by changing the
tag of the underlying type. Implicit tagging is denoted by the ASN.1
keywords [class number] IMPLICIT (see Section 5.1).

� Explicitly tagged types are derived from other types by adding an
outer tag to the underlying type. In effect, explicitly tagged types are
structured types consisting of one component, the underlying type.
Explicit tagging is denoted by the ASN.1 keywords [class number]
EXPLICIT (see Section 5.2).

The keyword [class number] alone is the same as explicit tagging,
except when the “module” in which the ASN.1 type is defined has implicit
tagging by default. (“Modules” are among the advanced features not
described in this note.)

For purposes of encoding, an implicitly tagged type is considered the
same as the underlying type, except that the tag is different. An explicitly
tagged type is considered like a structured type with one component, the
underlying type. Implicit tags result in shorter encodings, but explicit tags
may be necessary to avoid ambiguity if the tag of the underlying type is
indeterminate (e.g., the underlying type is CHOICE or ANY).

Section 2.4: Other Types

Other types in ASN.1 include the CHOICE and ANY types. The CHOICE type
denotes a union of one or more alternatives; the ANY type denotes an arbi-
trary value of an arbitrary type, where the arbitrary type is possibly
defined in the registration of an object identifier or integer value.

Section 3: Basic Encoding Rules
The Basic Encoding Rules (BER) for ASN.1 give one or more ways to rep-
resent any ASN.1 value as an octet string. (There are certainly other ways
to represent ASN.1 values, but BER is the standard for interchanging
such values in OSI.)

There are three methods to encode an ASN.1 value under BER, the
choice of which depends on the type of value and whether the length of the

353A Layman’s Guide to a Subset of ASN.1, BER, and DER

value is known. The three methods are primitive, definite-length encod-
ing; constructed, definite-length encoding; and constructed, indefinite-
length encoding. Simple nonstring types employ the primitive,
definite-length method; structured types employ either of the constructed
methods; and simple string types employ any of the methods, depending
on whether the length of the value is known. Types derived by implicit
tagging employ the method of the underlying type, and types derived by
explicit tagging employ the constructed methods.

In each method, the BER encoding has three or four parts:

1. Identifier octets These identify the class and tag number of the
ASN.1 value, and indicate whether the method is primitive or
constructed.

2. Length octets For the definite-length methods, these give the
number of contents octets. For the constructed, indefinite-length
method, these indicate that the length is indefinite.

3. Contents octets For the primitive, definite-length method, these
give a concrete representation of the value. For the constructed
methods, these give the concatenation of the BER encodings of the
components of the value.

4. End-of-contents octets For the constructed, indefinite-length
method, these denote the end of the contents. For the other methods,
these are absent.

The three methods of encoding are described in the following sections.

Section: 3.1: Primitive, Definite-Length Method

This method applies to simple types and types derived from simple types
by implicit tagging. It requires that the length of the value be known in
advance. The parts of the BER encoding are as follows:

Identifier Octets

There are two forms: low tag number (for tag numbers between 0 and 30)
and high tag number (for tag numbers 31 and greater).

Low-Tag-Number Form One octet. Bits 8 and 7 specify the class (see
Table B-2), bit 6 has value “0,” indicating that the encoding is primitive,
and bits 5–1 give the tag number.

Appendix B354

High-Tag-Number Form Two or more octets. First octet is as in low-tag-
number form, except that bits 5–1 all have value “1.” Second and follow-
ing octets give the tag number, base 128, most significant digit first, with
as few digits as possible, and with the bit 8 of each octet except the last
set to “1.”

Length Octets

There are two forms: short (for lengths between 0 and 127), and long def-
inite (for lengths between 0 and 21008 �1).

Short Form One octet. Bit 8 has value “0” and bits 7–1 give the length.

Long Form Two to 127 octets. Bit 8 of first octet has value “1” and bits
7–1 give the number of additional length octets. Second and following
octets give the length, base 256, most significant digit first.

Contents Octets

These give a concrete representation of the value (or the value of the
underlying type, if the type is derived by implicit tagging). Details for par-
ticular types are given in Section 5.

Section 3.2: Constructed, Definite-Length Method

This method applies to simple string types, structured types, types
derived from simple string types and structured types by implicit tagging,
and types derived from anything by explicit tagging. It requires that the
length of the value be known in advance. The parts of the BER encoding
are as follows.

355A Layman’s Guide to a Subset of ASN.1, BER, and DER

Class Bit 8 Bit 7

universal 0 0

application 0 1

context-specific 1 0

private 1 1

Table B-2

Class Encoding in
Identifier Octets

Identifier Octets

As described in Section 3.1, except that bit 6 has value “1,” indicating that
the encoding is constructed.

Length Octets

As described in Section 3.1.

Contents Octets

The concatenation of the BER encodings of the components of the value:

� For simple string types and types derived from them by implicit
tagging, the concatenation of the BER encodings of consecutive
substrings of the value (underlying value for implicit tagging)

� For structured types and types derived from them by implicit tagging,
the concatenation of the BER encodings of components of the value
(underlying value for implicit tagging)

� For types derived from anything by explicit tagging, the BER
encoding of the underlying value

Details for particular types are given in Section 5.

Section 3.3: Constructed, Indefinite-Length Method

This method applies to simple string types, structured types, types
derived from simple string types and structured types by implicit tagging,
and types derived from anything by explicit tagging. It does not require
that the length of the value be known in advance. The parts of the BER
encoding are as follows:

Identifier Octets

As described in Section 3.2.

Length Octets

One octet, 80.

Appendix B356

Contents Octets

As described in Section 3.2.

End-of-Contents Octets

Two octets, 00 00.
Since the end-of-contents octets appear where an ordinary BER encod-

ing might be expected (e.g., in the contents octets of a sequence value), the
00 and 00 appear as identifier and length octets, respectively. Thus the
end-of-contents octets are really the primitive, definite-length encoding of
a value with universal class, tag number 0, and length 0.

Section 4: Distinguished Encoding Rules
The Distinguished Encoding Rules (DER) for ASN.1 are a subset of BER,
and give exactly one way to represent any ASN.1 value as an octet string.
DER is intended for applications in which a unique octet string encoding
is needed, as is the case when a digital signature is computed on an ASN.1
value. DER is defined in Section 8.7 of X.509.

DER adds the following restrictions to the rules given in Section 3:

1. When the length is between 0 and 127, the short form of length must
be used.

2. When the length is 128 or greater, the long form of length must be
used, and the length must be encoded in the minimum number of
octets.

3. For simple string types and implicitly tagged types derived from
simple string types, the primitive, definite-length method must be
employed.

4. For structured types, implicitly tagged types derived from structured
types, and explicitly tagged types derived from anything, the
constructed, definite-length method must be employed.

Other restrictions are defined for particular types (such as BIT
STRING, SEQUENCE, SET, and SET OF), and can be found in Section 5.

357A Layman’s Guide to a Subset of ASN.1, BER, and DER

Section 5: Notation and Encodings for
Some Types
This section gives the notation for some ASN.1 types and describes how to
encode values of those types under both BER and DER.

The types described are those presented in Section 2. They are listed
alphabetically here.

Each description includes ASN.1 notation, BER encoding, and DER
encoding. The focus of the encodings is primarily on the contents octets;
the tag and length octets follow Sections 3 and 4. The descriptions also
explain where each type is used in PKCS and related standards. ASN.1
notation is generally given only for types, although for the type OBJECT
IDENTIFIER, value notation is given as well.

Section 5.1: Implicitly Tagged Types

An implicitly tagged type is a type derived from another type by changing
the tag of the underlying type.

Implicit tagging is used for optional SEQUENCE components with
underlying type other than ANY throughout PKCS, and for the
extendedCertificate alternative of PKCS #7’s Extended-
CertificateOrCertificate type.

ASN.1 notation:
[[class] number] IMPLICIT Type
class = UNIVERSAL | APPLICATION | PRIVATE

where Type is a type, class is an optional class name, and number is the
tag number within the class, a nonnegative integer.

In ASN.1 “modules” whose default tagging method is implicit tagging,
the notation [[class] number] Type is also acceptable, and the keyword
IMPLICIT is implied. (See Section 2.3.) For definitions stated outside a
module, the explicit inclusion of the keyword IMPLICIT is preferable to
prevent ambiguity.

If the class name is absent, then the tag is context-specific. Context-spe-
cific tags can only appear in a component of a structured or CHOICE type.

Appendix B358

TE
AM
FL
Y

Team-Fly®

Example PKCS #8’s PrivateKeyInfo type has an optional attributes
component with an implicit, context-specific tag:

PrivateKeyInfo ::= SEQUENCE {
version Version,
privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
privateKey PrivateKey,
attributes [0] IMPLICIT Attributes OPTIONAL }

Here the underlying type is Attributes, the class is absent (i.e.,
context-specific), and the tag number within the class is 0.

BER Encoding

Primitive or constructed, depending on the underlying type. Contents
octets are as for the BER encoding of the underlying value.

Example The BER encoding of the attributes component of a Pri-
vateKeyInfo value is as follows:
� The identifier octets are 80 if the underlying Attributes value has

a primitive BER encoding, and a0 if the underlying Attributes
value has a constructed BER encoding.

� The length and contents octets are the same as the length and
contents octets of the BER encoding of the underlying Attributes
value.

DER Encoding

Primitive or constructed, depending on the underlying type. Contents
octets are as for the DER encoding of the underlying value.

Section 5.2: Explicitly Tagged Types

Explicit tagging denotes a type derived from another type by adding an
outer tag to the underlying type.

Explicit tagging is used for optional SEQUENCE components with under-
lying type ANY throughout PKCS, and for the version component of
X.509’s Certificate type.

ASN.1 notation:
[[class] number] EXPLICIT Type
class = UNIVERSAL | APPLICATION | PRIVATE

359A Layman’s Guide to a Subset of ASN.1, BER, and DER

where Type is a type, class is an optional class name, and number is the
tag number within the class, a nonnegative integer.

If the class name is absent, then the tag is context-specific. Context-
specific tags can only appear in a component of a SEQUENCE, SET, or
CHOICE type.

In ASN.1 “modules” whose default tagging method is explicit tagging,
the notation [[class] number] Type is also acceptable, and the keyword
EXPLICIT is implied. (See Section 2.3.) For definitions stated outside a
module, the explicit inclusion of the keyword EXPLICIT is preferable to
prevent ambiguity.

Example 1 PKCS #7’s ContentInfo type has an optional content com-
ponent with an explicit, context-specific tag:

ContentInfo ::= SEQUENCE {
contentType ContentType,
content

[0] EXPLICIT ANY DEFINED BY contentType OPTIONAL }

Here the underlying type is ANY DEFINED BY contentType, the class
is absent (i.e., context-specific), and the tag number within the class is 0.

Example 2 X.509’s Certificate type has a version component with an
explicit, context-specific tag, where the EXPLICIT keyword is omitted:

Certificate ::= ...
version [0] Version DEFAULT v1988,

...

The tag is explicit because the default tagging method for the ASN.1
“module” in X.509 that defines the Certificate type is explicit tagging.

BER Encoding

Constructed. Contents octets are the BER encoding of the underlying
value.

Example The BER encoding of the content component of a Content-
Info value is as follows:

� Identifier octets are a0.

� Length octets represent the length of the BER encoding of the
underlying ANY DEFINED BY contentType value.

Appendix B360

� Contents octets are the BER encoding of the underlying ANY
DEFINED BY contentType value.

DER Encoding

Constructed. Contents octets are the DER encoding of the underlying
value.

Section 5.3: ANY

The ANY type denotes an arbitrary value of an arbitrary type, where the
arbitrary type is possibly defined in the registration of an object identifier
or associated with an integer index.

The ANY type is used for content of a particular content type in PKCS
#7’s ContentInfo type, for parameters of a particular algorithm in
X.509’s AlgorithmIdentifier type, and for attribute values in X.501’s
Attribute and AttributeValueAssertion types. The Attribute
type is used by PKCS #6, #7, #8, #9, and #10, and the AttributeValue-
Assertion type is used in X.501 distinguished names.

ASN.1 Notation

ANY [DEFINED BY identifier]where identifier is an optional identifier.
In the ANY form, the actual type is indeterminate.
The ANY DEFINED BY identifier form can appear only in a component

of a SEQUENCE or SET type for which identifier identifies some other
component and only if that other component has type INTEGER or OBJECT
IDENTIFIER (or a type derived from either of those by tagging). In that
form, the actual type is determined by the value of the other component,
either in the registration of the object identifier value, or in a table of inte-
ger values.

Example X.509’s AlgorithmIdentifier type has a component of type
ANY:

AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL }

361A Layman’s Guide to a Subset of ASN.1, BER, and DER

Here the actual type of the parameter component depends on the value
of the algorithm component. The actual type would be defined in the
registration of object identifier values for the algorithm component.

BER Encoding

Same as the BER encoding of the actual value.

Example The BER encoding of the value of the parameter component is
the BER encoding of the value of the actual type as defined in the regis-
tration of object identifier values for the algorithm component.

DER Encoding

Same as the DER encoding of the actual value.

Section 5.4: BIT STRING

The BIT STRING type denotes an arbitrary string of bits (1’s and 0’s). A
BIT STRING value can have any length, including zero. This type is a
string type.

The BIT STRING type is used for digital signatures on extended cer-
tificates in PKCS #6’s ExtendedCertificate type, for digital signatures
on certificates in X.509’s Certificate type, and for public keys in cer-
tificates in X.509’s SubjectPublicKeyInfo type.

ASN.1 Notation
BIT STRING

Example X.509’s SubjectPublicKeyInfo type has a component of type
BIT STRING:

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
publicKey BIT STRING }

BER Encoding

Primitive or constructed. In a primitive encoding, the first contents octet
gives the number of bits by which the length of the bit string is less than
the next multiple of 8 (this is called the “number of unused bits”). The sec-

Appendix B362

ond and following contents octets give the value of the bit string, con-
verted to an octet string. The conversion process is as follows:

1. The bit string is padded after the last bit with zero to seven bits of
any value to make the length of the bit string a multiple of 8. If the
length of the bit string is a multiple of 8 already, no padding is done.

2. The padded bit string is divided into octets. The first eight bits of the
padded bit string become the first octet, bit 8 to bit 1, and so on
through the last eight bits of the padded bit string.

In a constructed encoding, the contents octets give the concatenation of
the BER encodings of consecutive substrings of the bit string, where each
substring except the last has a length that is a multiple of eight bits.

Example The BER encoding of the BIT STRING value “01101110010111
0111” can be any of the following, among others, depending on the choice
of padding bits, the form of the length octets, and whether the encoding
is primitive or constructed:

03 04 06 6e 5d c0 DER encoding

03 04 06 6e 5d e0 Padded with “100000”

03 81 04 06 6e 5d c0 Long form of length octets

23 09 Constructed encoding:
03 03 00 6e 5d “0110111001011101” � “11”
03 02 06 c0

DER encoding

Primitive. The contents octets are as for a primitive BER encoding, except
that the bit string is padded with zero-valued bits.

Example The DER encoding of the BIT STRING value “01101110010111
0111” is

03 04 06 6e 5d c0

Section 5.5: CHOICE

The CHOICE type denotes a union of one or more alternatives.
The CHOICE type is used to represent the union of an extended certifi-

cate and an X.509 certificate in PKCS #7’s ExtendedCertificate-
OrCertificate type.

363A Layman’s Guide to a Subset of ASN.1, BER, and DER

ASN.1 notation
CHOICE {

[identifier1] Type1,
...,
[identifiern] Typen }

where identifier1 , . . ., identifiern are optional, distinct identifiers for
the alternatives, and Type1, . . ., Typen are the types of the alternatives.
The identifiers are primarily for documentation; they do not affect values
of the type or their encodings in any way.

The types must have distinct tags. This requirement is typically satis-
fied with explicit or implicit tagging on some of the alternatives.

Example PKCS #7’s ExtendedCertificateOrCertificate type is a
CHOICE type:

ExtendedCertificateOrCertificate ::= CHOICE {
certificate Certificate, -- X.509
extendedCertificate [0] IMPLICIT ExtendedCertificate

}

Here the identifiers for the alternatives are certificate and
extendedCertificate, and the types of the alternatives are Certifi-
cate and [0] IMPLICIT ExtendedCertificate.

BER encoding

Same as the BER encoding of the chosen alternative. The fact that the
alternatives have distinct tags makes it possible to distinguish between
their BER encodings.

Example The identifier octets for the BER encoding are 30 if the chosen
alternative is certificate, and a0 if the chosen alternative is
extendedCertificate.

DER encoding

Same as the DER encoding of the chosen alternative.

Section 5.6: IA5String

The IA5String type denotes an arbitrary string of IA5 characters. IA5
stands for International Alphabet 5, which is the same as ASCII. The

Appendix B364

character set includes non-printing control characters. An IA5String
value can have any length, including zero. This type is a string type.

The IA5String type is used in PKCS #9’s electronic-mail address,
unstructured-name, and unstructured-address attributes.

ASN.1 notation
IA5String

BER encoding

Primitive or constructed. In a primitive encoding, the contents octets give
the characters in the IA5 string, encoded in ASCII. In a constructed encod-
ing, the contents octets give the concatenation of the BER encodings of
consecutive substrings of the IA5 string.

Example The BER encoding of the IA5String value “test1@rsa.com” can
be any of the following, among others, depending on the form of length
octets and whether the encoding is primitive or constructed:

16 0d 74 65 73 DER encoding

74 31 40 72 73 61 2e 63 6f 6d

16 81 0d Long form of length octets
74 65 73 74 31 40 72 73 61 2e 63 6f 6d

36 13 Constructed encoding:
16 05 74 65 73 74 31 “test1” � “@” � “rsa.com”
16 01 40
16 07 72 73 61 2e 63 6f 6d

DER Encoding

Primitive. Contents octets are as for a primitive BER encoding.

Example The DER encoding of the IA5String value “test1@rsa.com” is

16 0d 74 65 73 74 31 40 72 73 61 2e 63 6f 6d

Section 5.7: INTEGER

The INTEGER type denotes an arbitrary integer. INTEGER values can be
positive, negative, or zero, and can have any magnitude.

The INTEGER type is used for version numbers throughout PKCS, for

365A Layman’s Guide to a Subset of ASN.1, BER, and DER

cryptographic values such as modulus, exponent, and primes in PKCS #1’s
RSAPublicKey and RSAPrivateKey types and PKCS #3’s DHParameter
type, for a message-digest iteration count in PKCS #5’s PBEParameter
type, and for version numbers and serial numbers in X.509’s Certifi-
cate type.

ASN.1 Notation

INTEGER [{ identifier1(value1) ... identifiern(valuen) }]

where identifier1, . . ., identifiern are optional distinct identifiers and
value1, . . ., valuen are optional integer values. The identifiers, when pre-
sent, are associated with values of the type.

Example X.509’s Version type is an INTEGER type with identified val-
ues:

Version ::= INTEGER { v1988(0) }

The identifier v1988 is associated with the value 0. X.509’s Certificate
type uses the identifier v1988 to give a default value of 0 for the version
component:

Certificate ::= ...
version Version DEFAULT v1988,

...

BER Encoding

Primitive. Contents octets give the value of the integer, base 256, in two’s
complement form, most significant digit first, with the minimum number
of octets. The value 0 is encoded as a single 00 octet.

Some example BER encodings (which also happen to be DER encod-
ings) are given in Table B-3.

DER Encoding

Primitive. Contents octets are as for a primitive BER encoding.

Appendix B366

Section 5.8: NULL

The NULL type denotes a null value.
The NULL type is used for algorithm parameters in several places in

PKCS.

ASN.1 Notation

NULL

BER Encoding

Primitive. Contents octets are empty.

Example The BER encoding of a NULL value can be either of the follow-
ing, as well as others, depending on the form of the length octets:

05 00
05 81 00

DER Encoding

Primitive. Contents octets are empty; the DER encoding of a NULL value
is always 05 00.

367A Layman’s Guide to a Subset of ASN.1, BER, and DER

Integer Value BER Encoding

0 02 01 00

127 02 01 7F

128 02 02 00 80

256 02 02 01 00

-128 02 01 80

-129 02 02 FF 7F

Table B-3

Example BER
Encodings of
INTEGER Values

Section 5.9: OBJECT IDENTIFIER

The OBJECT IDENTIFIER type denotes an object identifier, a sequence of
integer components that identifies an object such as an algorithm, an
attribute type, or perhaps a registration authority that defines other
object identifiers. An OBJECT IDENTIFIER value can have any number of
components, and components can generally have any nonnegative value.
This type is a nonstring type.
OBJECT IDENTIFIER values are given meanings by registration au-

thorities. Each registration authority is responsible for all sequences of
components beginning with a given sequence. A registration authority
typically delegates responsibility for subsets of the sequences in its
domain to other registration authorities, or for particular types of objects.
There are always at least two components.

The OBJECT IDENTIFIER type is used to identify content in PKCS #7’s
ContentInfo type, to identify algorithms in X.509’s AlgorithmIdenti-
fier type, and to identify attributes in X.501’s Attribute and Attrib-
uteValueAssertion types. The Attribute type is used by PKCS #6,
#7, #8, #9, and #10, and the AttributeValueAssertion type is used in
X.501 distinguished names. OBJECT IDENTIFIER values are defined
throughout PKCS.

ASN.1 Notation

OBJECT IDENTIFIER

The ASN.1 notation for values of the OBJECT IDENTIFIER type is

{ [identifier] component1 ... componentn }
componenti = identifieri | identifieri (valuei) | valuei

where identifier, identifier1, . . ., identifiern are identifiers, and value1,
. . ., valuen are optional integer values.

The form without identifier is the “complete” value with all its com-
ponents; the form with identifier abbreviates the beginning components
with another object identifier value. The identifiers identifier1, . . ., iden-
tifiern are intended primarily for documentation, but they must corre-
spond to the integer value when both are present. These identifiers can
appear without integer values only if they are among a small set of iden-
tifiers defined in X.208.

Appendix B368

TE
AM
FL
Y

Team-Fly®

Example Both of the following values refer to the object identifier
assigned to RSA Data Security, Inc.:

{ iso(1) member-body(2) 840 113549 }
{ 1 2 840 113549 }

(In this example, which gives ASN.1 value notation, the object identifier
values are decimal, not hexadecimal.) Table A-4 gives some other object
identifier values and their meanings.

369A Layman’s Guide to a Subset of ASN.1, BER, and DER

Object Identifier Value Meaning

{ 1 2 } ISO member bodies

{ 1 2 840 } US (ANSI)

{ 1 2 840 113549 } RSA Data Security, Inc.

{ 1 2 840 113549 1 } RSA Data Security, Inc. PKCS

{ 2 5 } Directory services (X.500)

{ 2 5 8 } Directory services—algorithms

Table B-4

Some Object
Identifier Values
and Their
Meanings

BER Encoding

Primitive. Contents octets are as follows, where value1, . . ., valuen denote
the integer values of the components in the complete object identifier:

1. The first octet has value 40 � value1 � value2. (This is
unambiguous, since value1 is limited to values 0, 1, and 2; value2 is
limited to the range 0 to 39 when value1 is 0 or 1; and, according to
X.208, n is always at least 2.)

2. The following octets, if any, encode value3, . . ., valuen. Each value is
encoded base 128, most significant digit first, with as few digits as
possible, and the most significant bit of each octet except the last in
the value’s encoding set to “1.”

Example The first octet of the BER encoding of RSA Data Security, Inc.’s
object identifier is 40 � 1 � 2 � 42 � 2a16. The encoding of 840 � 6 � 128
� 4816 is 86 48, and the encoding of 113549 � 6 � 1282 � 7716 � 128 �
d16 is 86 f7 0d. This leads to the following BER encoding:

06 06 2a 86 48 86 f7 0d

DER Encoding

Primitive. Contents octets are as for a primitive BER encoding.

Section 5.10: OCTET STRING

The OCTET STRING type denotes an arbitrary string of octets (eight-bit
values). An OCTET STRING value can have any length, including zero.
This type is a string type.

The OCTET STRING type is used for salt values in PKCS #5’s PBE
Parameter type, for message digests, encrypted message digests, and
encrypted content in PKCS #7, and for private keys and encrypted private
keys in PKCS #8.

ASN.1 Notation

OCTET STRING [SIZE ({size | size1..size2})]

where size, size1, and size2 are optional size constraints. In the OCTET
STRING SIZE (size) form, the octet string must have size octets. In the
OCTET STRING SIZE (size1..size2) form, the octet string must have
between size1 and size2 octets. In the OCTET STRING form, the octet
string can have any size.

Example PKCS #5’s PBEParameter type has a component of type OCTET
STRING:

PBEParameter ::= SEQUENCE {
salt OCTET STRING SIZE(8),
iterationCount INTEGER }

Here the size of the salt component is always eight octets.

Appendix B370

BER Encoding

Primitive or constructed. In a primitive encoding, the contents octets give
the value of the octet string, first octet to last octet. In a constructed
encoding, the contents octets give the concatenation of the BER encodings
of substrings of the OCTET STRING value.

Example The BER encoding of the OCTET STRING value 01 23 45 67
89 ab cd ef can be any of the following, among others, depending on
the form of length octets and whether the encoding is primitive or con-
structed:

04 08 01 23 45 67 89 ab cd ef DER encoding

04 81 08 01 23 45 67 89 ab cd ef Long form of length octets

24 0c Constructed encoding:
04 04 01 23 45 67 01 . . . 67 � 89 . . . ef
04 04 89 ab cd ef

DER Encoding

Primitive. Contents octets are as for a primitive BER encoding.

Example The BER encoding of the OCTET STRING value 01 23 45 67
89 ab cd ef is

04 08 01 23 45 67 89 ab cd ef

Section 5.11: PrintableString

The PrintableString type denotes an arbitrary string of printable
characters from the following character set:

A, B, ..., Z
a, b, ..., z
0, 1, ..., 9
(space) ' () + , - . / : = ?

This type is a string type.
The PrintableString type is used in PKCS #9’s challenge-password

and unstructured-address attributes, and in several X.521 distinguished
names attributes.

371A Layman’s Guide to a Subset of ASN.1, BER, and DER

ASN.1 Notation

PrintableString

BER Encoding

Primitive or constructed. In a primitive encoding, the contents octets give
the characters in the printable string, encoded in ASCII. In a constructed
encoding, the contents octets give the concatenation of the BER encodings
of consecutive substrings of the string.

Example The BER encoding of the PrintableString value “Test
User 1” can be any of the following, among others, depending on the form
of length octets and whether the encoding is primitive or constructed:

13 0b 54 65 73 74 20 55 73 65 72 20 31 DER encoding

13 81 0b 54 65 73 74 20 55 73 65 72 20 31 Long form of length
octets

33 0f Constructed
13 05 54 65 73 74 20 encoding:
13 06 55 73 65 72 20 31 “Test “ � “User 1”

DER Encoding

Primitive. Contents octets are as for a primitive BER encoding.

Example The DER encoding of the PrintableString value “Test
User 1” is

13 0b 54 65 73 74 20 55 73 65 72 20 31

Section 5.12: SEQUENCE

The SEQUENCE type denotes an ordered collection of one or more types.
The SEQUENCE type is used throughout PKCS and related standards.

Appendix B372

ASN.1 Notation

SEQUENCE {
[identifier1] Type1 [{OPTIONAL | DEFAULT value1}],
...,
[identifiern] Typen [{OPTIONAL | DEFAULT valuen}]}

where identifier1 , . . ., identifiern are optional, distinct identifiers for
the components, Type1, . . ., Typen are the types of the components, and
value1, . . ., valuen are optional default values for the components. The
identifiers are primarily for documentation; they do not affect values of
the type or their encodings in any way.

The OPTIONAL qualifier indicates that the value of a component is
optional and need not be present in the sequence. The DEFAULT qualifier
also indicates that the value of a component is optional, and assigns a
default value to the component when the component is absent.

The types of any consecutive series of components with the OPTIONAL
or DEFAULT qualifier, as well as of any component immediately following
that series, must have distinct tags. This requirement is typically satisfied
with explicit or implicit tagging on some of the components.

Example X.509’s Validity type is a SEQUENCE type with two compo-
nents:

Validity ::= SEQUENCE {
start UTCTime,
end UTCTime }

Here the identifiers for the components are start and end, and the
type of both components is UTCTime.

BER Encoding

Constructed. Contents octets are the concatenation of the BER encodings
of the values of the components of the sequence, in order of definition,
with the following rules for components with the OPTIONAL and DEFAULT
qualifiers:

� If the value of a component with the OPTIONAL or DEFAULT qualifier
is absent from the sequence, then the encoding of that component is
not included in the contents octets.

� If the value of a component with the DEFAULT qualifier is the default
value, then the encoding of that component may or may not be
included in the contents octets.

373A Layman’s Guide to a Subset of ASN.1, BER, and DER

DER Encoding

Constructed. Contents octets are the same as the BER encoding, except
that if the value of a component with the DEFAULT qualifier is the default
value, the encoding of that component is not included in the contents
octets.

Sectopm 5.13: SEQUENCE OF

The SEQUENCE OF type denotes an ordered collection of zero or more
occurrences of a given type.

The SEQUENCE OF type is used in X.501 distinguished names.

ASN.1 Notation

SEQUENCE OF Type

where Type is a type.

Example X.501’s RDNSequence type consists of zero or more occurrences
of the RelativeDistinguishedName type, most significant occurrence
first:

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

BER Encoding

Constructed. Contents octets are the concatenation of the BER encodings
of the values of the occurrences in the collection, in order of occurrence.

DER Encoding

Constructed. Contents octets are the concatenation of the DER encodings
of the values of the occurrences in the collection, in order of occurrence.

Section 5.14: SET

The SET type denotes an unordered collection of one or more types.
The SET type is not used in PKCS.

Appendix B374

ASN.1 Notation

SET {
[identifier1] Type1 [{OPTIONAL | DEFAULT value1}],
...,
[identifiern] Typen [{OPTIONAL | DEFAULT valuen}]}

where identifier1, . . ., identifiern are optional, distinct identifiers for the
components, Type1, . . ., Typen are the types of the components, and
value1, . . ., valuen are optional default values for the components. The
identifiers are primarily for documentation; they do not affect values of
the type or their encodings in any way.

The OPTIONAL qualifier indicates that the value of a component is
optional and need not be present in the set. The DEFAULT qualifier also
indicates that the value of a component is optional, and assigns a default
value to the component when the component is absent.

The types must have distinct tags. This requirement is typically satis-
fied with explicit or implicit tagging on some of the components.

BER Encoding

Constructed. Contents octets are the concatenation of the BER encodings
of the values of the components of the set, in any order, with the following
rules for components with the OPTIONAL and DEFAULT qualifiers:

� If the value of a component with the OPTIONAL or DEFAULT qualifier
is absent from the set, then the encoding of that component is not
included in the contents octets.

� If the value of a component with the DEFAULT qualifier is the default
value, then the encoding of that component may or may not be
included in the contents octets.

DER Encoding

Constructed. Contents octets are the same as for the BER encoding,
except that:

� If the value of a component with the DEFAULT qualifier is the default
value, the encoding of that component is not included.

� There is an order to the components, namely ascending order by tag.

375A Layman’s Guide to a Subset of ASN.1, BER, and DER

Section 5.15: SET OF

The SET OF type denotes an unordered collection of zero or more occur-
rences of a given type.

The SET OF type is used for sets of attributes in PKCS #6, #7, #8, #9,
and #10, for sets of message-digest algorithm identifiers, signer informa-
tion, and recipient information in PKCS #7, and in X.501 distinguished
names.

ASN.1 Notation

SET OF Type

where Type is a type.

Example X.501’s RelativeDistinguishedName type consists of zero or
more occurrences of the AttributeValueAssertion type, where the
order is unimportant:

RelativeDistinguishedName ::=
SET OF AttributeValueAssertion

BER Encoding

Constructed. Contents octets are the concatenation of the BER encodings
of the values of the occurrences in the collection, in any order.

DER Encoding

Constructed. Contents octets are the same as for the BER encoding,
except that there is an order, namely ascending lexicographic order of
BER encoding. Lexicographic comparison of two different BER encodings
is done as follows: Logically pad the shorter BER encoding after the last
octet with dummy octets that are smaller in value than any normal octet.
Scan the BER encodings from left to right until a difference is found. The
smaller-valued BER encoding is the one with the smaller-valued octet at
the point of difference.

Appendix B376

Section 5.16: T61String

The T61String type denotes an arbitrary string of T.61 characters. T.61
is an eight-bit extension to the ASCII character set. Special “escape”
sequences specify the interpretation of subsequent character values as,
for example, Japanese; the initial interpretation is Latin. The character
set includes nonprinting control characters. The T61String type allows
only the Latin and Japanese character interpretations, and implementors’
agreements for directory names exclude control characters [NIST92]. A
T61String value can have any length, including zero. This type is a
string type.

The T61String type is used in PKCS #9’s unstructured-address and
challenge-password attributes, and in several X.521 attributes.

ASN.1 Notation

T61String

BER Encoding

Primitive or constructed. In a primitive encoding, the contents octets give
the characters in the T.61 string, encoded in ASCII. In a constructed
encoding, the contents octets give the concatenation of the BER encodings
of consecutive substrings of the T.61 string.

Example The BER encoding of the T61String value “clés publiques”
(French for “public keys”) can be any of the following, among others,
depending on the form of length octets and whether the encoding is prim-
itive or constructed:

14 0f DER encoding
63 6c c2 65 73 20 70 75 62 6c 69 71 75 65 73

14 81 0f Long form of length octets
63 6c c2 65 73 20 70 75 62 6c 69 71 75 65 73

34 15 Constructed encoding:
14 05 63 6c c2 65 73 “clés” � “ “ � “publiques”
14 01 20
14 09 70 75 62 6c 69 71 75 65 73

The eight-bit character c2 is a T.61 prefix that adds an acute accent (´)
to the next character.

377A Layman’s Guide to a Subset of ASN.1, BER, and DER

DER Encoding

Primitive. Contents octets are as for a primitive BER encoding.

Example The DER encoding of the T61String value “clés publiques” is

14 0f 63 6c c2 65 73 20 70 75 62 6c 69 71 75 65 73

Section 5.17: UTCTime

The UTCTime type denotes a “coordinated universal time” or Greenwich
Mean Time (GMT) value. A UTCTime value includes the local time precise
to either minutes or seconds, and an offset from GMT in hours and min-
utes. It takes any of the following forms:

YYMMDDhhmmZ
YYMMDDhhmm+hh’mm’
YYMMDDhhmm-hh’mm’
YYMMDDhhmmssZ
YYMMDDhhmmss+hh’mm’
YYMMDDhhmmss-hh’mm’

where:

YY is the least significant two digits of the year

MM is the month (01 to 12)

DD is the day (01 to 31)

hh is the hour (00 to 23)

mm are the minutes (00 to 59)

ss are the seconds (00 to 59)

Z indicates that local time is GMT, + indicates that local time is
later than GMT, and - indicates that local time is earlier than
GMT

hh’ is the absolute value of the offset from GMT in hours

mm’ is the absolute value of the offset from GMT in minutes

This type is a string type.
The UTCTime type is used for signing times in PKCS #9’s signing-time

attribute and for certificate validity periods in X.509’s Validity type.

Appendix B378

TE
AM
FL
Y

Team-Fly®

ASN.1 Notation

UTCTime

BER Encoding

Primitive or constructed. In a primitive encoding, the contents octets give
the characters in the string, encoded in ASCII. In a constructed encoding,
the contents octets give the concatenation of the BER encodings of con-
secutive substrings of the string. (The constructed encoding is not partic-
ularly interesting, since UTCTime values are so short, but the constructed
encoding is permitted.)

Example The time this sentence was originally written was 4:45:40 P.M.
Pacific Daylight Time on May 6, 1991, which can be represented with
either of the following UTCTime values, among others:

"910506164540-0700"
"910506234540Z"

These values have the following BER encodings, among others:

17 0d 39 31 30 35 30 36 32 33 34 35 34 30 5a

17 11 39 31 30 35 30 36 31 36 34 35 34 30 2D 30 37 30
30

DER Encoding

Primitive. Contents octets are as for a primitive BER encoding.

Section 6: An Example
This section gives an example of ASN.1 notation and DER encoding: the
X.501 type Name.

379A Layman’s Guide to a Subset of ASN.1, BER, and DER

Section 6.1: Abstract Notation

This section gives the ASN.1 notation for the X.501 type Name.

Name ::= CHOICE {
RDNSequence }

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

RelativeDistinguishedName ::=
SET OF AttributeValueAssertion

AttributeValueAssertion ::= SEQUENCE {
AttributeType,
AttributeValue }

AttributeType ::= OBJECT IDENTIFIER

AttributeValue ::= ANY

The Name type identifies an object in an X.500 directory. Name is a
CHOICE type consisting of one alternative: RDNSequence. (Future revi-
sions of X.500 may have other alternatives.)

The RDNSequence type gives a path through an X.500 directory tree
starting at the root. RDNSequence is a SEQUENCE OF type consisting of
zero or more occurrences of RelativeDistinguishedName.

The RelativeDistinguishedName type gives a unique name to an
object relative to the object superior to it in the directory tree. Rela-
tiveDistinguishedName is a SET OF type consisting of zero or more
occurrences of AttributeValueAssertion.

The AttributeValueAssertion type assigns a value to some
attribute of a relative distinguished name, such as country name or com-
mon name. AttributeValueAssertion is a SEQUENCE type consisting of
two components, an AttributeType type and an AttributeValue type.

The AttributeType type identifies an attribute by object identifier.
The AttributeValue type gives an arbitrary attribute value. The actual
type of the attribute value is determined by the attribute type.

Section 6.2: DER Encoding

This section gives an example of a DER encoding of a value of type Name,
working from the bottom up.

Appendix B380

The name is that of the Test User 1 from the PKCS examples [Kal93].
The name is represented by the following path:

(root)
|

countryName = "US"
|

organizationName = "Example Organization"
|

commonName = "Test User 1"

Each level corresponds to one RelativeDistinguishedName value,
each of which happens for this name to consist of one AttributeValue-
Assertion value. The AttributeType value is before the equals sign,
and the AttributeValue value (a printable string for the given
attribute types) is after the equals sign.

The countryName, organizationName, and commonUnitName are
attribute types defined in X.520 as:

attributeType OBJECT IDENTIFIER ::=
{ joint-iso-ccitt(2) ds(5) 4 }

countryName OBJECT IDENTIFIER ::= { attributeType 6 }
organizationName OBJECT IDENTIFIER ::=

{ attributeType 10 }
commonUnitName OBJECT IDENTIFIER ::=

{ attributeType 3 }

AttributeType

The three AttributeType values are OCTET STRING values, so their
DER encoding follows the primitive, definite-length method:

06 03 55 04 06 countryName
06 03 55 04 0a organizationName
06 03 55 04 03 commonName

The identifier octets follow the low-tag form, since the tag is 6 for
OBJECT IDENTIFIER. Bits 8 and 7 have value “0,” indicating universal
class, and bit 6 has value “0,” indicating that the encoding is primitive.
The length octets follow the short form. The contents octets are the con-
catenation of three octet strings derived from subidentifiers (in decimal):
40 � 2 � 5 � 85 � 5516; 4; and 6, 10, or 3.

381A Layman’s Guide to a Subset of ASN.1, BER, and DER

AttributeValue

The three AttributeValue values are PrintableString values, so
their encodings follow the primitive, definite-length method:

13 02 55 53 “US”

13 14 “Example
45 78 61 6d 70 6c 65 20 4f 72 67 61 6e 69 7a 61 Organization”
74 69 6f 6e

13 0b “Test User 1”
54 65 73 74 20 55 73 65 72 20 31

The identifier octets follow the low-tag-number form, since the tag
for PrintableString, 19 (decimal), is between 0 and 30. Bits 8 and 7
have value “0” since PrintableString is in the universal class. Bit 6 has
value “0” since the encoding is primitive. The length octets follow the short
form, and the contents octets are the ASCII representation of the
attribute value.

AttributeValueAssertion

The three AttributeValueAssertion values are SEQUENCE values, so
their DER encodings follow the constructed, definite-length method:

30 09 countryName � “US”
06 03 55 04 06
13 02 55 53

30 1b organizationName � “Example Organization”
06 03 55 04 0a
1 3 14 . . . 6f 6e

30 12 commonName � “Test User 1”
06 03 55 04 0b
13 0b ... 20 31

The identifier octets follow the low-tag-number form, since the tag for
SEQUENCE, 16 (decimal), is between 0 and 30. Bits 8 and 7 have value
“0” since SEQUENCE is in the universal class. Bit 6 has value “1” since
the encoding is constructed. The length octets follow the short form, and
the contents octets are the concatenation of the DER encodings of the
attributeType and attributeValue components.

Appendix B382

RelativeDistinguishedName

The three RelativeDistinguishedName values are SET OF values, so
their DER encodings follow the constructed, definite-length method:

31 0b
30 09 ... 55 53

31 1d
30 1b ... 6f 6e

31 14
30 12 ... 20 31

The identifier octets follow the low-tag-number form, since the tag for
SET OF, 17 (decimal), is between 0 and 30. Bits 8 and 7 have value “0”
since SET OF is in the universal class. Bit 6 has value “1” since the encod-
ing is constructed. The length octets follow the short form, and the
contents octets are the DER encodings of the respective Attribute-
ValueAssertion values, since there is only one value in each set.

RDNSequence

The RDNSequence value is a SEQUENCE OF value, so its DER encoding
follows the constructed, definite-length method:

30 42
31 0b ... 55 53
31 1d ... 6f 6e
31 14 ... 20 31

The identifier octets follow the low-tag-number form, since the tag for
SEQUENCE OF, 16 (decimal), is between 0 and 30. Bits 8 and 7 have value
“0” since SEQUENCE OF is in the universal class. Bit 6 has value “1” since
the encoding is constructed. The length octets follow the short form, and
the contents octets are the concatenation of the DER encodings of the
three RelativeDistinguishedName values, in order of occurrence.

383A Layman’s Guide to a Subset of ASN.1, BER, and DER

Name

The Name value is a CHOICE value, so its DER encoding is the same as
that of the RDNSequence value:

30 42
31 0b

30 09
06 03 55 04 06 attributeType = countryName
13 02 55 53 attributeValue = "US"

31 1d
30 1b

06 03 55 04 0a attributeType = organizationName
13 14 attributeValue = "Example Organization"

45 78 61 6d 70 6c 65 20 4f 72 67 61 6e 69 7a 61
74 69 6f 6e

31 14
30 12

06 03 55 04 03 attributeType = commonName
13 0b attributeValue = "Test User 1"

54 65 73 74 20 55 73 65 72 20 31

References
PKCS #1 RSA Laboratories. PKCS #1: RSA Encryption Standard. Ver-

sion 1.5, November 1993.
PKCS #3 RSA Laboratories. PKCS #3: Diffie-Hellman Key-Agreement

Standard. Version 1.4, November 1993.
PKCS #5 RSA Laboratories. PKCS #5: Password-Based Encryption

Standard. Version 1.5, November 1993.
PKCS #6 RSA Laboratories. PKCS #6: Extended-Certificate Syntax

Standard. Version 1.5, November 1993.
PKCS #7 RSA Laboratories. PKCS #7: Cryptographic Message Syntax

Standard. Version 1.5, November 1993.
PKCS #8 RSA Laboratories. PKCS #8: Private-Key Information Syntax

Standard. Version 1.2, November 1993.
PKCS #9 RSA Laboratories. PKCS #9: Selected Attribute Types. Ver-

sion 1.1, November 1993.
PKCS #10 RSA Laboratories. PKCS #10: Certification Request Syntax

Standard. Version 1.0, November 1993.
X.200 CCITT. Recommendation X.200: Reference Model of Open

Systems Interconnection for CCITT Applications. 1984.

Appendix B384

X.208 CCITT. Recommendation X.208: Specification of Abstract
Syntax Notation One (ASN.1). 1988.

X.209 CCITT. Recommendation X.209: Specification of Basic
Encoding Rules for Abstract Syntax Notation One (ASN.1).
1988.

X.500 CCITT. Recommendation X.500: The Directory—Overview of
Concepts, Models and Services. 1988.

X.501 CCITT. Recommendation X.501: The Directory—Models.
1988.

X.509 CCITT. Recommendation X.509: The Directory—Authentica-
tion Framework. 1988.

X.520 CCITT. Recommendation X.520: The Directory—Selected
Attribute Types. 1988.

[Kal93] Burton S. Kaliski Jr. Some Examples of the PKCS Stan-
dards. RSA Laboratories, November 1993.

[NIST92] NIST. Special Publication 500-202: Stable Implementation
Agreements for Open Systems Interconnection Protocols. Part
11 (Directory Services Protocols). December 1992.

Revision History

June 3, 1991, Version

The June 3, 1991, version is part of the initial public release of PKCS. It
was published as NIST/OSI Implementors’ Workshop document SEC-
SIG-91-17.

November 1, 1993, Version

The November 1, 1993, version incorporates several editorial changes,
including the addition of a revision history. It is updated to be consistent
with the following versions of the PKCS documents:

PKCS #1 RSA Encryption Standard. Version 1.5, November 1993.
PKCS #3 Diffie-Hellman Key-Agreement Standard. Version 1.4,

November 1993.

385A Layman’s Guide to a Subset of ASN.1, BER, and DER

PKCS #5 Password-Based Encryption Standard. Version 1.5, Novem-
ber 1993.

PKCS #6 Extended-Certificate Syntax Standard. Version 1.5, Novem-
ber 1993.

PKCS #7 Cryptographic Message Syntax Standard. Version 1.5,
November 1993.

PKCS #8 Private-Key Information Syntax Standard. Version 1.2,
November 1993.

PKCS #9 Selected Attribute Types. Version 1.1, November 1993.
PKCS #10 Certification Request Syntax Standard. Version 1.0, Novem-

ber 1993.

The following substantive changes were made:

Section 5 Description of T61String type is added.
Section 6 Names are changed, consistent with other PKCS examples.

Appendix B386

Further Technical Details

In this appendix, you will find extra information not covered in the main
body of the book. It is a deeper look at some of the topics described. This
information is not necessary for a proper understanding of the main con-
cepts, but should be interesting reading for those who want to explore cryp-
tography a little further.

How Digest-Based PRNGs Work
As mentioned in Chapter 2, most PRNGs (pseudo-random number gener-
ators) are based on digest algorithms. The algorithm takes a seed and—
just as sowing a botanical seed produces a plant—produces a virtually
unlimited number of pseudo-random numbers. Here is a typical imple-
mentation using SHA-1 as the underlying digest algorithm.

Suppose the user wants two 128-bit session keys. The first step is give
the seed to the PRNG, which digests it using SHA-1. The seed is the “mes-
sage” of the message digest. This produces a 20-byte internal value, com-
monly called the state, which must be kept secret. Next, the user asks the
PRNG for 16 bytes (the data of the first 128-bit session key). The PRNG
uses SHA-1 to digest the state. Now the state, rather than the seed, is the

APPENDIX C

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

message of the message digest. The digest produces 20 bytes. The user
needs only 16, so the PRNG outputs the first 16 bytes.

The user then requests 16 more bytes (the data of the second 128-bit
session key). The PRNG has four left over from the last call; it could
return them, but it also needs 12 more to fill the second request. To get the
next 12 bytes, the PRNG changes the state somehow and digests the
resulting new state. Because the PRNG has changed the state, this next
block of 20 bytes will be different from the first block. The PRNG now has
20 new bytes. It returns the four left over from the first digest and the
first 12 from the current digest.

Each time the PRNG produces output, it either returns leftovers or
changes the state, digests the state, and returns as many bytes from that
result as needed.

How does a PRNG change the state? It may simply add one to the cur-
rent state. Recall that if you change a message, even if only by one bit, the
resulting output will be significantly different. No matter what the input
message is, the output will always pass tests of randomness. So if the
PRNG takes a current state and adds one to it, digesting the new state will
produce completely different, pseudo-random output. If the current state is

0xFF FF FF FF . . . FF

then adding one to it will change the state to

0x00 00 00 00 . . . 00

It’s certainly possible to change the state by adding a different con-
stant. Instead of adding 1, the PRNG could add a 20-byte number. In that
way, all bytes of the state are manipulated in each operation.

A simpler PRNG would not bother with an internal state. Instead, it
would digest the seed to create the first block of output and then would
digest the first block of output to create the second block. Such a PRNG
would be horrible.

Here’s why. Suppose Ray (the attacker from Chapter 3) wants to read
Pao-Chi’s e-mail. The first thing Ray does is to get Pao-Chi to send him
some encrypted e-mail—that is, to send him a few digital envelopes. With
this e-mail, what Ray has is several 128-bit session keys (and possibly
some initialization vectors if the encryption algorithm is a block cipher
with a feedback mode). These keys are a series of pseudo-random bytes,
each block produced by digesting the preceding block. With a little work,
Ray can figure out a block boundary. Now Ray eavesdrops on Pao-Chi’s
future e-mails. What is the 128-bit session key used for the next e-mail?

Appendix C388

TE
AM
FL
Y

Team-Fly®

It’s simply the digest of the last block that Ray has. That’s why good
digest-based PRNGs use an internal state.

If the underlying digest algorithm is truly one-way (meaning that no
one can determine the message from the digest), no one will be able to fig-
ure out what the state was that produced any particular pseudo-random
output. If no one can figure out what the state is at any point in time, no
one can compute what the next bytes will be.

Feedback Modes
In Chapter 2 you learned about block ciphers. A block cipher encrypts
each block independently, so if the same block of plaintext appears more
than once in a message, the resulting ciphertext block also will be
repeated. This repetition could help an attacker. For example, suppose a
company encrypts employee information in a database using the same
key for each entry. If two entries contain the same block of ciphertext for
“salary,” anyone seeing that matching block would know that those two
people earn the same salary.

Feedback modes make certain that each block of ciphertext is unique.
(Except for that, they offer no additional security.) The most common feed-
back mode (described in Chapter 2) is cipher block chaining (CBC). When
you encrypt data in CBC mode, each block of plaintext is XOR’d with the
preceding block of ciphertext before the block is encrypted. There is no
previous ciphertext for the first block, so it is XOR’d with an initialization
vector (IV).

The term for no feedback is electronic codebook (ECB). Following are
some other feedback modes.

Cipher Feedback Mode*

In cipher feedback (CFB) mode, you encrypt a block of data and XOR the
plaintext with this encrypted block to produce the ciphertext. The block of
data you encrypt is the preceding ciphertext. The first block has no pre-
ceding ciphertext, so it uses an IV. To create the first block of ciphertext,
you encrypt the IV and XOR it with the plaintext. Now you save the

389Further Technical Details

*(Source: RSA Labs)

resulting ciphertext for the next block. For the second block, you encrypt
the preceding ciphertext (the result of the preceding XOR) and XOR the
result of that with the plaintext. For example, suppose that the first plain-
text block begins with the word “Goal.” Here’s the process.

1. Encrypt the IV. IV � 0xA722B551 . . . becomes 0x38F01321

2. XOR the plaintext with the encrypted IV. Goal � 0x476F616C
becomes 0x7F9F724D, which is the ciphertext.

3. Encrypt the preceding ciphertext. 0x7F9F724D . . . becomes
0xE1250B77

4. XOR the plaintext with the encrypted preceding ciphertext, and
repeat until the entire message is encrypted.

It’s possible to define CFB mode so that it uses feedback that is less
than one full data block. In fact, with CFB, it’s possible to define a block
size as one byte, effectively converting a block cipher into a stream cipher.
Suppose you’re using AES, a block cipher with a block size of 16 bytes.
Here’s what to do. First, use a 16-byte IV and encrypt it. You now have a
block of 16 bytes that is the encrypted IV. Grab one byte of plaintext and
XOR it with the most significant byte of the encrypted IV. Now that you’ve
used that byte, throw it away by shifting the block of encrypted IV to the
left. That leaves the least significant byte open. Fill it with the ciphertext
(the result of the XOR). Now go on to the next byte of plaintext.

CFB mode is as secure as the underlying cipher, and using the XOR
operation conceals plaintext patterns in the ciphertext. Plaintext cannot
be manipulated directly except by the removal of blocks from the begin-
ning or the end of the ciphertext.

Output Feedback Mode*

Output feedback (OFB) mode is similar to CFB mode except that the
quantity XOR’d with each plaintext block is generated independently of
both the plaintext and the ciphertext. Here’s how to use this mode. For the
first block of ciphertext, encrypt the IV and call this quantity the cipher
block. Now XOR the cipher block with the plaintext. For the second block,
encrypt the cipher block to create a new cipher block. Now XOR this new
cipher block with the next block of plaintext.

Appendix C390

*(Source: RSA Labs)

Assuming again that the first block of plaintext is “Goal,” here’s how
OFB works.

1. Encrypt the IV to produce the cipher block. IV � 0xA722B551 . . .
becomes 0x38F01321

2. XOR the plaintext with the encrypted IV. Goal � 0x476F616C
becomes 0x7F9F724D, which is the ciphertext.

3. Encrypt the preceding cipher block. 0x38F01321 . . . becomes
0x9D44BA16

4. XOR the plaintext with the encrypted preceding cipher block, and
continue in the same manner.

Feedback widths less than a full block are possible, but for security rea-
sons they’re not recommended. OFB mode has an advantage over CFB
mode in that any bit errors that might occur during transmission are not
propagated to affect the decryption of subsequent blocks. Furthermore,
this mode can be programmed to take advantage of precomputations to
speed the process. In CBC and CFB, you can’t do the next step until com-
pleting the preceding step. Here, you can compute cipher blocks before
computing the XOR or loading the next block of plaintext.

A problem with OFB mode is that the plaintext is easily manipulated.
An attacker who knows a plaintext block mi can replace it with a false
plaintext block x by computing mi XOR x to the corresponding ciphertext
block ci. Similar attacks can be used against CBC and CFB modes, but in
those attacks some plaintext blocks will be modified in a manner that the
attacker can’t predict. Yet the very first ciphertext block (the initialization
vector) in CBC mode and the very last ciphertext block in CFB mode are
just as vulnerable to the attack as the blocks in OFB mode. Attacks of this
kind can be prevented using, for example, a digital signature scheme or a
MAC scheme.

Counter Mode*

Because of shortcomings in OFB mode, Whitfield Diffie has proposed an
additional mode of operation termed counter mode. It differs from OFB
mode in the way the successive data blocks are generated for subsequent

391Further Technical Details

*(Source: RSA Labs)

encryptions. Instead of deriving one data block as the encryption of the
preceding data block, Diffie proposes encrypting the quantity i � IV mod
block bits for the ith data block.

Here’s how it works. First, encrypt the IV and XOR it with the first
block of plaintext. Now add 1 to the IV (if the IV were 0xFF FF . . . FF,
the addition would produce 0x00 00 . . . 00; that’s what the mod block
bits means). Encrypt this new block, and XOR it with the next block of
plaintext. If the cipher uses 8-byte blocks and the first block of data is
“Goal #14,” then counter mode would look like this:

1. Encrypt the IV to produce the cipher block. IV � 0xA722B551
041A3C96 becomes 0x38F01321 7922E09B.

2. XOR the plaintext with the encrypted IV. Goal #14 � 0x476F616C
20233134 becomes 0x7F9F724D 5901D1AF, which is the ciphertext.

3. Encrypt IV � 1. 0xA722B551 041A3C97 becomes 0x674B9B01
CFA38027.

4. XOR the plaintext with the encrypted IV � 1, and repeat the process.

Cryptanalysis of this method continues, but most cryptographers
express confidence that counter mode will be a good alternative to CBC
because this feedback mode can take advantage of precomputations and
hence speed the process.

How to Plug Information Leaks from IV and Salts
One concern of cryptographers is the concept of leaking information. For
example, the IV for a block cipher and the salt in PBE are not secret. Any-
one eavesdropping on a digital conversation protected by a block cipher
with a feedback mode will know what the IV is. Someone who finds a pass-
word-protected session key will know the salt. That’s no problem because
knowing the IV or salt does not help an attacker. But where did that IV
and salt come from? A PRNG? The same PRNG that produced the session
key? If it did, it means that the program has leaked information about the
session key. The session key is related to the IV or salt (or both), and the
attacker knows what those values are.

Certainly if the PRNG uses a good digest with an internal state, knowl-
edge of the IV or salt will not lead the attacker to the session key. Even

Appendix C392

though a relationship exists between the values, an attacker will not be
able to exploit that relationship.

Nonetheless, information is leaking, and it’s extremely simple to plug the
hole. When you generate a session key, you use a PRNG with a good seed.
For the IV or salt, you use a different PRNG seeded with the time of day.

You want every IV and salt you use to be unique. To do that, you use
a different PRNG with a different salt each time. The time will be dif-
ferent for each instance, so there is a simple seed that will guarantee a
different salt and IV each time. In Chapter 2, you saw that the time
alone is a poor seed. That’s because you don’t want the attacker to do a
brute force attack on the seed to reconstruct the PRNG and then repro-
duce the secrets generated by the PRNG. But if the thing generated by
the PRNG is public, it doesn’t matter whether the attacker can repro-
duce the seed. Knowledge of the seed in this case allows the attacker
only to reconstruct a PRNG and reproduce values that have already
been made public.

So to avoid leaking information, you use two PRNGs: one for generat-
ing secrets, and another one for generating salts and IVs. For performance
reasons, you shouldn’t waste time collecting a good seed for the PRNG
that generates the salt and IV; simply use the time. It’s fast, and it guar-
antees different output each time you use the PRNG.

Tamper-resistant Hardware*
In Chapter 3, you learned that some hardware devices are built to be tam-
per-resistant. Usually this means that they detect when someone is trying
to access data through some means other than normal channels. How can
these devices be made tamper-resistant?

Many techniques are used to make hardware tamper-resistant. Some of
these techniques are intended to thwart direct attempts at opening a
device and reading information from its memory; others offer protection
against subtler attacks, such as timing attacks and induced hardware-
fault attacks.

393Further Technical Details

*(Source: RSA Labs)

At a very high level, here are a few general techniques used to make
devices tamper-resistant:

� Employing sensors of various types (for example, light, temperature,
and resistivity sensors) to detect malicious probing

� Packing device circuitry as densely as possible (dense circuitry makes
it difficult for attackers to use a logic probe effectively)

� Using error-correcting memory

� Using nonvolatile memory so that the device can tell whether it has
been reset (or how many times it has been reset)

� Using redundant processors to perform calculations and ensuring
that all the calculated answers agree before outputting a result

RSA Padding
Chapter 4 describes the RSA digital envelope, in which a session key is
encrypted with an RSA public key. The RSA public exponent is often 3,
which means that to encrypt data, you treat the session key as a number
and raise it to the 3rd power modulo the modulus. That’s the same as find-
ing s � s � s mod n, where s is the session key as a number, and n is the
modulus. Most RSA keys are 1,024 bits, so the modulus is 1,024 bits long.

Modular multiplication means that the answer will always be less than
the modulus. You compute the product, and if it is less than the modulus,
there’s no more work; if it’s greater than the modulus, you reduce the
result. To reduce a number means that you divide the intermediate result
by the modulus and take the remainder as the answer. For example,

10 � 10 mod 35 � 100 mod 35 � rem (100 � 35) � 30

Because 10 � 35 is 2 with a remainder of 30 (100 � 2 � 35 � 100 � 70),
the answer is 30. The number 100 has been reduced to 30 modulo 35.

This reduction is essentially the reason RSA (and Diffie-Hellman and
DSA) is secure. You compute an intermediate value and then reduce it.
The attacker may know what the reduction is, but what was the interme-
diate value? If the attacker knows the intermediate value, it would not be
hard to find the original number, but for each final number there are sim-
ply far too many possible intermediate values. That is, with big enough

Appendix C394

keys, any one of trillions upon trillions of intermediate values produces
the same final answer, and each intermediate value comes from a differ-
ent starting point. A 1,024-bit modulus means that there are about 21024

possible starting points, so there are about 21024 possible intermediate val-
ues an attacker would have to examine to find the correct one. You saw in
Chapter 2 how long it would take to examine 2128 keys, so you can imag-
ine that using brute force to find the correct intermediate value among
21024 possible numbers is not a viable option. That’s why attackers would
use other mathematical techniques, such as factoring or solving the dis-
crete log problem, to break the algorithm, but those other techniques also
take millions of years.

When you multiply two numbers, the size of the result is the sum of the
sizes of the operands (or possibly one bit less). Assuming the session key
you’re encrypting is 128 bits long (the most common session key size), the
size of s � s is 256. Because the RSA modulus is 1,024 bits long, the prod-
uct s � s is smaller than the modulus, so no reduction is necessary. Finally,
s � (s � s) will be a 384-bit number (a 128-bit number times a 256-bit
number). That, too, is less than the modulus, so no reduction is necessary.

So if you found s � s � s mod n, you would not do any reductions, and
an attacker would know the intermediate value (it’s the final result) and
would be able to compute the original number s. The solution to this prob-
lem is to pad the data (see also Chapter 2). Here’s how. Start with s, but
make it a bigger number so that when finding s � s � s, you create inter-
mediate answers larger than n and you have to reduce. Of course, you
must pad in such a way that when decrypting, the recipient knows what
the pad bytes are and can throw them away.

PKCS #1 Block 02 Padding

The most common padding scheme for RSA is defined in the Public Key
Cryptography Standard #1 (PKCS #1; see the accompanying CD). It
works like this. Start with a block that is the same size as the modulus. If
the modulus is 1,024 bits, the block is 128 bytes long. The session key will
fill 16 of those bytes (assuming that the session key is 128 bits), and this
means that you’ll need 112 bytes of padding. The padding comes first, fol-
lowed by the key. So the first 112 bytes of the block are padding, and the
last 16 bytes are the session key.

395Further Technical Details

The first byte of padding is 00, the next byte is 02, and then the next
109 bytes are random or pseudo-random values, none of which can be 00.
Finally, the 112th byte of padding is 00. If the session key were

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

then a padded block might look like this:

00 02 D0 CE 21 83 41 73 F6 84 32 06 A8 A6 AD 13
2B 65 27 86 28 EF 0E 8C CA 4F 20 C0 19 95 fE 6C
3E 69 1A 49 9C B7 CE 80 8A 9D C7 3D EC 6F 64 3A
A5 65 A0 A4 35 9A CA D4 CB CD 1D C8 60 6B E2 7F
2B BD 27 E1 47 F2 18 F0 65 41 9E 0D 1A CD B4 3D
24 14 C4 78 A6 A6 F3 1E 07 61 B6 C4 49 A0 77 18
BB 0E C7 72 E3 F1 79 1C 02 90 23 04 82 69 63 00
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

This block, then, becomes the value to encrypt. Cubing this number
(cubing means to multiply a number by itself three times) will produce a
number larger than the modulus, so reduction is necessary. The answer
(ciphertext) might look something like this.

A0 2E 7D bE 8F 7A 3B DD 04 01 26 03 CC AF F5 7F
34 3F 49 22 C4 DC 48 09 E8 33 3B B0 59 DA D2 E7
B3 38 23 A7 D6 EB F1 B7 ED 3C 7B 45 81 4E 4F 3C
F4 BC 93 42 A8 8E 02 A9 05 1A fB 81 3E 8F 06 05
22 F3 90 9F 9B 35 13 A6 89 EC C3 5F 3F 6F 1D 9F
54 DE CB C0 0F F3 2F FF 1B 45 CA 80 B6 69 63 DF
54 C1 A7 B4 A2 D6 F5 53 E5 5D F1 D5 B9 F4 9E 5F
74 4C CD 72 C1 29 B7 FF D5 29 05 13 AD 04 BA 15

The recipient would decrypt this and recover the original padded value.
That individual (more precisely, the recipient’s software) would then need
to unpad, or throw away the pad bytes, keeping only the session key. The
first byte is 00, and the second byte is 02; those are simple—throw them
away. Now throw away all the ensuing bytes that are not 00: the 109 ran-
dom or pseudo-random numbers. The padding routine must never use 00
as one of those bytes, so during unpadding, the end of the padding is easy
to spot; it’s the first instance of 00. When the unpad routine reaches 00, it
knows there’s no more padding. It throws away the 00, and the rest of the
bytes are the session key.

The Bleichenbacher Attack

In 1998, Daniel Bleichenbacher, a cryptographer at Bell Labs, came up
with an attack against PKCS #1 Block 02 padding. This attack takes

Appendix C396

advantage of the fact that the decryptor looks for specific bytes in specific
locations. After decryption, the recipient will see whether the first byte is
00 and the second byte is 02 and whether there is a 00 after some random
values.

Suppose that Ray, our attacker from Chapter 3, has an encrypted mes-
sage from Pao-Chi to Gwen. If Ray can decrypt the RSA digital envelope
portion of the communication, he will have the session key and can
decrypt the message. Here’s how the attack works. First, Ray computes a
bogus RSA digital envelope that looks like Pao-Chi’s envelope. To do that,
Ray uses a special mathematical formula and uses as input Pao-Chi’s cor-
rect envelope and a random or pseudo-random number (for details, see the
RSA Labs Bulletin number 7, June 26, 1998, written by Daniel Bleichen-
bacher, Burt Kaliski, and Jessica Staddon). Ray then sends the substitute
envelope to Gwen. If Gwen responds by saying that something went
wrong, that the envelope didn’t unwrap properly, Ray uses the same for-
mula to create a new, different envelope using Pao-Chi’s envelope and a
different number (probably just the previous number plus 1) and sends
the new envelope to Gwen. When an envelope unwraps improperly, it
means that the first byte is not 00, or the second byte is not 02, or maybe
there’s no 00 to indicate the end of padding. Ray continues to send fake
envelopes to Gwen until she responds by saying the envelope unwrapped
properly.

When Ray has a fake envelope that works, he can figure out what Pao-
Chi’s original envelope is. The fake envelope and Pao-Chi’s are related;
Ray created the fake one based on the correct one and a number he chose.
He uses this relationship to break the encryption. This technique does not
break the private key; rather, it recovers only one envelope. Ray’s fake
envelope, when decrypted, does not produce the same thing Pao-Chi
encrypted; rather, the result is something that simply looks like a digital
envelope. It has the leading 00 02, and somewhere along the line there’s
another 00 to indicate the end of the padding. Gwen (or rather the soft-
ware she uses to open the envelope) simply assumes that the numbers fol-
lowing this second 00, whatever those numbers happen to be, make up a
session key. They don’t—this is a bogus envelope—but to Gwen it looks
like a legitimate envelope because all the marker bytes are there in the
correct location.

Bleichenbacher’s research indicates that Ray will probably need to
send about 1,000,000 (one million) fake envelopes to recover one message.
In some situations, he might even need to send 20,000,000 fake envelopes.

This attack is not likely to work using e-mail because Ray would have
to wait for Gwen to open the one million e-mails and send a response to

397Further Technical Details

each one, and eventually Gwen would stop trying to open any e-mail from
Ray. But it might work if the recipient is using an automated responder.
An example is an SSL server that simply responds to “hits,” sending an
error message when something goes wrong and opening a session when
all goes right.

There are simple ways to thwart this attack (see the bulletin previously
cited), and in fact, the SSL specification has a built-in countermeasure. It
is probably safe, in the real world, to continue using PKCS #1 Block 02
padding when you’re creating digital envelopes. However, if you want to
avoid this attack, you can use a different padding scheme. The next sec-
tion describes a padding scheme that’s immune to the Bleichenbacher
attack.

Optimal Asymmetric Encryption Padding

In 1995, two cryptographers-Mihir Bellare of the University of California
at San Diego and Phillip Rogaway of the University of California at Davis-
proposed a new way to pad RSA digital envelopes. They named this tech-
nique Optimal Asymmetric Encryption Padding (OAEP).

Suppose the RSA key is 1,024 bits and the session key is 128 bits. You
create a buffer of 128 bytes (the same size as the RSA modulus) and place
the session key at the end, just as in PKCS #1 Block 02. You now need
112 bytes of padding to precede the session key. The first byte is 00. The
next 20 bytes, known as the seed, are random or pseudo-random. The
next 20 bytes are the SHA-1 digest of some known data. (This known
data is part of the algorithm identifier, the information you pass to the
recipient indicating what you did to create the envelope.) The next 70
bytes are all 00, and then the last pad byte is 01. For example, assuming
the session key is 16 bytes of 0xFF, at this point, you would have some-
thing that looks like this.

00 14 86 6A 90 11 B4 DE 48 66 25 03 9B E2 57 F5
2B BD 27 E1 47 F2 18 F0 65 41 9E 0D 1A CD B4 3D
24 C4 78 A6 A6 F3 1E 07 61 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

You’re not finished yet. From the seed, you create a mask 107 bytes
long. The mask-generating function is based on SHA-1. Then, you XOR

Appendix C398

TE
AM
FL
Y

Team-Fly®

the mask with next 107 bytes, which are the digest, all the 00 bytes, the
01, and the session key. In the following, the underlined values have been
masked.

00 14 86 6A 90 11 B4 DE 48 66 25 03 9B E2 57 F5
2B BD 27 E1 47 36 C2 B2 3A 61 C8 B8 86 20 30 1C
B9 C5 fD 13 E3 bE 37 9C F5 EF 79 1C 02 90 23 04
82 69 63 AA AF 37 30 64 66 D6 CD AF 35 58 99 BC
6F 3C 7E 14 AE 9D D1 FB F7 D1 F6 97 93 D9 B0 A6
8A D8 C4 44 87 F2 EC 77 EE 2D 9B F8 41 02 D8 50
23 00 57 49 EF D1 61 98 41 51 4D C8 A6 4D 74 A7
19 E4 4D 80 86 A9 6F AB 1E 57 98 B2 41 59 2F EA

Finally, you use this resulting value (the 107 bytes after the XOR oper-
ation) as a second seed to create a mask for the original seed. Then you
XOR the original seed with this new mask.

00 8B 60 80 FE DE CA AF 72 77 4E 46 32 4D 6A F1
E3 82 37 5C DA 36 C2 B2 3A 61 C8 B8 86 20 30 1C
B9 C5 fD 13 E3 bE 37 9C F5 EF 79 1C 02 90 23 04
82 69 63 AA AF 37 30 64 66 D6 CD AF 35 58 99 BC
6F 3C 7E 14 AE 9D D1 FB F7 D1 F6 97 93 D9 B0 A6
8A D8 C4 44 87 F2 EC 77 EE 2D 9B F8 41 02 D8 50
23 00 57 49 EF D1 61 98 41 51 4D C8 A6 4D 74 A7
19 E4 4D 80 86 A9 6F AB 1E 57 98 B2 41 59 2F EA

The result looks random. To unpad, you skip the first 21 bytes (the
decryptor knows the first byte is 00 and the next 20 bytes are the seed).
You use the rest of the data as a seed (this is the second seed) to create a
mask. You XOR this mask with the 20 bytes after the first byte (remem-
ber, the first byte is 00). Now you’ve reconstructed the original seed. You
use the original seed to create a mask to XOR with the remaining 107
bytes. Then, you digest the known data and compare it to the 20 bytes
after the seed. Also, you check to make sure that the next 70 bytes are all
00 and that the last byte before the session key is 01. If all these checks
pass, the recipient has the session key.

OAEP has some variants. Different digest algorithms with different
seed sizes are possible. The first byte might be a random byte instead of
00 (although there are mathematical limitations on what that byte can
be).

Using this padding scheme means that a Bleichenbacher attack will
almost certainly fail. The chances that someone could create a fake enve-
lope that produces a valid OAEP block are so astronomically small that it
will virtually never happen. The reason is the digesting. Remember that
digest algorithms produce dramatically different output when the input is

399Further Technical Details

changed, even slightly. A fake envelope would have to decrypt to some-
thing that by sheer chance created some digests that, after the XOR oper-
ation, created the 70 bytes of 00 followed by the one byte of 01 in the
appropriate place.

Timing Attacks
How long does it take for your computer to perform a private-key opera-
tion (creating a digital signature or opening a digital envelope)? It turns
out that there are slight variations in the amount of time needed to per-
form asymmetric algorithm operations. The actual time is dependent on
the key itself and the input data.

Here’s what we mean. Take two private keys, both of them the same
algorithm (RSA, DH, DSA, or ECC) and the same size. Now perform the
same operation (sign, encrypt, key agree) with the same data. How long
exactly did each operation take? With one key it might take 0.2007415517
milliseconds, and with the second 0.2007415548 milliseconds. The differ-
ence is tiny, but there is a difference.

Or suppose that the time can be computed in cycles. One key makes the
computation in 90,288,451 cycles, and another key uses 90,289,207 cycles.
If you’re not familiar with computer cycles, one cycle is one “tick” of the
computer’s internal clock. A hertz is one cycle per second, so a 450 mega-
hertz (450MHz) computer can operate at 450 million cycles per second.
Most processors can perform one integer addition in one cycle and one
integer multiplication in two to six cycles (some processors might need 27
cycles to do one integer multiplication). So a 450MHz processor could do
450 million additions or 75 million to 225 million multiplications in one
second. Actually, it gets complicated with pipelining and multiprocessing
and integer units and floating-point units, but the point is that time can
be measured in cycles as well as seconds.

However time is measured, the variations in time can aid an attacker.
Knowing the input data (for example, what you’re signing) and exactly
how long it took you to perform the private-key operation (such as sign-
ing), an attacker can gain information about your private key. This is
known as a timing attack. The attacker almost certainly needs timings
from many private-key operations (each operation working on different
input data) to figure out the entire key. The more exact the time, the fewer
data points the attacker needs.

Appendix C400

Highly controlled experiments on simple machines running simple
software implementations have had some success in measuring the times
of various operations. More success has been found timing tokens and
other slow processors. But often the experiments have required hundreds
if not thousands of timings to collect enough information on a particular
key. Furthermore, using the Chinese Remainder Theorem (CRT; see Chap-
ter 4) for RSA operations and Montgomery multiplication helps thwart
the attack. (Peter Montgomery is a researcher who came up with a clever
way to perform the internal operations of RSA, DH, DSA, and some ECC
much faster.) Data and instruction caching may skew the measurements.
Another way to defeat this attack is to prevent the attacker from knowing
the input, an approach known as blinding. The attacker knows what the
input is, but if you alter it before signing and then alter the resulting sig-
nature to compensate for the original alteration, the exact data operated
on by the private key is unknown. Unfortunately, blinding is a drain on
performance, adding another 40 percent to the total signature time.

In real-world applications, a timing attack may not be practical because
virtually all current implementations of RSA employ CRT and the imple-
mentations of all public-key algorithms employ Montgomery math. Fur-
thermore, attackers often have no way of knowing how long it took to
perform the operation, or the measurements were not accurate enough.
Possibly the target did not make enough private-key computations before
changing keys.

In some situations, a timing attack may be more practical. One
example is an SSL server performing private-key operations automati-
cally. An attacker could request an SSL connection and time the response
and then repeat the request, time the response again, and so on hundreds
or thousands of times. For each SSL connection, the server creates a digi-
tal signature, each time signing something different. This is exactly what
the attacker needs: knowledge of the data being signed, different data
being signed each time, and many iterations.

No one has demonstrated a successful timing attack in real-world situ-
ations, including an attack on an SSL server. CRT and Montgomery math
may be all that’s needed to prevent a successful attack, or other opera-
tions may mask the signature time. But you may need to be aware of the
possibility of a timing attack, especially if, in the future, you use a smart
card in someone else’s reader. In that case, blinding may become a pru-
dent countermeasure.

401Further Technical Details

Kerberos*
In Chapter 5, you learned about authentication using digital signatures.
You may have heard about Kerberos, an alternative authenticating
technique.

Kerberos is an authentication service developed by the Project Athena
team at MIT, based on a 1978 paper by Roger Needham and Michael
Schroeder. The first general-use version was version 4. Version 5, which
addressed certain shortfalls in version 4, was released in 1994. Kerberos
uses secret-key ciphers for encryption and authentication. Version 4 used
only DES. Unlike a public-key authentication system, Kerberos does not
produce digital signatures. Instead, Kerberos was designed to authenti-
cate requests for network resources rather than to authenticate author-
ship of documents. Thus, Kerberos does not provide for future third-party
verification of documents.

In a Kerberos system, a designated site on each network, called the
Kerberos server, performs centralized key management and administra-
tion. The server maintains a database containing the secret keys of all
users, authenticates the identities of users, and distributes session keys to
users and servers that wish to authenticate one another. Kerberos
requires trust in a third party (the Kerberos server). If the server is com-
promised, the integrity of the whole system is lost. Public-key cryptogra-
phy was designed precisely to avoid the necessity to trust third parties
with secrets.

Kerberos is generally considered adequate within an administrative
domain; however, across domains, the more robust functions and proper-
ties of public-key systems are often preferred. Some developmental work
has been done to incorporate public-key cryptography into Kerberos.

For detailed information on Kerberos, read “The Kerberos Network
Authentication Service (V5)’’ (J. Kohl and C. Neuman, RFC 1510) at
ftp://ftp.isi.edu/in-notes/rfc1510.txt.

Appendix C402

*(Source: RSA Labs)

DH, ECDH, DSA, and ECDSA Certificates
In Chapter 6, you learned about certificates. The minimum contents of a
certificate are the owner’s name, public key, and the CAs signature. For
RSA, the public key is the modulus and public exponent. For DH, ECDH,
DSA, and ECDSA, the public key consists of the system parameters and a
public value.

Often, messages contain certificates. For example, if Pao-Chi sends a
signed message to Daniel, Daniel needs Pao-Chi’s certificate to verify the
signature. Pao-Chi can include his certificate as part of the message, sav-
ing Daniel the trouble of searching for it in public directories. If Satomi
wants to pose as Pao-Chi, she could send a message with a certificate con-
taining Pao-Chi’s name but not his true public key. But she will have to
get that certificate signed by a CA whose certificate was signed by the root
that Daniel will use. Satomi will have to break the root’s key to become
the root (and hence create her own CA) or break a CA’s key to create a
valid certificate. That’s not likely, so including the certificate in a message
is no security problem.

Because messages contain certificates and because larger messages are
sometimes expensive, it’s often desirable to create smaller certificates. A
protocol or company might demand that names be short (for example, that
they carry no title, mailing address, fax number, or other such informa-
tion) or that there be no extensions or attributes.

In the past, people have proposed shrinking public keys. DH, ECDH,
DSA, or ECDSA keys can be compressed by excluding the system para-
meters. Everyone would have to get the system parameters in some other
way.

But this is not a good idea. The purpose of a certificate is to guarantee
that an attacker could not replace a true public key with a fake one. But
if the parameters are not part of the certificate, an attacker could replace
the parameters. Someone using a public key extracted from a certificate
(creating a digital envelope or verifying a signature) would be certain of
using the correct public value but not the correct parameters. If Satomi,
for example, replaces the parameters on Pao-Chi’s machine and if Pao-Chi
tries to send a message to Daniel, he will create something that Daniel
cannot read. Satomi almost certainly won’t be able to read it either (she
would still need to know Daniel’s private value), so all she would be doing
by changing the parameters would be creating a nuisance. This is a
denial-of-service attack because her actions would deny Pao-Chi and
Daniel the service of secure communication.

403Further Technical Details

To prevent this problem, the company could enforce a policy in which
everyone uses the same system parameters. It could create some system
parameters and distribute them to all employees, each of whom would cre-
ate individual public and private key pairs. This is generally not a secu-
rity problem; sharing system parameters does not weaken the math.
Some cryptographers warn that if “too many” people share system para-
meters (good luck getting one of those cryptographers to quantify “too
many”), it might be possible to introduce weaknesses, but for the most
part, sharing parameters does not aid an attacker. In such a situation,
Satomi could not replace the system parameters on Pao-Chi’s machine
because he would know what the true parameters were; they’re his. Pre-
sumably, Pao-Chi will have those parameters protected in such a way that
Satomi could not alter them without his knowledge.

This parameters policy could work for communications among all the
employees at Pao-Chi’s company, but how could people outside the com-
pany guarantee a public key’s authenticity? Everyone else would also
need the system parameters. Suppose the company created a second cer-
tificate, this one for the parameters. That would mean two certificates
would be required to verify one public key, defeating the purpose of saving
space.

The best way to distribute DH, ECDH, DSA, and ECDSA keys is to
include the system parameters in the certificate.

Problems with Using SSL to Protect Credit Cards
Chapter 7 describes the Secure Socket Layer (SSL), the latest version of
which is known as Transport Layer Security (TLS). Many companies use
SSL exclusively to protect credit card transactions. Unfortunately, that
may not be a wise policy.

SSL encrypts data while in transit, so if someone runs a sniffer program
on the Internet—checking traffic to see whether any credit card numbers
are sent in the clear—SSL will protect the transaction. However, credit
card numbers sent over the Internet usually are not stolen in transit;
instead, they are stolen while in storage. Rather than eavesdropping on
Internet messages, thieves break into servers storing sensitive material.

When you operate a Web site, you’re essentially making your local files
available for the world to see. Recall the discussion of permissions in
Chapter 1. You can set the permissions on your files so that only certain

Appendix C404

users have read or write access to them. A Web server has, in effect, set
the read permission on many of its files to the entire world.

One mistake made by companies is to store the credit card numbers on
the Web server. In fact, an MSNBC reporter discovered that on January 13,
2000, when he “was able to view nearly 2,500 credit card numbers stored
by seven small e-commerce Web sites within a few minutes, using elemen-
tary instructions provided by a source. In all cases, a list of customers and
all their personal information was connected to the Internet and either
was not password-protected or the password was viewable directly from
the Web site.” (source: www.msnbc.com) The companies may set the per-
missions of the files containing the numbers to exclude the world, or they
may not. It doesn’t matter. As you saw in Chapter 1, simple OS permissions
are no real deterrent to the majority of hackers and crackers.

The best policy is to store credit card numbers encrypted. Another pos-
sibility is to use a protocol, such as SET, in which credit cards numbers are
transmitted using a digital envelope, the public key creating the envelope
belonging to the issuing bank. Hence, a merchant never sees the credit
card in the clear and can never store it unsecurely. Because SET has not
been widely adopted, the credit card companies and banks may devise a
new protocol.

One way consumers can protect themselves is to read the security poli-
cies of the e-commerce companies from which they might wish to make
purchases. The following quotations indicate policies that are less than
secure:

“ . . . uses SSL, an advanced encryption technology that protects
your credit card information.”

“We use Secure Sockets Layer (SSL) technology to protect the
security of your online order information.”

The point is not that SSL has no value but rather that SSL does not
address the storage issue. It is not a silver bullet that solves all security
problems.

Here is a policy that is starting to get the right idea:

“To ensure that your information is even more secure, once we
receive your credit card information, we store it on a server that
isn’t accessible from the Internet.”

Finally, here are quotes from a couple of security policies of Web sites
that are truly interested in security.

405Further Technical Details

“Every time you send us your credit card number and your billing
and shipping information, we use the industry-standard Secure
Sockets Layer (SSL) technology to prevent the information from
being intercepted. We also encrypt your credit card number
when we store your order and whenever we transfer that
information to participating merchants.”

“Within those systems, sensitive information is encrypted to
protect your personal data, like credit card numbers.”

Appendix C406

Symbols

128 bits, symmetric key size, 33
7816 standard, smart cards, 276

A

ABA (American Bar Association), digital
signature guidelines, 295

access control, 324
ACE/Server, 272
acquirer certificates, 259
ACs (Attribute Certificates), PKI, 203
Adleman, Len, 94
AES (Advanced Encryption Standard), block

cipher, 45, 50
Aggresive mode, IKE, establishing SAs, 225
AH (Authentication Header), 211

fields, 212
transport mode, 213
tunnel mode, 214

Alert protocol, SSL, 232
algorithm identifier bytes, digital

signatures, 156
algorithms, 159

AES, 45, 50
block ciphers, 38

feedback modes, 40
padding, 39–40

breaking, 30
comparisons

interoperability, 122
key sizes, 119
performance, 121
security, 117–118
transmission sizes, 122

DES, 45–46, 49
DH, 94, 105, 108
digital signature security, 163–164
DSA, 161
ECDH, 111–114

ECDSA, 163
elliptic curve, 94
encryption, 19
ESP, 216
Gemstar, 23
hash, 143
historical overview, 23–25
key tables, 38
keys, 22

brute force attacks, 30, 33
generating keys, 22
known plaintext attacks attacks, 36
measuring time of attacks, 37
random number generation, 26–27
seed attacks, 34

MD2, 148
MD5, 148
NIST standards, 50
public key, breaking, 93
RC4, 24, 98
RC5, 98
Rijndael, 50
RSA, 94, 98–99, 102–104, 160
S/MIME, 245
security, publicly known, 25
SHA-1, 143, 149
SSL authentication/encryption, 240
stream ciphers

key streams, 44–45
one-time pads, 41, 44
RC4, 45

threshold, 130–131
Triple DES, 47
XOR operations, 42–43

ANSI (American National Standards Institute),
X9 security standards, 328

application-layer security protocols, 243
application/pkcs7 content type, MIME, 252
ARLs (Authority Revocation Lists),

PKI, 190
ASN.1 (Abstract Syntax Notation 1),

encoding rules, 179
asymmetric key cryptography, 88

Index

Copyright 2001 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

attackers, 19
breaking algorithms, 30
See also hackers.

attacks
authentication, 319
bypassing OS, 6
data at rest, 318
data in transit, 317
data recovery, 7
implementation errors, 320
memory reconstruction, 9
passwords, 5

PBE, slowing down, 64
authentication, 12, 159, 324

attacks, 319
biometrics, 326
digital signatures, 298
nonrepudiation, 327
passwords, 325
SSL, algorithms, 240
user IDs, 325

Authentication Data field
AH, 212
ESP headers, 216

authentication tokens, 269
biometrics, 282
challenge/response calculators, 274
contact tokens, 275
form factors, 270
JavaCards, 279–281
memory cards, 277
multifunction smart cards, 277
one-time password generators, 272
proximity cards, 271
smart cards, 275

readers, 278
authorization requests, SET, 262
automated authentication systems,

tokens, 269

B

base CRLs, PKI, 189
BER (Basic Encoding Rules), ASN.1, 179
BFK (brute-force on the key), 64
BFP (brute-force on the password), 64

biometrics, 75–76, 282
accuracy of systems, 288
authentication, 326
comparison algorithms, 285
enrollment process, 282
facial recognition, 286
fingerprint recognition, 285
iris recognition, 286
keystroke recognition, 288
retina recognition, 286
signature recognition, 287
templates, 284
verification process, 283
voice recognition, 287

block ciphers, 38
AES, 45
Blowfish, 49
commercial DES replacements, 49
DES, 45–46
feedback modes, 40
padding, 39–40

Blowfish block cipher, 49
breaches in security, 309–310
breaking algorithms, 30, 93
brute force attacks

breaking algorithm keys, 30, 33
PBE passwords, 63, 68

BSAFE Crypto-C/J, 242
BSAFE SSL-C/J, 242
bulk data encryption, PBE, 60–61
business requirements, SET, 254–255
bypassing OS attacks, 6

C

calculating ICVs, IPSec, 213
canonicalization of MIME entities,

S/MIME, 247
cardholder certificates, SET, 258
CAs (Certificate Authorities), 172, 180

digitally signed certificates, 180
Keon certificate server, 207
self-signed certificates, 180

case studies
security authentication, 334
security implementations, 333–336

Cast block cipher, 49

Index408

TE
AM
FL
Y

Team-Fly®

CBC (Cipher Block Chaining), 40
CC security standard (Common

Criteria), 330
CCIPS (Computer Crime and Intellectual

Property Section), 321
CERT Web site (Computer Emergency Response

Team), 332
CERT/CC (Computer Emergency Response

Team/Coordination Center), 321
certificate chains

PKI, 194–195
X.509, 194

certificate directories, PKI, 181
certificate hierarchies, PKI, 192
certificate request messages, SSL, 237
certificates

digitally signed, 180
PGP, 172
PKI

ACs, 203
issuance, 184
registering, 184
revocation, 185
roaming, 201–202
suspending, 190

policies, 204
self-signed, 180
SET, 258–259
smart cards, 202
X.509, 172–174

CPS qualifiers, 176
CRLs, 175
extension fields, 175–176
OIDs, 176
TLS, 176
unique identifiers, 174
URIs, 176

certificates-only messages, S/MIME, 252
CESG (British Communications Electronic

Security Group), 95
chaining certificates. See certificate chains.
challenge/response authentication, 326
challenge/response calculators, 274
change cipher spec protocol, SSL, 231
checks, PBE, 61
ciphertext, 19

salt, 58
XOR operations, 43

clear-signed data types, S/MIME, 250
cleartext. See plaintext.
clients

certificate messages, SSL, 237
hello messages, 234
key exchange messages, 238

CMMF (Certificate Management Message
Format), 183

Cocks, Clifford, 95
collisions, message digests, 145–146
combining SAs, 219
commercial DES replacements, 49
comparing algorithms

interoperability, 122
key sizes, 119
performance, 121
security, 117–118
transmission sizes, 122

comparison algorithms, biometrics, 285
confidentiality of data, 326
connections, SSL

states, 228
terminating, 239

contact tokens, 275
content types, MIME

application/pkcs7, 252
enveloped-data, 248
multipart/signed, 250
signed-data, 249

COS (card operating system), 277
CPS qualifiers (Certification Practice

Statement), X.509 certificates, 176
CPSs (Certificate Practice

Statements), 204–205
crackers, 2

password attacks, 5
See also hackers.

CRLs (Certificate Revocation Lists)
PKI, 185

CRLs, 189
distribution points, 189
extensions, 187–188
fields, 186
indirect CRL, 189

X.509 certificates, 175
cross-certification certificates, PKI, 193
CRT (Chinese Remainder Theorem), 104
cryptanalysis, 20

409Index

crypto accelerators, 69, 73–75, 267
Crypto iButton, 281
cryptographers, 20
cryptographic accelerators, 28
cryptography, 11–12, 15–19

D

data at rest attacks, 318
data in transit attacks, 317
data

authentication, 298
encryption, 60–61
integrity checking, 12, 159, 326

message digests, 153
origin authentication, 298
recovery attacks, 7
security, 12

decryption, 17–19
PBE, 61
session keys, 55

delta CRLs, PKI, 189
deploying PKIs, 201
Dept. of Justice, CCIPS (Computer Crime and

Intellectual Property Section), 321
DER (Distinguished Encoding Rules),

ANSI.1, 179
DES (Digital Encryption Standard), block

cipher, 45–46
developers and security, 331
DH algorithm, 94, 105

discrete log problem, 108
key agreement, 108
public keys, 108
session keys, 106

dictionary attacks, 57, 63
Diffie, Whitfield, 93
digital envelopes, 91–92

key recovery, 123
S/MIME entities, 248

digital signatures, 137–139, 154, 158
ABA guidelines, 295
algorithms, 163–164

identifier bytes, 156
authentication, 298
differences from electronic

signatures, 304

differences from written document
signatures, 299

E-SIGN Act, 303, 306
key revocation, 300
legal issues, 296
legislative issues, 302–303
message integrity, 293
nonrepudiation, 296–297
padding bytes, 156
PKI, 300
private keys, 141, 154, 158
storage advantages, 294
time stamping, 301

digitally signed certificates, 180
discrete log problem, 108
distribution points, CRLs, 189
DNs (Distinguished Names), X.500, 178
DSA algorithm, 160–161
dual signatures, 257

E

E-SIGN Act (Electronic Signatures in Global and
National Commerce), 294, 303, 306

ECDH algorithm, 111–114
ECDSA algorithm, 163
El Gamal, Taher, 160
electronic signatures, differences from digital

signatures, 304
elliptic curves

algorithms, 94
points, 112

Ellis, James, 95
encryption, 16–18

AES standard, 50
algorithms, 19

block ciphers, 38–40, 45
commercial DES replacements, 49
DES, 46
ESP, 216
key tables, 38
keys, 22
RC4 stream cipher, 45
stream ciphers, 41, 44–45
Triple DES, 47
XOR operations, 42–43

crypto accelerators, 73–75

Index410

keys, 19–21
PBE, 55

bulk data, 60–61
S/MIME, 251
SSL algorithms, 240

Enigma machine, 23
enrollment process, biometrics, 282
Ensure Technologies, XyLoc proximity cards, 272
entity names, X.509, 178
entropy, PRNGs, 29
entrust PKIs, 201
enveloped-data content types, S/MIME, 248
error alert messages, SSL, 232
escrow. See key escrow.
ESP (Encapsulating Security Payload), 211

encryption algorithms, 216
header fields, 216
trailers, 217–218
transport mode, 217
tunnel mode, 218

Euler, Leonhard, 101
Euler’s phi-function, 101
Extended Euclidean Algorithm, 101
extensions

CRLs, 187–188
X.509 certificates, 175–176

F

facial recognition, biometrics, 286
factoring, 102
FAR (false acceptance rate), biometrics, 288
FBI, NIPC (National Infrastructure Protection

Center), 321
feedback modes, block ciphers, 40
Fermat test, 100
fields

AH, 212
CRLs, 186
ESP headers, 216
X.509 certificates, 173–174

files, read protection, 3
fingerprints

authentication, 325
biometric recognition, 285

Finished messages, SSL, 239

FIPS 140-1 (Federal Information-Processing
Standard), 329

floppy drive certificates, 202
foreign intelligence services, security

attacks, 316
form factors, authentication tokens, 270
formats for certificates

PGP, 172
X.509, 172–174

FRR (false rejection rate), biometrics, 288
functions of S/MIME, 245

G–H

Gemstar algorithm, 23
generating

algorithm keys, 22
key pairs, PKI, 197

Hacker Quarterly Web site, 333
hackers, 2

password attacks, 5
security attacks, 315

hactivists, security attacks, 316
handshakes, SSL, 228, 233
hard drives, permissions, 8
hardware-based key storage, 69
hash algorithms, 143
hash payloads, IKE quick mode, 226–227
headers

AH, 211
fields, 212
transport mode, 213
tunnel mode, 214

ESP fields, 216
SSL records, 231

Hellman, Martin, 93
HIPAA (Health Insurance Portability

Act), 330
historical overview of algorithms, 23–25
histories, PKI key pairs, 200
HMAC (hash message authentication

checksum), 151–153

411Index

I

IAB (Internet Architecture Board), 327
ICVs (Integrity Check Values), IPSec, 213
IDEA block cipher, 49
identification parameters, SAs, 219
IESG (Internet Engineering Steering

Group), 327
IETF (Internet Engineering Task Force),

security standards, 327
IKE (Internet Key Exchange), 210, 224

aggresive mode, 225
main mode, 224
quick mode, 226–227

implementation errors and security
breaches, 320

indirect CRLs, PKI, 189
insiders, security attacks, 315
insourced PKIs, 201
Inspector Copier, 7–8
insurance for e-commerce sites, 332
integrity services, 326
Intel RNG, 27
intelligent memory cards, 277
interoperability, algorithm

comparisons, 122
intruders

foreign intelligence servicess, 316
hackers, 315
hactivists, 316
identifying, 314
insiders, 315
terrorists, 315

IP Destination Address parameter, SAs, 219
IP packets, security, 219
IPSec (Internet Protocol Security), 209–210

AH (Authentication Header), 211
service modes, 213

ESP (Encapsulating Security
Payload), 211

encryption algorithms, 216
service modes, 217

ICVs (Integrity Check Values), 213
key management, 223–224
MTU (Maximum Transferable Unit), 223
replay attack prevention, 211
SAD (Security Association Database), 222
SAs (Security Associations), 218–219
SPD (Security Policy Database), 222

IRDA ports, smart card readers, 278
iris recognition, biometrics, 286
ISAKMP (Internet Security Association and Key

Management Protocol), 224
ISO (International Organization for

Standardization), 330
security standards, 330
smart card standards, 72, 276

ISOC (Internet Society), 327
issuer certificates, SET, 259
issuing certificates, PKI, 184
iterated tunneling, SAs, 219
ITSEC (Information Technology Security

Evaluation Criteria), 330
IVs (Initialization Vectors), CBC, 40

J–K

Java rings, 281
JavaCard Forum, 280
JavaCards, 279–281
JavaScript Source password generator, 69
KEKs (key encryption keys), 54, 85–86

mixing algorithms, 56
reasons for usage, 58

Keon certificate server, 207
Keon Web PassPort, 207
key agreement, 108
key distribution problem, 82–84

asymmetric key cryptography, 88
DH algorithm, 105, 108
digital envelopes, 91–92
ECDH algorithm, 111, 113–114
public key cryptography, 88–89
RSA algorithm, 98–99, 102–104
sharing keys in person, 83

key escrow, 125, 182
key exchange, 108
key management

IPSec, 223–224
PKI, 197

key masters, 84
key pairs, PKI, 197–200
key recovery, 125

digital envelopes, 123
servers, 182
threshold schemes, 127–130
trustees, 126

Index412

TTPs, 124
key revocation, digital signatures, 300
key size, algorithms, 32
key streams, stream ciphers, 44–45
key tables, algorithms, 38
keyed digests, HMAC, 151–153
keys

128 bit size, 33
algorithms, 22, 119

attacks, 30, 33–37
generating, 22
random number generation, 26–27

encryption, 19–21
hardware-based storage, 69
session keys, 54

keystroke recognition, biometrics, 288
known plaintext attacks, 36
Koblitz, Neal, 94
Kravitz, David, 160

L

L0phtCrack, 5
LDAP (Lightweight Directory Access

Protocol), 181
legal issues, digital signatures, 296
legislative issues, digital

signatures, 302–303
live scan biometrics, 283
losses due to security breaches, 309–310
loyalty applications, JavaCards, 279

M

magnetic stripe tokens, 275
main mode, IKE, 224
management protocols, PKI, 182–183
managing SET certificates, 259
manual key management, 224
manual public-key distribution, 171
master secrets, SSL, 240
MD2 algorithm, 148
MD5 algorithm, 148
measuring time of algorithm attack, 37
memory cards, 277
memory reconstruction attacks, 9

merchant certificates, SET, 259, 265
Merkle, Ralph, 95
message digests, 143–144, 148–149

collisions, 145–146
data integrity, 153
PRNGs, 30
randomness, 142

message integrity, digital signatures, 293
messages

S/MIME
certificates-only, 252
MIME entities, 247
signing, 249

SSL
alerts, 232
certificate request, 237
certificate verify, 238
client certificate, 237
client hello, 234
client key exchange, 238
finished, 239
server certificate, 236
server hello, 235
server key exchange, 236

Microsoft Outlook/Express, S/MIME
support, 265

Miller, Victor, 94
MIME (Multipurpose Internet Mail

Extensions), 244
application/pkcs7 content type, 252
entities, S/MIME, 247–248
enveloped-data content types, 248
multipart/signed data types, 250
signed-data content types, 249

mixing algorithms, 56
MLAs (mail list agents), 253
modular exponentiation, 108, 161
modulus, RSA public keys, 99
MTU (Maximum Transferable Unit),

IPSec, 223
multifunction smart cards, 277
multipart/signed data types, MIME, 250
multiple key pairs, PKI, 199
multiprime RSA algorithm, 104

413Index

N

names, X.509, 178
Netscape

Messenger, S/MIME support, 265
SSL, 227

seed generation, 35
TLS, 228

networks
security protocols, 209
traffic

interception, 313
spoofing, 314

Next Header field
AH, 212
ESP headers, 216

NIPC (National Infrastructure Protection
Center), 321

NIST (National Institute of Standards and
Technology), 328

algorithm standards, 50
FIPS 140-1, 329
security standards, 328

nonce exchange, IKE main mode, 224
noncontact tokens, 270–271
nonrepudiation, 159

authentication, 327
digital signatures, 296–297
services, 298

NSA (National Security Agency), 95
numbers, random generation, algorithm keys,

26–27

O

Oakley key management protocol, 224
OCF (OpenCard Framework), smart card

standards, 280
OCSP (Online Certificate Status Protocol),

190–191, 300
OIDs (Object Identifiers), X.509

certificates, 176
one way functions, public key

cryptography, 96
one-time pads, stream ciphers, 41, 44
one-time password generators, 272

operational protocols, PKI, 184
Oracle 8i, symmetric key example, 51
origins of public key cryptography, 95
OSes (operating systems), 2

bypass attacks, 6
memory reconstruction attacks, 9
permissions, 3
security, 2–3

Outlook/Outlook Express, S/MIME
support, 265

outsourcing PKIs, 201

P

Pad Length field, ESP headers, 216
padding

block ciphers, 39–40
bytes, digital signatures, 156
field, ESP headers, 216

participants, SET, 256
partitions, CRLs. See distribution points.
passwords

attacks, 5
authentication, 325
checkers, 325
cracking, 5
generators, 67
PBE

brute-force attacks, 68
guidelines on selection, 65
slowing down attacks, 64

superusers, 4
three try limitations, 66
token storage, 72–73

Payload Data field, ESP headers, 216
Payload Length field, AH, 212
payments, SET

authorization requests, 262
capture transaction, 263
gateway certificates, 259

PBE (Password-Based Encryption), 55, 90
brute-force attacks, 63
bulk data encryption, 60–61
checks, 61
decryption, 61
dictionary attacks, 63

Index414

KEKs, 55, 58
passwords

brute force attacks, 68
generators, 67
guidelines on selection, 65
slowing attacks, 64

salt, 55–57
session keys, 58

performance, algorithm comparisons, 121
permissions, 3, 8
permissive links, 96
PGP (Pretty Good Privacy), 172
pigeonhole principle, 145
PINs (Personal Identification Numbers)

authentication, 326
tokens, 71

PKCs (Public-Key Certificates), 172
PKI (Public-Key Infrastructure), 171

ACs (Attribute Certificates), 203
ARLs (Authority Revocation Lists), 190
CAs (Certificate Authorities), 180
certificates

chains, 194
cross-certification, 193
directories, 181
hierarchies, 192
issuing, 184
policies, 204
registering, 184
revoking, 185
suspending, 190

CPSs (Certificate Policy Statements),
204–205

CRLs (Certificate Revocation Lists), 185
base CRLs, 189
delta CRLs, 189
distribution points, 189
extensions, 187–188
fields, 186
indirect CRLs, 189

digital signatures, 300
insourced, 201
Keon certificate server, 207
Keon Web PassPort, 207
key management, 197
key pairs, 197

histories, 200
updating, 199

key recovery servers, 182
management protocols, 182–183
multiple key pairs, 199
OCSP, 190–191
operational protocols, 184
private keys, protecting, 197
RAs (RegistrationAuthorities), 180
roaming certificates, 201–202
trust models, 191
trust paths, 193

plaintext, 19, 43
platform support for S/MIME, 253
playback attacks, 314
points on elliptic curves, 112
pre-master secrets, SSL, 240
Prime Number Theorem, 100
prime numbers, public key

cryptography, 100
privacy, 12
private CAs, 180
private keys

digital signatures, 141, 154, 158
PKI, 197–199
protecting, 123

PRNGs (Pseudo-Random Number Generators)
entropy, 29
message digests, 30
seeds, 28

protected smart cards, 277
protecting private keys, 123, 197
protocols

AH, 211
application-layer security, 243
change cipher spec, 231
CMMF, 183
ESP, 211
IPSec, 209–210
ISAKMP, 224
LDAP, 181
network security, 209
Oakley, 224
OCSP, 190
PKI management, 182–183
PKI operations, 184
S/MIME, 244
SSL, 227, 230
transport security, 209

proximity cards, 271

415Index

public CAs, 180
public exponents, RSA public keys, 99
public key cryptography, 88–89

algorithms, breaking, 93
DH algorithm, 108
functionality, 94
one way functions, 96
origins, 95

pull model, certificate chains, 195
push model, certificate chains, 195

Q-R

quick mode, IKE, 226–227
random number generators, algorithm

keys, 26–27
randomness, message digests, 142
RAs (Registration Authorities), 180
RC2 algorithm, 49
RC4 algorithm, 24, 45, 98
RC5 algorithm, 49, 98
RDNs (Relative Distinguished Names),

X.500, 178
read protection, 3
readers

smart cards, 278
tokens, 71

receiving agents, S/MIME, 246
recognition methods in biometrics, 285–288
Record layer, SSL, 230–231
registering certificates, PKI, 184
registration requests, S/MIME, 251
relying parties, 171
replay attacks, 211, 272
repudiation, 297
Reserved field, AH, 212
responders, OCSP, PKI, 190–191
restarting SSL sessions, 240
retina recognition, biometrics, 76, 286
revocation

certificates, PKI, 185
keys, digital signatures, 300

Reynolds Data Recovery, 7
Rijndael algorithm, 50
Rivest, Ron, 94
RNGs (Random Number Generators), 27
roaming certificates, PKI, 201–202

RSA algorithm, 94, 98–99, 102–104, 160
RSA Security, Inc.

key challenges, 33
one-time password generators, 272
security implementations, 332

S

S/MIME (Secure/Multipurpose Internet Mail
Extensions), 243–244

algorithms, 245
certificates-only messages, 252
clear-signed data types, 250
encryption, 251
enveloped-data content types, 248
interoperability, 253
messages

MIME entities, 247
signing, 249

MIME entities, 247–248
MLAs (Mail List Agents), 253
receiving agents, 246
registration requests, 251
security, 245, 252
sending agents, 246
signing, 251–252

SAD (Security Association Database), IPSec, 222
safer block cipher, 49
salt, 55–58
SAs (Security Associations)

AH transport mode, 214
AH tunnel mode, 214
combining, 219
IKE, aggresive mode, 225
IP packet security, 219
IPSec, 218–219
iterated tunneling, 219
transport adjacencies, 219

scalar multiplication, ECDH
algorithm, 113–114

Schlumberger JavaCards, 279–280
Schnorr, Claus, 160
scrambling values, algorithms, 38
secret key cryptography. See symmetric keys.
secret sharing/splitting, 127
secure mailing lists, S/MIME, 252
secure payment processing, SET, 260

Index416

SecurID token, 272
security

algorithms
comparisons, 117–118
publicly known, 25

authentication, 324–326, 334
biometrics, 75–76
cryptography, 11–12
digital signature algorithms, 163–164
IETF standards, 327
implementation case studies, 333–336
insurance for e-commerce sites, 332
IP packets, SAs, 219
losses due to breaches, 309–310
nonrepudiation, 327
OSes, 3
program developers, 331
protocols, 209
useful Web sites, 332

Security Focus Web site, 332
security labels, S/MIME, 252
Security Parameters Index field

AH, 212
ESP headers, 216

Security Parameters Index parameter,
SAs, 219

Security Protocol Identifier parameter,
SAs, 219

security threats
authentication attacks, 319
data at rest, 318
data in transit, 317
foreign intelligence, 316
hackers, 315
hactivists, 316
implementation errors, 320
insiders, 315
intruders, 314
network traffic, 313–314
terrorists, 315
unauthorized access, 312
unauthorized data disclosure, 311
unauthorized data modification, 311–312

seeds
breaking algorithms, 34
Netscape SSL generation, 35
PRNGs, 28

segmented memory smart cards, 277

selectors, SPD entries, 222
self-signed certificates, 180
sending agents, S/MIME, 246
Sequence Number field

AH, 212
ESP headers, 216

server messages, 235–236
service delivery modes, ESP, 217–218
service modes, AH, 213
session keys, 54, 106

encrypting, 55
reasons for usage, 58

sessions, SSL, 228, 239–240
SET (Secure Electronic Transaction), 253

business requirements, 254–255
certificates, 258–259
dual signatures, 257
participants, 256
payments

authorization requests, 262
capture transactions, 263
secure processing, 260

purchase request transactions, 260
vendors and merchants, 265

SHA-1 algorithm, 143, 149
Shamir, Adi, 94, 130
shared secrets, SSL, 227
sharing keys in person, 83
signature recognition, biometrics, 287
signed receipts, S/MIME, 252
signed-data content types, MIME, 249
signer authentication, 298
signing S/MIME messages, 249–251
Slash Dot Web site, 333
smart cards, 69–71, 275

authentication, 326
certificates, 202
ISO standards, 72, 276
JavaCards, 279–281
memory cards, 277
multifunction, 277
private keys, 123
pros and cons, 278
readers, 278

sniffers, 313
Snoop utility, 313
SPD (Security Policy Database), IPSec, 222
spoofing network traffic, 314

417Index

SSL (Secure Sockets Layer), 35, 227–228
accelerator cards, 268
alert protocol, 232
authentication algorithms, 240
certificates

request messages, 237
verify messages, 238

change cipher spec protocol, 231
clients

certificate messages, 237
hello messages, 234
key exchange messages, 238

connection states, 228
encryption algorithms, 240
error alert messages, 232
finished messages, 239
handshakes, 228, 233
master secrets, 240
pre-master secrets, 240
RC4 algorithm, 24
record layer, 230–231
seed generation, 35
servers

certificate messages, 236
hello messages, 235
key exchange messages, 236

sessions
resuming, 240
states, 228
terminating, 239

shared secrets, 227
state machine, 228

SSO systems, authentication tokens, 270
standards for smart cards, 276
state machine, SSL, 228
storage advantages, digital signatures, 294
stored value memory cards, 277
stream ciphers

key streams, 44–45
one-time pads, 41, 44
RC4, 45

superusers, passwords, 3–4
suspending certificates, PKI, 190
symmetric algorithms

block ciphers, 38
AES, 45
commercial DES replacements, 49

DES, 45
feedback modes, 40
padding, 39–40

RC4 stream ciphers, 45
stream ciphers

key streams, 44–45
one-time pads, 41, 44

XOR operations, 42–43
symmetric keys, 33

cryptography, 15–19, 51
management, 53–55

system administrators, 3

T

TCSEC (Trusted Computer System Evaluation
Criteria), 330

templates, biometrics, 284
terminals, smart cards, 278
terminating SSL sessions, 239
terrorists, security attacks, 315
third-party PKIs, 201
threats to security

authentication, 319
data at rest, 318
data in transit, 317
foreign intelligence services, 316
hackers, 315
hactivists, 316
implementation errors, 320
insiders, 315
intruders, 314
network traffic interception, 313
spoofing network traffic, 314
terrorism, 315
unauthorized access, 312
unauthorized data disclosure, 311
unauthorized data modification, 311–312

three try password limitations, 66
threshold algorithms, 130–131
threshold schemes, key recovery, 127–130
time stamping, digital signatures, 301
TLS (Transport Layer Security), 176, 228
tokens, 69–71

authentication, 269–270, 325
noncontact tokens, 270–271

Index418

TE
AM
FL
Y

Team-Fly®

number generators, 75
password storage, 72–73
private keys, 123

traffic analysis programs, 313
trailers, ESP, 217–218
transaction processing, SET, 260
transfer encoding, MIME entities, 247
transmission sizes, algorithm

comparisons, 122
transport adjacencies, SAs, 219
Transport mode

AH, 213
ESP, 217

transport security protocols, 209
Triple DES (Triple Digital Encryption

Standard), 47
trust, PKI, 191–193
trustees, key recovery, 126
TSAs (Time-Stamping Authorities), 301
TTPs (trusted third parties)

KEKs, 85–86
key recovery, 124

Tunnel mode
AH, 214
ESP, 218

U

unauthorized access, 312
unauthorized data disclosure, 311
unauthorized data modification, 311–312
UNCITRAL (United Nations Commission on

International Trade Law), 302
unique identifiers, X.509 certificates, 174
updating key pairs, PKI, 199
URIs (Uniform Resource Identifiers), X.509

certificates, 176
USB ports, tokens, 72
user IDs, authentication, 325
user names, 3
user-input seed collectors, 28

V

vendors, SET, 265
verification process, biometrics, 283
Verisign PKIs, 201
VNC (Virtual Network Computing), 319
voice recognition, biometrics, 76, 287

W

Web sites, security strategies, 332
Weierstrass equation, 112
Weierstrass, Karl, 112
Williamson, Malcolm, 95
written signatures, differences from

digital signatures, 299

X

X.500, 178
X.509, 172

certificates
chains, 194
CPS qualifiers, 176
CRLs, 175
extension fields, 175–176
fields, 173–174
OIDs, 176
TLS, 176
unique identifiers, 174
URIs, 176

entity names, 178
X9 security standards, 328
XOR operations, 42–43
XyLoc proximity card, 272

419Index

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA
McGraw-Hill Book Company Australia Pty. Ltd.
TEL +61-2-9417-9899
FAX +61-2-9417-5687
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA
McGraw-Hill Ryerson Ltd.
TEL +905-430-5000
FAX +905-430-5020
http://www.mcgrawhill.ca

GREECE, MIDDLE EAST,
NORTHERN AFRICA
McGraw-Hill Hellas
TEL +30-1-656-0990-3-4
FAX +30-1-654-5525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores S.A. de C.V.
TEL +525-117-1583
FAX +525-117-1589
http://www.mcgraw-hill.com.mx
fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-863-1580
FAX +65-862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA
McGraw-Hill South Africa
TEL +27-11-622-7512
FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

UNITED KINGDOM & EUROPE
(Excluding Southern Europe)
McGraw-Hill Publishing Company
TEL +44-1-628-502500
FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
computing_neurope@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
Osborne/McGraw-Hill
TEL +1-510-549-6600
FAX +1-510-883-7600
http://www.osborne.com
omg_international@mcgraw-hill.com

The Company
RSA Security Inc. is the most trusted name in e-security, helping organizations build
secure, trusted foundations for e-business through its two-factor authentication, encryp-
tion and public key management systems. RSA Security has the market reach, proven
leadership and unrivaled technical and systems experience to address the changing secu-
rity needs of e-business and bring trust to the new online economy.

A truly global company with more than 8,000 customers, RSA Security is renowned for
providing technologies that help organizations conduct e-business with confidence. Head-
quartered in Bedford, Mass., and with offices around the world, RSA Security is a public
company (NASDAQ: RSAS) with 2000 revenues of $280 million.

Our Markets and Products
With the proliferation of the Internet and revolutionary new e-business practices, there

has never been a more critical need for sophisticated security technologies and solutions.
Today, as public and private networks merge and organizations increasingly expand their
businesses to the Internet, RSA Security's core offerings are continually evolving to
address the critical need for e-security. As the inventor of leading security technologies,
RSA Security is focused on three core disciplines of e-security.

Public Key Infrastructure

RSA Keon® public key infrastructure (PKI) solutions are a family of interoperable,
standards-based PKI software modules for managing digital certificates and creating an
environment for authenticated, private and legally binding electronic communications
and transactions. RSA Keon software is designed to be easy to use and interoperable with
other standards-based PKI solutions, and to feature enhanced security through its syn-
ergy with the RSA SecurID authentication and RSA BSAFE encryption product families.

The Most Trusted Name in e-Security

®

Authentication

RSA SecurID® systems are a leading solution for two-factor user authentication. RSA
SecurID software is designed to protect valuable network resources by helping to ensure
that only authorized users are granted access to e-mail, Web servers, intranets, extranets,
network operating systems and other resources. The RSA SecurID family offers a wide
range of easy-to-use authenticators, from time-synchronous tokens to smart cards, that
help to create a strong barrier against unauthorized access, helping to safeguard network
resources from potentially devastating accidental or malicious intrusion.

Encryption

RSA BSAFE® software is embedded in today's most successful Internet applications,
including Web browsers, wireless devices, commerce servers, e-mail systems and virtual
private network products. Built to provide implementations of standards such as SSL,
S/MIME, WTLS, IPSec and PKCS, RSA BSAFE products can save developers time and
risk in their development schedules, and have the security that only comes from a decade
of proven, robust performance.

Commitment to Interoperability
RSA Security's offerings represent a set of open, standards-based products and tech-

nologies that integrate easily into organizations' IT environments, with minimal modifi-
cation to existing applications and network systems. These solutions and technologies are
designed to help organizations deploy new applications securely, while maintaining cor-
porate investments in existing infrastructure. In addition, the Company maintains active,
strategic partnerships with other leading IT vendors to promote interoperability and
enhanced functionality.

Strategic Partnerships
RSA Security has built its business through its commitment to interoperability. Today,

through its various partnering programs, the Company has strategic relationships with
hundreds of industry-leading companies—including 3COM, AOL/Netscape, Ascend,
AT&T, Nortel Networks, Cisco Systems, Compaq, IBM, Oracle, Microsoft and Intel—who
are delivering integrated, RSA Security technology in more than 1,000 products.

Customers
RSA Security customers span a wide range of industries, including an extensive pres-

ence in the e-commerce, banking, government, telecommunications, aerospace, university
and healthcare arenas. Today, more that 8 million users across 7,000 organizations—
including more than half of the Fortune 100—use RSA SecurID authentication products
to protect corporate data. Additionally, more than 500 companies embed RSA BSAFE
software in some 1,000 applications, with a combined distribution of approximately one
billion units worldwide.

Worldwide Service and Support
RSA Security offers a full complement of world-class service and support offerings to

ensure the success of each customer's project or deployment through a range of ongoing
customer support and professional services including assessments, project consulting,
implementation, education and training, and developer support. RSA Security's Technical
Support organization is known for resolving requests in the shortest possible time, gain-
ing customers' confidence and exceeding expectations.

Distribution
RSA Security has established a multi-channel distribution and sales network to serve

the enterprise and data security markets. The Company sells and licenses its products
directly to end users through its direct sales force and indirectly through an extensive net-
work of OEMs, VARs and distributors. RSA Security supports its direct and indirect sales
effort through strategic marketing relationships and programs.

Global Presence
RSA Security is a truly global e-security provider with major offices in the U.S., United

Kingdom, Singapore and Tokyo, and representation in nearly 50 countries with additional
international expansion underway. The RSA SecurWorld channel program brings RSA
Security's products to value-added resellers and distributors worldwide, including loca-
tions in Europe, the Middle East, Africa, the Americas and Asia-Pacific.

For more information about RSA Security, please visit us at:
www. rsasecurity.com.

RANDALL K. NICHOLS ,
DANIEL J . RYAN, AND

JUL IE J .C .H. RYAN

I S B N : 0 - 0 7 - 2 1 2 2 8 5 - 4
$ 4 9 . 9 9

ANDREW NASH, WILL IAM

DUANE, CEL IA JOSEPH

AND DEREK BR INK

I S B N : 0 - 0 7 - 2 1 3 1 2 3 - 3
$ 4 9 . 9 9

STEVE BURNETT

AND STEPHEN PAINE

I S B N : 0 - 0 7 - 2 1 3 1 3 9 - X
$ 5 9 . 9 9

I N C L U D E S C D - RO M

CHRISTOPHER KING,
CURT IS DALTON, AND

E RTAM OSMANOGLU

I S B N : 0 - 0 7 - 2 1 3 3 8 5 - 6
$ 4 9 . 9 9

Available J une 2001

Now you can safeguard your network with proven solutions—exclusively from
RSA Press. Featuring authors who are recognized experts in network and
computer security technology, these books offer authoritative advice for
protecting your digital information and your business today—and in the future.

www.rsapress.com www.osborne.com

Available at bookstores everywhere!

CARLTON R. DAVIS

I S B N : 0 - 0 7 - 2 1 2 7 5 7 - 0
$ 4 9 . 9 9

Security Architecture:
Design, Deployment &
Applications

Also:

SOFTWARE AND INFORMATION LICENSE

The software and information on this CD-ROM (collectively referred to as the “Product”) are the property of RSA
Security Inc. (“RSA Security”) and are protected by both United States copyright law and international copyright
treaty provision. You must treat this Product just like a book, except that you may copy it into a computer to be
used and you may make archival copies of the Products for the sole purpose of backing up our software and pro-
tecting your investment from loss.

By saying “just like a book,” RSA Security means, for example, that the Product may be used by any number
of people and may be freely moved from one computer location to another, so long as there is no possibility of the
Product (or any part of the Product) being used at one location or on one computer while it is being used at an-
other. Just as a book cannot be read by two different people in two different places at the same time, neither can
the Product be used by two different people in two different places at the same time (unless, of course, RSA Secu-
rity’s rights are being violated).

RSA Security reserves the right to alter or modify the contents of the Product at any time.
This agreement is effective until terminated. The Agreement will terminate automatically without notice if you

fail to comply with any provisions of this Agreement. In the event of termination by reason of your breach, you
will destroy or erase all copies of the Product installed on any computer system or made for backup purposes and
shall expunge the Product from your data storage facilities.

LIMITED WARRANTY

RSA Security warrants the CD-ROM(s) enclosed herein to be free of defects in materials and workmanship for a
period of sixty days from the purchase date. If RSA Security receives written notification within the warranty pe-
riod of defects in materials or workmanship, and such notification is determined by RSA Security to be correct,
RSA Security will replace the defective diskette(s). Send request to:

RSA Press
RSA Security Inc.
2955 Campus Drive
Suite 400
San Mateo, CA 94403

The entire and exclusive liability and remedy for breach of this Limited Warranty shall be limited to replacement
of defective CD-ROM(s) and shall not include or extend any claim for or right to cover any other damages, including
but not limited to, loss of profit, data, or use of the software, or special, incidental, or consequential damages or
other similar claims, even if RSA Security or The McGraw-Hill Companies, Inc. (“McGraw-Hill”) has been specif-
ically advised as to the possibility of such damages. In no event will RSA Security’s or McGraw-Hill’s liability for
any damages to you or any other person ever exceed the lower of suggested list price or actual price paid for the
license to use the Product, regardless of any form of the claim.

RSA SECURITY INC. AND THE McGRAW-HILL COMPANIES, INC. SPECIFICALLY DISCLAIMS ALL
OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Specifically, nei-
ther RSA Security nor McGraw-Hill makes any representation or warranty that the Product is fit for any partic-
ular purpose and any implied warranty of merchantability is limited to the sixty day duration of the Limited War-
ranty covering the physical CD-ROM(s) only (and not the software or information) and is otherwise expressly and
specifically disclaimed.

This Limited Warranty gives you specific legal rights; you may have others which may vary from state to state.
Some states do not allow the exclusion of incidental or consequential damages, or the limitation on how long an
implied warranty lasts, so some of the above may not apply to you.

This Agreement constitutes the entire agreement between the parties relating to use of the Product. The terms
of any purchase order shall have no effect on the terms of this Agreement. Failure of RSA Security to insist at any
time on strict compliance with this Agreement shall not constitute a waiver of any rights under this Agreement.
This Agreement shall be construed and governed in accordance with the laws of Massachusetts, irrespective of its
choice of law principles. If any provision of this Agreement is held to be contrary to law, that provision will be en-
forced to the maximum extent permissible and the remaining provisions will remain in force and effect.

	sample.pdf
	sterling.com
	Welcome to Sterling Software

