
this print for content only—size & color not accurate spine = 0.675 " 288 page count

Books for professionals by professionals®

Foundations of ASP.NET AJAX
Dear Reader,

The web has evolved quite a bit from the days of large text and big blue links
over gray backgrounds 10 years ago, and most users have come to expect a
richer and more responsive user interface. Interestingly enough, the technol-
ogy pillars of what we know today as AJAX (Asynchronous JavaScript and XML)
were already in place at that time. It wasn’t until the advent of a few mainstream
applications, such as Google Maps, that people started to realize the potential
of these AJAX apps. In recent years, there has been a huge rise in the popularity
and demand for AJAX and as such, a number of frameworks have been intro-
duced to the marketplace to ease the traditionally difficult development effort
associated with creating AJAX apps.

Microsoft, for its part, introduced the ASP.NET AJAX framework, which is a
comprehensive package of technologies addressing both client-side and serv-
er-side development in addition to a suite of user interface controls (the AJAX
Control Toolkit). This brought major productivity gains to AJAX development in
the ASP.NET world. Its broad spectrum of features and controls, wide commu-
nity support, and tight integration with Visual Studio has made ASP.NET AJAX
an excellent choice for implementing AJAX applications within ASP.NET and
even more so for enhancing existing ASP.NET applications.

This book is a primer to this technology. It introduces you to ASP.NET AJAX,
explores its main features and controls, and walks you through how to build
AJAX applications quickly and easily through a series of practical examples that
demonstrate the most powerful features of the technology. If you are just start-
ing out in the world of ASP.NET AJAX, this is the book you need.

Robin Pars

Author of

ASP.NET Intranets

US $39.99

Shelve in
.NET

User level:
Beginner–Intermediate

Pars,
M

oroney, Grieb
Foundations of ASP.NET AJAX

The EXPERT’s VOIce® in .NET

Foundations of

ASP.NET
AJAX

 CYAN
  MAGENTA

 YELLO W
  BLACK
 PAN TONE 123 C

Robin Pars, Laurence Moroney,
and John Grieb

Companion
eBook

Available

THE APRESS ROADMAP

Pro AJAX and the
.NET 2.0 Platform

Pro ASP.NET 2.0
in C# or VB

Foundations of
ASP.NET AJAX

Foundations of Ajax

Beginning ASP.NET 2.0
in C# or VB

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-828-3
ISBN-10: 1-59059-828-8

9 781590 598283

53999

Build AJAX Applications in ASP.NET

Robin Pars, Laurence Moroney, and John Grieb

Foundations of ASP.NET
AJAX

828-8 FM.qxd 10/15/07 6:02 AM Page i

Foundations of ASP.NET AJAX

Copyright © 2007 by Robin Pars, Laurence Moroney, and John Grieb

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-828-3

ISBN-10 (pbk): 1-59059-828-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewers: Andy Olsen, Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick,

Jason Gilmore, Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Beth Christmas
Copy Editor: Julie McNamee
Associate Production Director: Kari Brooks-Copony
Production Editor: Janet Vail
Compositor: Gina Rexrode
Proofreader: Lisa Hamilton
Indexer: Broccoli Information Management
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

828-8 FM.qxd 10/15/07 6:02 AM Page ii

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com

I would like to dedicate this book to the memory of Steve Irwin. May the world have more
people as knowledgeable, genuine, enthusiastic, benevolent, and compassionate as him.

—Robin Pars

This book is dedicated to Rebecca, my wonderful wife and constant supporter.
I just don’t know what I would do without her.

Also to Claudia and Christopher, the greatest daughter and son a guy could ask for!

—Laurence Moroney

828-8 FM.qxd 10/15/07 6:02 AM Page iii

828-8 FM.qxd 10/15/07 6:02 AM Page iv

Contents at a Glance

About the Authors . xiii

About the Technical Reviewers . xiv

Acknowledgments . xv

Introduction . xvii

■CHAPTER 1 Introducing AJAX . 1

■CHAPTER 2 Taking AJAX to the Next Level . 17

■CHAPTER 3 The Microsoft AJAX Library: Making Client-Side
JavaScript Easier . 31

■CHAPTER 4 ASP.NET AJAX Client Libraries . 55

■CHAPTER 5 Introducing Server Controls in ASP.NET AJAX 81

■CHAPTER 6 Using Server Controls in ASP.NET AJAX . 109

■CHAPTER 7 Using the ASP.NET AJAX Control Toolkit (Part 1) 131

■CHAPTER 8 Using the ASP.NET AJAX Control Toolkit (Part 2) 165

■CHAPTER 9 AJAX-Style Mapping Using the Virtual Earth SDK. 205

■CHAPTER 10 Building a Sample Application Using ASP.NET AJAX 225

■INDEX . 257

v

828-8 FM.qxd 10/15/07 6:02 AM Page v

828-8 FM.qxd 10/15/07 6:02 AM Page vi

Contents

About the Authors . xiii

About the Technical Reviewers . xiv

Acknowledgments . xv

Introduction . xvii

■CHAPTER 1 Introducing AJAX . 1

Delving into the History of Web Application Technology 1

Thin Client Applications Save the Day . 6

AJAX Enters the Picture . 7

Using the XMLHttpRequest Object . 10

Using Visual Studio 2005 . 12

Seeing a Simple Example in Action . 12

Summary . 15

■CHAPTER 2 Taking AJAX to the Next Level . 17

Introducing ASP.NET 2.0 Server Controls . 17

Synchronous vs. Asynchronous Web Applications . 24

Introducing the ASP.NET AJAX Architecture . 25

An Overview of the AJAX Library. 26

The Microsoft AJAX Library and Web Services 27

JavaScript Object Notation (JSON) . 28

An Overview of the ASP.NET 2.0 AJAX Extensions 28

Summary . 29

vii

828-8 FM.qxd 10/15/07 6:02 AM Page vii

■CHAPTER 3 The Microsoft AJAX Library: Making Client-Side
JavaScript Easier . 31

JavaScript with the Microsoft AJAX Library . 31

Downloading and Installing ASP.NET 2.0 AJAX Extension 1.0 32

Creating Your First AJAX Application. 32

Adding a Custom JavaScript Class . 34

Using the AJAX Script Manager to Deliver Your Custom Class. 37

Coding and Running the Application. 40

Using Namespaces and Classes in JavaScript. 41

Using Inheritance in JavaScript. 43

Implementing Interfaces in JavaScript . 45

Accessing Server Resources from JavaScript . 49

Summary . 54

■CHAPTER 4 ASP.NET AJAX Client Libraries . 55

JavaScript Type Extensions . 55

Array and Boolean Extensions . 55

Date Extensions . 58

Error Extensions . 59

Number Extension . 61

Object Extension . 63

String Extension . 64

The Sys Namespace . 66

Sys.Application . 67

Sys.Component and Client Component Model . 70

Sys.UI. 71

Sys.UI.DomElement . 72

Sys.UI.DomEvent . 75

Global Shortcuts . 77

Other Commonly Used Classes in the Sys Namespace 78

Sys.Browser . 78

Sys.StringBuilder . 78

Summary . 80

■CONTENTSviii

828-8 FM.qxd 10/15/07 6:02 AM Page viii

■CHAPTER 5 Introducing Server Controls in ASP.NET AJAX 81

Using ASP.NET AJAX Server Controls in Visual Studio 2005 81

Introducing the ScriptManager Control . 83

Using the ScriptManager . 83

Programming with the ScriptManager . 84

Introducing the ScriptManagerProxy Control . 90

Introducing the UpdatePanel Control . 95

Using the UpdatePanel Control . 95

Programming with UpdatePanel . 98

Introducing the UpdateProgress Control . 102

Using the UpdateProgress Control . 102

Programming with the UpdateProgress Control 103

Introducing the Timer Control . 105

Using the Timer Control . 106

Summary . 108

■CHAPTER 6 Using Server Controls in ASP.NET AJAX 109

Using the UpdatePanel, UpdateProgress, and Timer Controls 109

Using a Task List Manager. 115

Summary . 129

■CHAPTER 7 Using the ASP.NET AJAX Control Toolkit (Part 1). 131

Installing the ASP.NET AJAX Control Toolkit. 131

The Accordion and AccordionPane Controls . 133

AlwaysVisibleControlExtender Control . 135

The AnimationExtender Control. 137

Using Fade Animation . 138

Using Length Animation . 140

Using Discrete Animation . 144

AutoCompleteExtender Control . 144

CalendarExtender Control . 147

CascadingDropDown Control. 149

CollapsiblePanelExtender Control . 154

ConfirmButtonExtender Control. 157

DragPanelExtender Control . 159

DropDownExtender Control . 161

Summary . 163

■CONTENTS ix

828-8 FM.qxd 10/15/07 6:02 AM Page ix

■CHAPTER 8 Using the ASP.NET AJAX Control Toolkit (Part 2). 165

DropShadow and RoundedCorners Extenders . 165

DropShadow Extender . 165

RoundedCorners Extender . 167

DynamicPopulate Extender . 168

FilteredTextBox Extender . 171

HoverMenu Extender. 172

MaskedEdit and MaskedEditValidator Extenders . 174

ModalPopup Extender. 177

NoBot Extender . 180

NumericUpDown Extender. 182

PasswordStrength Extender . 185

PopupControl Extender . 188

Rating Control . 190

ReorderList Control . 192

ResizableControl Extender . 195

Slider Extender. 197

SlideShow Extender . 198

TabContainer and TabPanel Control . 201

Summary . 204

■CHAPTER 9 AJAX-Style Mapping Using the Virtual Earth SDK 205

Introduction to Microsoft Virtual Earth (VE) . 205

Programming the VEMap Control . 206

Creating a Simple Map . 207

Setting Longitude and Latitude . 216

Setting the Zoom Level . 218

Choosing a Map Type . 219

Specific or Relative Panning . 220

Using Pushpins. 223

Summary . 224

■CONTENTSx

828-8 FM.qxd 10/15/07 6:02 AM Page x

■CHAPTER 10 Building a Sample Application Using ASP.NET AJAX 225

Understanding the Application Architecture . 226

Creating the Application . 229

Creating Basic Company and Quote Information 232

Creating the Price History Pane. 238

Creating the Charts & Analytics Pane. 241

Applying ASP.NET AJAX. 253

Summary . 255

■INDEX . 257

■CONTENTS xi

828-8 FM.qxd 10/15/07 6:02 AM Page xi

828-8 FM.qxd 10/15/07 6:02 AM Page xii

About the Authors

■ROBIN PARS has more than 12 years of IT development experience as
a developer and architect. He has been working with ASP.NET since
the initial release of the ASP+ runtime in the summer of 2000. Robin
holds a B.Sc. degree in Computer Science from the University of Cali-
fornia along with nearly a dozen IT certifications. He has also been a
coauthor or a contributing author to seven other technical books.

■LAURENCE MORONEY is a technology evangelist at Microsoft, where he
specializes in the technologies for the next generation of the Web. He
has been amazed at how things have progressed since Foundations of
Atlas (the predecessor of this book) was published. It is a better time
than ever to be into technology, and the power that we have at our
fingertips with technologies such at ASP.NET AJAX, Silverlight, and
.NET 3.x is making work fun again! Laurence’s blog is at
http://blogs.msdn.com/webnext.

■JOHN GRIEB lives on Long Island, New York, and works for Reuters as a technical special-
ist. He is currently the lead developer of a project to migrate Reuters Messaging to
Microsoft Live Communication Server 2005. Prior to that, he spent several years in
Reuter’s Microsoft R&D Group and Innovation Lab, gaining experience in a broad range
of cutting-edge Microsoft technologies by participating in many of Microsoft’s beta pro-
grams and developing prototypes demonstrating how they could be applied to Reuter’s
own products and services.

xiii

828-8 FM.qxd 10/15/07 6:02 AM Page xiii

http://blogs.msdn.com/webnext

■ANDY OLSEN is a freelance developer and consultant based in the UK.
Andy has been working with .NET since Beta 1 days and has co-
authored and reviewed several books for Apress covering C#, Visual
Basic, ASP.NET, and other topics. Andy is a keen football and rugby
fan and enjoys running and skiing (badly). Andy lives by the seaside
in Swansea with his wife Jayne and children Emily and Thomas, who
have just discovered the thrills of surfing and look much cooler than
he ever will!

■FABIO CLAUDIO FERRACCHIATI is a senior consultant and a senior analyst/developer using
Microsoft technologies. He works for Brain Force (www.brainforce.com) in its Italian
branch (www.brainforce.it). He is a Microsoft Certified Solution Developer for .NET, a
Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional,
and a prolific author and technical reviewer. Over the past 10 years, he’s written articles
for Italian and international magazines and coauthored more than 10 books on a variety
of computer topics. You can read his LINQ blog at www.ferracchiati.com.

xiv

About the Technical Reviewers

828-8 FM.qxd 10/15/07 6:02 AM Page xiv

http://www.brainforce.com
http://www.brainforce.it
http://www.ferracchiati.com
http://www.brainforce.it

Acknowledgments

First and foremost, thanks to everyone at Apress who helped make this book possible
including Ewan Buckingham, Julie McNamee, and Janet Vail. I especially would like to
thank the wonderful Beth Christmas for her continuing patience and understanding. I’d
also like to extend a big thank you to Andy Olson for his excellent technical reviews done
with great diligence and attention to detail.

Above all, I would like to thank Ted Kasten and Katja Svetina for their patience and
incessant warm support throughout this long and arduous project.

Robin Pars

xv

828-8 FM.qxd 10/15/07 6:02 AM Page xv

828-8 FM.qxd 10/15/07 6:02 AM Page xvi

Introduction

AJAX is fast becoming a de facto standard for developing responsive and rich web
applications. This evolutionary step in the user experience is being used in more and
more web applications from Outlook Web Access to Google maps and beyond.

But how do you write AJAX applications? Not too long ago, you had to be a JavaScript
expert and use tools that are not as sophisticated as those used in standard ASP.NET
development. As such, it had been difficult and time-consuming to develop, debug, and
maintain AJAX applications despite their innate user friendliness. However, as the popu-
larity and use of AJAX web applications rose, so did a number of frameworks designed to
ease AJAX development by providing more out-of-the-box functionality. A few of those
packages had been somewhat geared toward developers working with ASP.NET.

After a long beta period, in early 2007, Microsoft officially released the ASP.NET AJAX
Extensions, which include a set of client- and server-side controls and functionality
leveraging some of the existing technologies in ASP.NET. This release also included the
ASP.NET AJAX Toolkit, which contains a set of control extenders that offer enhanced UI
effects and built-in AJAX capabilities that can be used on a page with very little develop-
ment effort. With this release, Microsoft brought about major productivity leaps to AJAX
development in the world of ASP.NET.

With ASP.NET AJAX, you can easily convert your existing ASP.NET applications to
AJAX applications, and you can add sophisticated user interface elements such as drag
and drop, networking, and browser compatibility layers, with simple declarative pro-
gramming (or, if you prefer to use JavaScript, you can do that too).

This book is a primer on this technology. It introduces you to ASP.NET AJAX, explores
some of the main features and controls, and takes you into how to build AJAX applica-
tions quickly and simply, taking advantage of the IDE productivity offered by Visual
Studio.

It’s going to be a fun ride, and by the end of it, you’ll be an expert in Web 2.0 and
hungry to start developing for it.

Who This Book Is For
This book is for anyone interested in developing next-generation web application inter-
faces that make the most of AJAX-style asynchronous functionality. Anyone who has ever
coded a web page will understand the latency problems associated with postbacks and

xvii

828-8 FM.qxd 10/15/07 6:02 AM Page xvii

7a2857917d2aafe8c018c4c9b0cd987b

maintaining state and will be able to gain valuable new tools for their programming
arsenal by reading this book.

Some knowledge and prior experience with ASP.NET, C#, or Visual Basic .NET will be
helpful to properly understand and follow along with this book.

Prerequisites
You’ll need Visual Studio 2005 or Visual Studio 2008; any edition is fine. If you are using
Visual Studio 2005, you will also need the ASP.NET AJAX Extensions and the ASP.NET
AJAX Toolkit, which can be downloaded from http://ajax.asp.net.

■INTRODUCTIONxviii

828-8 FM.qxd 10/15/07 6:02 AM Page xviii

http://ajax.asp.net

Introducing AJAX

Welcome to Foundations of ASP.NET AJAX. This book is intended to get you up and
running with the new framework from Microsoft that allows you to build Web 2.0 appli-
cations that implement AJAX functionality. If you’ve been working in the field of web
technology, you know AJAX is hard to avoid—and even harder to implement. Microsoft
has thrown its hat into the AJAX arena by doing what it does best—giving you, the devel-
oper, a framework and the tools that allow you to build highly interactive and
personalized solutions that satisfy your web-based business requirements and users’
experiences more quickly and easily than previously possible.

This chapter brings you up-to-date on web application technology with a brief
overview of computing history from its huge mainframe origins to today’s powerful desk-
top PCs and the global reach provided by the World Wide Web. It’s the beginning of what
I hope will be an enjoyable and informative ride.

Delving into the History of Web Application
Technology
After the popularity of office productivity applications exploded, and as people began
using these applications daily, they required even faster and more sophisticated plat-
forms, which caused the client to continue to evolve exponentially.

It’s important to note that the more sophisticated applications were disconnected
applications. Office productivity suites, desktop-publishing applications, games, and
the like were all distributed, installed, and run on the client via a fixed medium such as
a floppy disk or CD-ROM. In other words, they weren’t connected in any way.

The other breed of application, which was evolving much more slowly, was the
connected application, where a graphical front end wrapped a basic, text-based communica-
tion with a back-end server for online applications such as e-mail. CompuServe was one of
the largest online providers, and despite the innovative abstraction of its simple back end to
make for a more user-centric, graphical experience along the lines of the heavy desktop
applications, its underlying old-school model was still apparent. Remember the old Go com-
mands? Despite the buttons on the screen that allowed a user to enter communities, these
simply issued a Go <communityname> command behind the scenes on your behalf. 1

C H A P T E R 1

828-8 CH01.qxd 8/30/07 7:24 PM Page 1

Although this approach was excellent and provided a rich online experience, it had
to be written and maintained specifically for each platform; so for a multiplatform expe-
rience, the vendor had to write a client application for Windows, Unix, Apple, and all
other operating systems and variants.

In the early 1990s, however, a huge innovation happened: the web browser.
This innovation began the slow merger of these two application types (connected

and disconnected)—a merger that still continues today. We all know the web browser by
now, and it is arguably the most ubiquitous application used on modern computers,
displacing solitaire and the word processor for this storied achievement!

But the web browser ultimately became much more than just a new means for
abstracting the textual nature of client/server network communication. It became an
abstraction on top of the operating system on which applications could be written and
executed (see Figure 1-1). This was, and is, important. As long as applications are written
to the specification defined by that abstraction, they should be able to run anywhere
without further intervention or installation on behalf of the application developer. Of
course, the browser had to be present on the system, but the value proposition of having
a web browser available to the operating system was extremely important and ultimately
launched many well-known legal battles.

Figure 1-1. Web browser–based request/response architecture

CHAPTER 1 ■ INTRODUCING AJAX2

828-8 CH01.qxd 8/30/07 7:24 PM Page 2

Probably, the problem with this abstraction was that it was relatively simple and not
originally designed or implemented for anything more complex than laying out and for-
matting text and graphics. I am, of course, referring to Hypertext Markup Language
(HTML). This specification, implemented by a browser, meant that simple text could be
placed on a web server, downloaded from a server, interpreted by a browser, and laid out
in a far more pleasing way than simple green-on-black on a page, giving the user a better
experience. More importantly, however, it could generate a whole new breed of applica-
tion developers; all a developer had to do to create an online, connected application with
a graphical experience was to generate it as HTML, and the browser would do the rest.
You wouldn’t need the resources of a CompuServe or an America Online to build an
application that rendered the text for you! All you had to do was generate HTML, either
by coding it directly or writing a server-side application (called Common Gateway Inter-
face, usually written in the C/C++ language) that would generate it for you. Although the
Internet had been around for a long time, it was just now starting to come of age.

And guess what happened? The cycle began again.
Everybody jumped on the browser bandwagon, and Common Gateway Interface (CGI)

applications, running on a server and delivering content to browsers, were hot. The user
experience, with the only interaction being postbacks to the server (similar to computer ter-
minals, only prettier), soon became too limiting due to server responsiveness, huge network
loads, and so on, and new technologies began to emerge to improve the user experience.

Enter Java and the applet. Java applications run on top of the Java Virtual Machine
(JVM). A Java applet is a special kind of Java application that runs in a browser; the
browser provides the JVM for the applet. In other words, the Java applet runs in a virtual
machine (the JVM) on top of another virtual machine (the browser) on top of a virtual
machine (the operating system) on top of a real machine (the underlying hardware). This
provided a greater abstraction and introduced a new platform that developers could code
to and have even richer applications running within the browser. This was important
because it increased complex client-side functionality implemented in a modern, OO
(object-oriented) programming language. Enhanced graphical operations (e.g., graphs),
client-side processing of business rules possibly, multithreading, and so on used the
same simple transport mechanisms of the Internet, but again without requiring the
resources of a huge company writing their own GUI platform on which to do it. Probably,
Java applets suffered from constraints; namely, to achieve a cross-platform experience,
developers had to follow a lowest common denominator approach. The clearest example
of this was in its support for the mouse. Apple computers supported one button, the
Microsoft Windows operating system supported two, and many Unix platforms sup-
ported three. As such, Java applets could support only one button, and many Unix users
found themselves two buttons short!

The Java applets run in a security sandbox and therefore cannot access local
resources such as the file system or databases, and they cannot create new outbound
connections to new URLs on the server (because this could be potentially dangerous).
This lack of access to corporate resources led to Java spreading to the server side: server-
side Java applications called servlets generate HTML pages dynamically and have access

CHAPTER 1 ■ INTRODUCING AJAX 3

828-8 CH01.qxd 8/30/07 7:24 PM Page 3

to enterprise resources (such as corporate databases, message queues, user information,
etc.) because the servlet runs in a more secure server-side environment.

The JVM and language evolved to become a server-side implementation and a great
replacement for CGI applications on the server. In addition to this, web browsers contin-
ued to evolve and became even more flexible with the introduction of the Document
Object Model (DOM) and Dynamic HTML (DHTML) support. Scripting support was
added to the browser with the development of JavaScript (unrelated to Java despite its
name) and VBScript. To handle these scripting languages, interpreters were plugged into
the browser. An extensible browser architecture proved to be a powerful feature.

Thanks to extensibility, applications such as Macromedia Flash added a new virtual
machine on top of the browser, allowing for even more flexible and intense applications.
The extensible browser then brought about ActiveX technology on the Windows plat-
form, whereby Windows application functionality could be run within the browser when
using Microsoft browsers (or alternative ones with a plug-in that supported ActiveX).
This powerful solution enabled native functionality to be accessible from networked
applications (see Figure 1-2). This got around the restrictions imposed by the security
sandbox and lowest common denominator approach of the JVM, but ultimately, this
led to problems in the same vein as distributing client-only applications; specifically,
a heavy configuration of the desktop, was necessary to get them to work. Although this
configuration could be automated to a certain degree, it resulted in two show-stopping
points for many.

Figure 1-2. Sophisticated browser architecture

CHAPTER 1 ■ INTRODUCING AJAX4

828-8 CH01.qxd 8/30/07 7:24 PM Page 4

First, it didn’t always work, as the nature of the configuration, changing the Windows
registry, often failed—or worse, broke other applications. ActiveX controls were rarely
self-contained and usually installed runtime support files. Different versions of these
support files could easily be installed on top of each other—a common occurrence
leading to broken applications (called DLL Hell).

The second problem was security. A user’s computer, when connected to the Inter-
net, could effectively allow code, written by anybody, to run. The ActiveX technology was
fully native, not restricted by the Java or HTML sandboxes (more about these in a
moment); therefore, users could innocently go to a web page that downloaded an ActiveX
control and wrought havoc or stole vital information from their systems. As such, many
users refused to use them, and many corporate administrators even disallowed them
from use within the enterprise. The virtual nature of Java and HTML—where applications
and pages were coded to work on a specific virtual machine—offered better security;
these machines couldn’t do anything malicious and, therefore, applications written to
run on them couldn’t either. Users were effectively safe, although limited in the scope of
what they could do.

At the end of the 1990s, Microsoft unveiled the successor to ActiveX (among others)
in its .NET Framework. This framework would form Microsoft’s strategic positioning for
many years to come. Like Java, it provided a virtual machine (the Common Language
Runtime [CLR]) on which applications would run. These applications could do only what
the CLR allowed and were called managed applications. The .NET Framework was much
more sophisticated than the JVM, allowing for desktop and server-side web applications
with differing levels of functionality (depending on which was used). This was part of
“managing” the code. With the .NET Framework came a new language, C#, but this wasn’t
the only language that could be used with .NET because it was a multilanguage, single-
runtime platform that provided great flexibility.

The .NET Framework was revolutionary because it united the client-application
experience and connected-application experience with a common runtime that ActiveX
had tried but ultimately failed to accomplish. Because the same platform was used to
write both types of applications, the result was that the user experience would be similar
across both (see Figure 1-3). Coupled with the emergence of Extensible Markup Lan-
guage (XML), a language similar to HTML but specialized for handling data instead of
presentation, web application development was finally coming of age.

CHAPTER 1 ■ INTRODUCING AJAX 5

828-8 CH01.qxd 8/30/07 7:24 PM Page 5

Figure 1-3. The .NET Framework provides consistent browser, desktop, and server
application programming interfaces (APIs).

Thus, the pendulum has swung back toward the thin client/fat server approach.
Ironically, the thin client is probably fatter than the original servers because it’s an
operating system that can support a browser that is extended to support XML (through
parsers), scripting (through interpreters), and other plug-ins, as well as Java and .NET
virtual machines! With all these runtime elements available to developers and a
consistent server-side API (through the .NET Framework or server-side Java), rich,
high-performing applications built using the client/server model are now possible.

Thin Client Applications Save the Day
In the summer of 2001, I had my first “wow” experience with the power of what could be
done with a browser-based interface using scripting, DHTML, and asynchronous XML.
I was working for a product development group in a large financial services company in
New York and was invited by one of their Chief Technical Office (CTO) teams to take a
look at their new prototype of a zero-footprint technology for delivering financial infor-
mation, both streaming and static. They claimed they could stream news, quotes, and
charts to a browser with no installation necessary at the desktop, and they could do it in
such a manner that it met all the requirements of a typical client. In those days, the
biggest support problems were in the installation, maintenance, and support of heavy
Component Object Model (COM) desktop applications, and this would wipe them all
out in a single blow.

Naturally I was skeptical, but I went to see it anyway. It was a prototype, but it
worked. And it largely preserved the user experience that you’d expect from a heavier
application with drag-and-drop functionality; streaming updates to news, quotes, and
charts; and advanced visualization of data. If anything, it was almost superior to the
heavy desktops we were using!

CHAPTER 1 ■ INTRODUCING AJAX6

828-8 CH01.qxd 8/30/07 7:24 PM Page 6

And, it was all built in DHTML, JavaScript, DHTML behaviors, and a lot of server-side
functionality using Microsoft-based server products. It was pretty revolutionary.

In fact, it was too revolutionary—and it was too hard for management to take a risk
on it because it was so beyond their understanding of how applications should work and
how the market would accept it. (To be fair, part of their decision was based on my report
of concerns about how well the streaming part would scale, but that was nothing that
couldn’t be fixed!)

But then something terrible happened: September 11, 2001. On that fateful day, a
group of individuals turned airliners into missiles, crashing into the World Trade Center
and the Pentagon, and killing thousands of people. Part of all this destruction was the
loss of many data distribution centers that our company ran for the Wall Street commu-
nity. With the country having a “get-up-and-running” attitude and wanting the attack to
have as little impact on day-to-day affairs as possible, the pressure was on our company
to start providing news, quotes, charts, and all the other information that traders needed
to get the stock market up and running. The effort to build new data centers and switch
the Wall Street users over to them by having staff reconfigure each desktop one by one
would take weeks.

The CTO group, with its zero-footprint implementation, ran a T3 line to the
machines in the lab that was hosting the application, opening them to the Internet; set
up a Domain Name System (DNS) server; and were off and running in a matter of hours.
Any trader—from anywhere—could open Internet Explorer, point it at a URL, and start
working…no technical expertise required!

Thanks to an innovative use of technology, a business need was met—and that is
what our business is all about. Thanks to this experience, and what that group did, I was
hooked. I realized the future again belonged to the thin client, and massive opportunities
existed for developers and companies that could successfully exploit it.

AJAX Enters the Picture
AJAX, which stands for Asynchronous JavaScript and XML or Asynchronous Java and
XML (depending on who you ask), is a technique that has received a lot of attention
recently because it has been used with great success by companies such as Amazon and
Google. The key word here is asynchronous because, despite all the great technologies
available in the browser for delivering and running applications, the ultimate model of
the browser is still the synchronous request/response model. This means that when an
operation occurs in the web page, the browser sends a request to the server waiting for its
response. For example, clicking the Checkout button within an HTML page of an e-com-
merce application consists of calling the web server to process the order and waiting for
its response. As such, duplicating the quick refresh and frequent updates provided by
desktop applications is hard to achieve. The typical web application involves a refresh
cycle where a postback is sent to the server, and the response from the server is re-ren-
dered. In other words, the server returns a complete page of HTML to be rendered by the

CHAPTER 1 ■ INTRODUCING AJAX 7

828-8 CH01.qxd 8/30/07 7:24 PM Page 7

browser, which looks kind of clunky compared to desktop apps. This is a drawback to this
type of architecture because the round-trip to and from the server is expensive in user
time and bandwidth cost, particularly for applications that require intensive updates.

What is interesting about the AJAX approach is that there is really nothing new about
it. The core technology—the XMLHttpRequest object—has been around since 1999 with
Internet Explorer, when it was implemented as an ActiveX plug-in. This is a standard
JavaScript object recognized by contemporary browsers, which provides the asynchro-
nous postback capabilities upon which AJAX applications rely. More recently, it has been
added to the Mozilla Firefox, Opera, and Safari browsers, increasing its ubiquity, and has
been covered in a World Wide Web Consortium (W3C) specification (DOM Load and
Save). With the high popularity of web applications that use the XMLHttpRequest object,
such as Google Local, Flickr, and Amazon A9, it is fast becoming a de facto standard.

The nice part about the XMLHttpRequest object is that it doesn’t require any propri-
etary or additional software or hardware to enable richer applications. The functionality
is built right into the browser. As such, it is server agnostic. Except for needing to make
some minor changes to your browser security settings, you can use it straightaway, lever-
aging coding styles and languages you already know.

To see an example of how it works, refer to Google Local (see Figure 1-4). As you use
the mouse to drag the map around the screen, the sections of the map that were previ-
ously hidden come into view quickly; this is because they were cached on your initial
viewing of the map. Now, as you are looking at a new section (by dragging the mouse),
the sections bordering the current one are downloading in the background, as are the
relevant satellite photographs for the section of map you are viewing.

CHAPTER 1 ■ INTRODUCING AJAX8

828-8 CH01.qxd 8/30/07 7:24 PM Page 8

Figure 1-4. Google Local uses AJAX extensively.

This background downloading, using the XMLHttpRequest object, makes using Google
Local such a smooth and rewarding experience. Remember, nothing is new here; it’s just
that having the XMLHttpRequest object built into the browser that can do this asynchro-
nously makes it possible to develop applications like this.

■Note For full details on how to develop in AJAX, check out Foundations of AJAX (Apress, 2005).

CHAPTER 1 ■ INTRODUCING AJAX 9

828-8 CH01.qxd 8/30/07 7:24 PM Page 9

You will be looking at AJAX from a high level in this book and delving more deeply
into how Microsoft ASP.NET AJAX will allow you to quickly and easily build AJAX-enabled
applications.

Using the XMLHttpRequest Object
As mentioned, the XMLHttpRequest object is the heart of AJAX. This object sends requests
to the server and processes the responses from it. In versions of Internet Explorer prior
to IE7, it is implemented using ActiveX, whereas in other browsers, such as Mozilla
Firefox, Safari, Opera, and Internet Explorer 7, it is a native JavaScript object. Unfortu-
nately, because of these differences, you need to write JavaScript code that inspects the
browser type and creates an instance of it using the correct technology.

Thankfully, this process is a little simpler than the spaghetti code you may remember
having to write when using JavaScript functions that heavily used DOM, which had to
work across browsers:

var xmlHttp;

function createXMLHttpRequest()

{

if (window.ActiveXObject)

{

xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");

}

else if (window.XMLHttpRequest)

{

xmlHttp = new XMLHttpRequest();

}

}

In this case, the code is simple. If the browser doesn’t support ActiveX objects, the
window.ActiveXObject property will be null, and, therefore, the xmlHttp variable will be set
to a new instance of the native JavaScript XMLHttpRequest object; otherwise, a new
instance of the Microsoft.XMLHTTP ActiveX Object will be created.

Now that you have an XMLHttpRequest object at your beck and call, you can start
playing with its methods and properties. Some of the more common methods you can
use are discussed in the next few paragraphs.

The open method initializes your request by setting up the call to your server. It takes
two required arguments (the Hypertext Transfer Protocol [HTTP] command such as GET,
POST, or PUT, and the URL of the resource you are calling) and three optional arguments
(a boolean indicating whether you want the call to be asynchronous, which defaults to
true, and strings for the username and password if required by the server for security).
It returns void.

CHAPTER 1 ■ INTRODUCING AJAX10

828-8 CH01.qxd 8/30/07 7:24 PM Page 10

xmlHttp.open("GET" , "theURL" , true , "MyUserName" , "MyPassword");

The send method issues the request to the server. It is passed a single parameter con-
taining the relevant content. Had the original request been declared as asynchronous
(using the boolean flag mentioned earlier), the method would immediately return; other-
wise, this method would block until the synchronous response was received. The content
parameter (which is optional) can be a DOM object, an input stream, or a string.

xmlHttp.send("Hello Server");

The setRequestHeader method takes two parameters: a string for the header and a
string for the value. It sets the specified HTTP header value with the supplied string.

xmlHttp.setRequestHeader("Referrer","AGreatBook");

The getAllResponseHeaders method returns a string containing the complete set of
response headers from the XMLHttpRequest object after the HTTP response has come back
and containing their associated values. Examples of HTTP headers are “Content-Length”
and “Date”. This is a complement to the getResponseHeader method, which takes a param-
eter representing the name of the specific header you are interested in. The method
returns the value of the header as a string.

var strCL;

strCL = xmlHttp.getResponseHeader("Content-Length");

In addition to supporting these methods, the XMLHttpRequest object supports a num-
ber of properties, as listed in Table 1-1.

Table 1-1. The Standard Set of Properties for XMLHttpRequest

Property Description

onreadystatechange Specifies the name of the JavaScript function that the XMLHttpRequest
object should call whenever the state of the XMLHttpRequest object
changes

readyState The current state of the request (0=uninitialized, 1=loading, 2=loaded,
3=interactive, and 4=complete)

responseText The response from the server as a string

responseXML The response from the server as XML

status The HTTP status code returned by the server (for example, “404” for
Not Found or “200” for OK)

statusText The text version of the HTTP status code (for example, “Not Found”)

CHAPTER 1 ■ INTRODUCING AJAX 11

828-8 CH01.qxd 8/30/07 7:24 PM Page 11

Using Visual Studio 2005
Throughout this book, you’ll be using Visual Studio 2005 to develop AJAX applications
using ASP.NET AJAX. Several editions of this application are available to satisfy different
needs.

You can download the free edition, Visual Web Developer 2005 Express, from the
Microsoft Developer Network (http://msdn.microsoft.com/vstudio/express/vwd). From
this page, you can also navigate to the downloads for the other Express editions, includ-
ing ones for C#, VB .NET, Visual J#, and C++ development.

You can use any edition of Visual Studio 2005, including Standard, Professional, or
one of the flavors of Team Edition, to build and run the samples included in this book.

If you are following along with the figures in this book, you’ll see they have been
captured on a development system that uses the Visual Studio 2005 Team Edition for
Software Developers.

Seeing a Simple Example in Action

Understanding how this technology all fits together is best shown using a simple exam-
ple. In this case, suppose you have a client application that uses JavaScript and an
XMLHttpRequest object to issue a server request to perform the simple addition of two
integers. As the user types the values into the text boxes on the client, the page calls the
server to have it add the two values and return a result, which it displays in a third text
box. You can see the application in action in Figure 1-5.

Figure 1-5. The AJAX addition client

CHAPTER 1 ■ INTRODUCING AJAX12

828-8 CH01.qxd 8/30/07 7:24 PM Page 12

http://msdn.microsoft.com/vstudio/express/vwd

To create this client, start Visual Studio 2005, create a new web site, edit the page
Default.aspx, and set its content to be the same as Listing 1-1.

Listing 1-1. Creating Your First AJAX Application

<%@ Page language="C#" CodeFile="Default.aspx.cs" AutoEventWireup="false"

Inherits="_Default" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<HTML>

<HEAD>

<title>WebForm1</title>

<script language="javascript">

var xmlHttp;

function createXMLHttpRequest() {

if (window.ActiveXObject) {

xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");

}

else if (window.XMLHttpRequest) {

xmlHttp = new XMLHttpRequest();

}

}

function updateTotal() {

frm = document.forms[0];

url="Default2.aspx?A=" + frm.elements['A'].value +

"&B=" + frm.elements['B'].value;

xmlHttp.open("GET",url,true);

xmlHttp.onreadystatechange=doUpdate;

xmlHttp.send();

return false;

}

function doUpdate() {

if (xmlHttp.readyState==4 && xmlHttp.status == 200) {

document.forms[0].elements['TOT'].value=xmlHttp.responseText;

}

}

</script>

</HEAD>

CHAPTER 1 ■ INTRODUCING AJAX 13

828-8 CH01.qxd 8/30/07 7:24 PM Page 13

<body onload="createXMLHttpRequest();">

<form>

<TABLE height="143" cellSpacing="0" cellPadding="0"

width="300" border="0" >

<TR vAlign="top">

<TD height="32">First Value</TD>

<TD><INPUT type="text" id="A" value="0"

onkeyup="updateTotal();"></TD>

</TR>

<TR vAlign="top">

<TD height="32">Second Value</TD>

<TD><INPUT type="text" id="B" value="0"

onkeyup="updateTotal();"></TD>

</TR>

<TR vAlign="top">

<TD height="23">Returned Total</TD>

<TD><INPUT type="text" id="TOT" value="0"></TD>

</TR>

</TABLE>

</form>

</body>

</HTML>

When the web page loads, the createXMLHttpRequest function is called (as a result of
setting the onload event handler in the body tag) to create the XMLHttpRequest object. After
that, whenever a key is pressed in the A or B text boxes, the updateTotal function is called
(by trapping the onkeyup event on the two text boxes).

The updateTotal function takes the values of A and B from their form elements and
uses them to build the URL to Default2.aspx, which will look something like
Default2.aspx?A=8&B=3. It then calls the open method on XMLHttpRequest, passing it this
URL and indicating that this will be an asynchronous process. Next, it specifies the
doUpdate function to handle the readystate changes on the XMLHttpRequest object.

To get this application to work, add a new C# web form to the project, and leave the
default name of Default2.aspx. In the page designer, delete all of the HTML so that the
page contains just the ASPX Page directive:

<%@ Page language="C#"

CodeFile=”Default2.aspx.cs”

AutoEventWireup="true"

Inherits="Default2" %>

CHAPTER 1 ■ INTRODUCING AJAX14

828-8 CH01.qxd 8/30/07 7:24 PM Page 14

Then add the following code to the C# code file’s Page_Load method (you can add it by
double-clicking the Default.aspx page when it is shown in the design window of Visual
Studio 2005):

int a = 0;

int b = 0;

if (Request.QueryString["A"] != null)

{

a = Convert.ToInt16(Request.QueryString["A"].ToString());

}

if (Request.QueryString["B"] != null)

{

b = Convert.ToInt16(Request.QueryString["B"].ToString());

}

Response.Write(a+b);

This handles the asynchronous request from the page Default.aspx, getting the
values of A and B, and writing the sum to the response buffer. When the XMLHttpRequest
object receives the response from Default2.aspx, it calls the doUpdate function, which
checks to see if the value of the readyState property is equal to “4,” indicating that the
request has been completed. If the value is equal to “4,” the function updates the
INPUT field named TOT with the value returned by Default2.aspx, which is stored in the
XMLHttpRequest object’s responseText property.

Summary
In this chapter, you were given a brief history of the methodologies of building user
interfaces that send data to servers for processing and the constantly swinging pendulum
from thin client to fat client. You were brought up-to-date on what the newest trend in
this development is—web-based thin clients with rich functionality—thanks to the asyn-
chrony delivered by the XMLHttpRequest object, which is the core of AJAX. You then built a
simple example that demonstrated how it works. This example was very basic and barely
scratched the surface of what can be done with AJAX. However, it demonstrated one of
the drawbacks of using this methodology; namely, that it requires a lot of scripting.
JavaScript, although powerful, is tedious to write and onerous to debug and manage
when compared to languages such as C#, VB .NET, and Java. As such, the application
benefits you receive by using an AJAX approach may be more than offset by the applica-
tion development getting bogged down in thousands (or more) lines of JavaScript.

CHAPTER 1 ■ INTRODUCING AJAX 15

828-8 CH01.qxd 8/30/07 7:24 PM Page 15

With this problem in mind, Microsoft integrated the power of AJAX with the
productivity of ASP.NET 2.0 and Visual Studio 2005 to develop ASP.NET AJAX.
In the next chapter, you’ll be introduced to the wonderful world of ASP.NET AJAX. You will
look at its architecture, learn how it allows you to use Visual Studio 2005 and ASP.NET 2.0
server controls to generate client-side code, and see how this can give you the best of
AJAX while avoiding the worst of it.

CHAPTER 1 ■ INTRODUCING AJAX16

828-8 CH01.qxd 8/30/07 7:24 PM Page 16

Taking AJAX to the Next Level

In Chapter 1, you were introduced to the basics of how AJAX works and saw a code
example on how AJAX can be used to build a web page that responds to user input asyn-
chronously. In this chapter, you will be introduced to Microsoft’s ASP.NET AJAX, which
allows you to build AJAX applications more easily and manage their development,
deployment, and debugging using Visual Studio 2005.

ASP.NET AJAX consists of two different pieces. The first is a set of script files, collec-
tively named the Microsoft AJAX Library, which gets deployed to the client. These files
implement a number of JavaScript classes that provide common functions and an object-
oriented programming framework.

The other piece of ASP.NET AJAX is the ASP.NET 2.0 AJAX Extensions, which includes
a set of server controls that allows you to add AJAX functionality to a web page by simply
dragging and dropping controls onto the Visual Studio 2005 page designer. Through the
use of these server controls, developers can deliver AJAX functionality to the client with-
out doing much hand-coding because the server-side ASP.NET controls generate the
required HTML and JavaScript. This feature is one of the fundamental underpinnings of
ASP.NET and is essential to understanding the AJAX Extensions.

In this chapter, you will first be introduced to how ASP.NET server controls work.
After that, you’ll be given an overview of the ASP.NET AJAX architecture, taken on a tour
of the AJAX Library, and shown how the AJAX Extensions integrate with ASP.NET 2.0.

Introducing ASP.NET 2.0 Server Controls
Understanding the ASP.NET 2.0 AJAX Extensions and how they are architected first
requires an understanding of what ASP.NET 2.0 server controls are and how they work.
Server controls are a fundamental part of the ASP.NET framework. At their core, server
controls are .NET Framework classes that provide visual elements on a web form as well
as the functionality that these elements offer. An example of this is a drop-down list box
control. ASP.NET provides a server-side ListBox control that renders a list box as HTML

17

C H A P T E R 2

828-8 CH02.qxd 9/9/07 5:19 PM Page 17

elements on the web page. When the web page is returned to the browser, the browser
displays the list box to the user. When the user selects an item in the list box, you can run
client-side JavaScript to handle the event locally. Alternatively (or additionally), you can
arrange for a postback to the server to happen; server-side code can handle the user's
selection and perform some related server-side operation (such as populating another
part of the web page with data relating to the user’s selection). Deciding how much func-
tionality to place client-side (in JavaScript) and server-side (e.g., in C#) is one of the key
design issues you have to address when implementing AJAX applications. We’ll discuss
this more later.

Some of the server controls are straightforward and map closely to standard HTML
tags, effectively providing a server-side implementation of those tags. Others are larger-
scale abstractions that encapsulate complex GUI tasks such as a calendar or grid. It’s
important to note that the server controls are not ActiveX controls or Java applets; the
control’s server-side code generates a combination of HTML (to display the control) and
JavaScript (to provide the client-side functionality of the code), which is rendered in the
client’s browser.

Several types of server controls exist:

HTML server controls: These classes wrap standard HTML tags. Within the ASP.NET
web page (usually with the .aspx file extension), the HTML tags have a runat="server"
attribute added to them. An example is the HtmlAnchor control, which is a server-side
representation of the <a>, or anchor, tag. This type of control gives the developer the
ability to access the tag’s properties from the server-side code. If you add an element
such as the following to your ASPX page, your code-behind class will have an
instance variable of the same name:

Click me

In this example, the code-behind class will have an instance variable named myLink,
which is an instance of the HtmlAnchor class. You can use this instance variable to get
or set properties on the hyperlink tag.

Web controls: These classes duplicate the functionality of basic HTML tags but have
methods and properties that have been standardized across the entire set of web
controls, making it easier for developers to use them. Usually web controls are pre-
fixed by asp:, such as <asp:HyperLink>. With custom web controls, however, you can
choose the prefix as well. Many of them are analogous to HTML server controls
(e.g., the hyperlink) but have methods and properties that are designed to be used

CHAPTER 2 ■ TAKING AJAX TO THE NEXT LEVEL18

828-8 CH02.qxd 9/9/07 5:19 PM Page 18

by .NET developers using C# or VB. NET. These controls also expose properties useful
to set the standard HTML attributes that ordinary HTML tags have. These properties
don’t have the same HTML tag attributes, but they are very similar. For example, the
NavigateUrl property of the HyperLink web server control will be rendered as the href
attribute of the <a> HTML tag. These controls make it easier to develop web applica-
tions for those developers who are not used to hand-coding HTML.

Rich controls: This special set of web control is complex and generates large amounts
of HTML and JavaScript. An example of this is the calendar control.

Validation controls: These controls validate user input against a predetermined
criteria, such as a telephone number or a ZIP code. Should the validation fail, they
encapsulate the logic to display an error on the web page.

Data controls: The data controls link to data sources, such as databases or web serv-
ices, and display the data that they provide. They include controls such as grids and
lists and support advanced features such as using templates, editing, sorting,
paginating, and filtering.

Navigation controls: These display site map paths (bread crumb trails) and menus
to allow users to navigate a site.

Login controls: These have built-in support for forms authentication, providing a set
of web controls for the authentication process in your web sites.

Web part controls: These allow you to build a modular user interface (UI) within the
browser that provides the user with the ability to modify the content and appearance
of a web page. These controls have been created to be used with Microsoft Share
Point 2003 and then have been included in ASP.NET 2.0.

Mobile controls: These are for applications that render web content on portable
devices such as personal digital assistants (PDAs) and smart phones.

The power of server controls is best demonstrated by example. Fire up Visual Studio
2005, and create a new ASP.NET web site called AJAX2. Drag a calendar from the Standard
Controls tab of the Toolbox to the design surface of the Default.aspx page that was cre-
ated for you by Visual Studio. You should have something that resembles Figure 2-1.

CHAPTER 2 ■ TAKING AJAX TO THE NEXT LEVEL 19

828-8 CH02.qxd 9/9/07 5:19 PM Page 19

Figure 2-1. Adding a calendar to the default form

If you change to source view, you will see very straightforward markup, and there
isn’t a whole lot of it—certainly not enough to render the calendar, much less the interac-
tivity of selecting dates and paging backward and forward through the months. You can
see the markup in Figure 2-2.

CHAPTER 2 ■ TAKING AJAX TO THE NEXT LEVEL20

828-8 CH02.qxd 9/9/07 5:19 PM Page 20

Figure 2-2. Inspecting the markup for the calendar page

The implementation of the calendar is encapsulated within the asp:Calender tag:

<asp:Calendar ID="Calendar1" runat="Server"></asp:Calendar>

Visual Studio invokes code within the Calendar server control class to create the
visual representation in the designer view of the integrated development environment
(IDE). Similarly, at runtime, the ASP.NET engine detects the <asp:Calendar> tag and
invokes code within the Calendar server control class to generate the HTML necessary to
render the calendar in the browser and the JavaScript that provides its functionality. Fig-
ure 2-3 shows the page being rendered in Internet Explorer.

CHAPTER 2 ■ TAKING AJAX TO THE NEXT LEVEL 21

828-8 CH02.qxd 9/9/07 5:19 PM Page 21

Figure 2-3. Viewing the calendar page in a browser

By clicking the Browser’s View ➤ Source menu item, you can inspect the combina-
tion of HTML and JavaScript that was generated by the server control (see Figure 2-4).
You can see that it is vastly different from what was shown at design time in Figure 2-2.
The <asp:Calendar> tag has been replaced by a <div> tag that encapsulates the HTML.
This lays out the calendar as a table—showing the days, dates, and month; and the
JavaScript that handles the links to move forward and backward by month.

CHAPTER 2 ■ TAKING AJAX TO THE NEXT LEVEL22

828-8 CH02.qxd 9/9/07 5:19 PM Page 22

Figure 2-4. Viewing the client-side code behind the calendar page

This is an example of the power of server-side controls, and it is with controls such
as these that you can deliver AJAX functionality to the browser without overly complex
hand-coding, as demonstrated in Chapter 1. You will also be able to take advantage of
using a professional IDE so that you can debug and manage your AJAX pages as easily as
standard web forms or Windows applications.

These two concepts have been the premier design goals of ASP.NET AJAX. It is well
understood that creating AJAX-based web applications can be complex and requires
extensive knowledge of client-side script, which is slow to develop and debug. Microsoft
has reinvented how AJAX applications can be developed by allowing web developers to
use the same familiar productivity features and IDE of Visual Studio 2005 that they use to
develop standard web applications.

CHAPTER 2 ■ TAKING AJAX TO THE NEXT LEVEL 23

828-8 CH02.qxd 9/9/07 5:19 PM Page 23

Synchronous vs. Asynchronous Web Applications
One of the biggest limitations of web applications has always been that they are not
dynamic and responsive. For example, consider the case of implementing a simple finan-
cial portal. When you change the company you want to inspect, several areas of the page
update to display the new company’s information. Consider the scenario where the user
decides he wants to see more detailed information on the current company and clicks
the button to retrieve it. You want this new information to appear on the same page but
don’t want to refresh the whole page to get it—you just want it to appear. Even if the
round-trip to the web server is fast, the entire page will “blink” as the new data is ren-
dered. The browser will clear and redraw the entire page, even though most of it doesn’t
change.

Using AJAX, you can implement a solution that simply displays a visual indicator that
the data is being loaded while it is being retrieved in the background. Although the oper-
ation of retrieving and displaying the data takes about the same amount of time, the
second example provides a much more dynamic look and feel. The user is still in control
while the data is being retrieved. At any time, he can enter the code for a new company
and retrieve its information without waiting for the first company’s data to be loaded.

AJAX applications typically use HTML, JavaScript, and the associated technologies
DHTML and Cascading Style Sheets (CSS) to build UIs. When the interfaces need to
change dynamically, a call to the server is usually made using the XMLHttpRequest object.
The server returns new HTML markup for the bit of the page that needs to be updated,
which gets inserted into the DOM and re-rendered by the browser.

Part of the problem with this approach is that it doesn’t provide a clean separation of
the presentation and the business logic. The server that manages the data also generates
the UI, and the presentation layer (e.g., the browser) dumbly inserts what the server dis-
patches to it. For example, the server could generate HTML markup for a table that
displays data for the company selected by the user. Of course, the server could simply
send the data instead of the HTML markup, but it is generally more onerous to have
JavaScript parse data and generate the HTML than it is to generate the HTML on the
server side where you can use the power of Visual Studio and C# or VB .NET—or indeed
Java and any Java IDE.

ASP.NET AJAX follows the model in which the data is managed on the server, where it
belongs, and the presentation, after the initial rendering, is handled by the components
and controls that run within the browser. Controls and components are higher-level
abstractions that fall into two categories:

• Components are reusable building blocks that can be created programmatically
using client-side script.

• Controls are server controls, which are rendered as HTML and the JavaScript that
provides the functionality of the UI.

CHAPTER 2 ■ TAKING AJAX TO THE NEXT LEVEL24

828-8 CH02.qxd 9/9/07 5:19 PM Page 24

Introducing the ASP.NET AJAX Architecture
The ASP.NET AJAX architecture, which is illustrated in Figure 2-5, consists of two major
pieces. First is the Microsoft AJAX Library, which makes developing the client-side func-
tionality of AJAX web applications easier and less time consuming. It has core classes that
extend JavaScript to support object-oriented (OO) scripting represented by the Core Ser-
vices block. It also consists of a base class library, which provides classes that offer
extended error handling among other things. There is a network layer (represented by the
Networking block in Figure 2-5) that provides asynchronous communication with web
and application services, and a UI layer that supports capabilities such as controls and
behaviors (the Components block). Finally, it is supported across multiple types of
browsers through the use of a browser compatibility layer—the Browser Compatibility
block in Figure 2-5—that sits at the bottom layer of the script library. It supports most
modern browsers, including Mozilla/Firefox, Safari, Opera, and, of course, Internet
Explorer. The Microsoft AJAX Library is covered in detail in Chapter 3.

Second are the ASP.NET 2.0 AJAX Extensions, which provide a server development
platform that integrates AJAX and ASP.NET 2.0. Together, they provide a powerful pro-
gramming model that allows the development of AJAX functionality using the same
mechanism that is already in place for developing standard ASP.NET web applications.
This eliminates much of the tedious and burdensome scripting associated with the
development of AJAX applications today. Finally, it makes it very easy to AJAX-enable
your existing ASP.NET applications. The ASP.NET 2.0 AJAX Extensions are discussed in
detail in Chapter 4.

Figure 2-5. The ASP.NET AJAX architecture

CHAPTER 2 ■ TAKING AJAX TO THE NEXT LEVEL 25

828-8 CH02.qxd 9/9/07 5:19 PM Page 25

With the ASP.NET 2.0 AJAX Extensions, the process of developing an AJAX application
is similar to what is done today to build an ASP.NET web forms application. Server con-
trols generate the HTML UI as well as the JavaScript functionality, and the AJAX-enabled
pages run within the browser by leveraging the AJAX Library. The result is rich client-side
functionality within the browser. These server controls can also connect directly to
ASP.NET Web Services using JavaScript service proxies to provide a richer experience on
the client.

This architecture allows for increased productivity because server controls generate
much of the code, which enables you to write fewer lines of JavaScript code. It allows for
the clean separation of content, style, behavior, and application logic. A typical design
pattern of an ASP.NET AJAX application involves it consuming web services directly from
the client without requiring postbacks to the web server. Not only do postbacks slow
down an application, but they also complicate the application design, implementation,
and deployment. In fact, if you don’t use the AJAX functionalities, you have to post the
page back to the server (for example, because the user clicks the button where you have
inserted the code to call the Web Service method). The page is loaded again and then the
button click event handler is called. In the event handler code, there is the creation of the
object from the proxy class referenced to the web service. When the method is called,
another HTTP request is accomplished. When using AJAX, just the last operation is done,
and a lot of time and TCP traffic is saved.

An Overview of the AJAX Library

The AJAX Library provides a powerful JavaScript programming model with a rich type
system. JavaScript supports the basic concept of classes but doesn’t offer many of the
constructs needed for OO programming, nor does it provide a robust type system. To
allow developers to create more readable and maintainable code, the AJAX Library
extends JavaScript to support namespaces, classes, interfaces, inheritance, and other
artifacts that are usually associated with modern high-level languages such as C# and
Java.

The AJAX Library also includes a Base Class Library with helper classes that provides
additional functionality to JavaScript, such as extended error handling, debugging, and
tracing. In the next version of Visual Studio (code named Orcas), Microsoft will be adding
support for JavaScript developers such as doc comments, Intellisense, and debugging.
The AJAX Library incorporates some of the functionality that will be needed to support
this functionality.

One of the important aspects of ASP.NET is that it provides a mechanism for develop-
ers to globalize (i.e., date formats, etc.) and localize (i.e., string translations) their web
applications to support different languages based on the user’s browser setting. The AJAX
Library also provides this mechanism. Globalization is supported through the Base Class
Library’s Sys.CultureInfo class and the localFormat method on the number, date, and
string types. Localization is supported through a combination of the Sys.CultureInfo

CHAPTER 2 ■ TAKING AJAX TO THE NEXT LEVEL26

828-8 CH02.qxd 9/9/07 5:19 PM Page 26

class and the ability to load JavaScript files at runtime: By having a set of equivalent
JavaScript files in different languages, you can load the one that is applicable.

The ASP.NET AJAX installation package, which can be downloaded from
http://www.asp.net/ajax/, includes both the client-side and server-side portions.
However, the AJAX Library is also offered as an independent download. The client-side
portion of ASP.NET AJAX can be used independently of the server-side portion, which
means you can develop AJAX applications using the Microsoft AJAX Library and host
them on non-Microsoft web servers. However, it is important to note that although the
AJAX Library can be used without the ASP.NET 2.0 AJAX Extensions, there are aspects
of the library that work in conjunction with ASP.NET 2.0 to make client-side development
even easier and more productive. An example of this is the ability to leverage the
ScriptManager server control to make the retrieval of the correct version of a localized
JavaScript file automatic.

The Microsoft AJAX Library and Web Services

The AJAX Library has a client-side networking stack built upon the XMLHttpRequest object
that provides access to server-based functionality. Although designed to access ASP.NET
ASMX (Active Server Methods) web services, it may also be used to access static web
content. This functionality is supported via classes within the Sys.Net namespace.
These classes, designed to work across all of the major browsers, abstract the use of the
XMLHttpRequest object and provide a consistent programming model that allows you to
build AJAX applications that access web resources regardless of the platform they are
running on.

To simplify access to ASP.NET Web Services, ASP.NET AJAX provides a web services
bridge, which allows services to be accessed directly from JavaScript via a function call.
It does this by generating a JavaScript proxy that gets downloaded to the client when the
service is invoked using a special URI. The proxy, which provides the interface between
the client and the web service, is generated by an HTTP handler provided by the ASP.NET
2.0 AJAX Extensions and leverages the Sys.Net classes supplied by the AJAX Library. It is
invoked by appending /js to the service URI like this:
http://servername/servicename/service.asmx/js. By adding the HTML tag <script
src="http://servername/servicename/service.asmx/js"></script> to a web page, the
JavaScript is downloaded to the client, and the service can be invoked asynchronously
by calling one of its methods using the format service.method(…).

So if you have wrapped or exposed your middleware as a web service using the .NET
Framework, it can now be accessed asynchronously from the browser using ASP.NET
AJAX. In the past, a web application would have to perform a postback to the server,
which would access the web service on its behalf and then return the results to the web
application all while the user waited for the web page to be refreshed. You’ll see examples
of this in Chapters 3 and 8.

CHAPTER 2 ■ TAKING AJAX TO THE NEXT LEVEL 27

828-8 CH02.qxd 9/9/07 5:19 PM Page 27

http://www.asp.net/ajax
http://servername/servicename/service.asmx/js
http://servername/servicename/service.asmx/js
http://www.asp.net/ajax
http://servername/servicename/service.asmx/js

JavaScript Object Notation (JSON)

To allow for a more efficient transfer of data and classes between web applications and
web services, ASP.NET AJAX supports the JavaScript Object Notation (JSON) format. It is
lighter weight than XML (Extensible Markup Language)/SOAP (Simple Object Access
Protocol), and delivers a more consistent experience because of the implementation
differences of XML/SOAP by the various browsers.

JSON is a text-based data-interchange format that represents data as a set of ordered
name/value pairs. As an example, take a look at the following class definition, which
stores a person’s name and age:

Public class MyDetails

{

Public string FirstName;

Public string LastName;

Public int Age;

}

A two-element array of this object is represented as follows:

{ MyDetails : [{ “FirstName” : “Landon”, “LastName” : “Donovan”, “Age” : “22”}

{ “FirstName” : “John”, “LastName” : “Grieb”, “Age” : “46”}

]

}

An Overview of the ASP.NET 2.0 AJAX Extensions

The ASP.NET 2.0 AJAX Extensions integrate AJAX and ASP.NET 2.0 by providing a set of
AJAX server controls that can be dragged and dropped onto a web page in the same way
as any ASP.NET 2.0 server control. Each server control encapsulates the rendering
(HTML) and programming (JavaScript) that is necessary to perform its function. As you
can imagine, this significantly reduces the amount of effort that is required to develop
AJAX web applications.

The most powerful server control that the ASP.NET 2.0 AJAX Extensions provide is the
UpdatePanel. By “wrapping” existing content from your current ASP.NET web applications
within an UpdatePanel tag, the content can then be updated asynchronously from a user’s
browser without a complete page refresh. In other words, putting the current HTML of an
ASP.NET page within the start and end UpdatePanel tags allows you to implement AJAX
functionality without knowing anything about the XMLHttpRequest object or JavaScript.
The significance of this cannot be overstated: existing web pages can easily be converted
to AJAX applications through the use of asynchronous partial-page updates!

CHAPTER 2 ■ TAKING AJAX TO THE NEXT LEVEL28

828-8 CH02.qxd 9/9/07 5:19 PM Page 28

In addition to server controls, the ASP.NET 2.0 AJAX Extensions also provide infra-
structural support such as the Scripthandlerfactory HTTP handler that was mentioned
previously, which supports the creation of JavaScript proxies for ASP.NET Web Services.
There is also an HTTP handler that caches and compresses the JavaScript files that make
up the AJAX Library. Another piece of functionality that the AJAX Extensions provides is
JSON serialization and deserialization.

ASP.NET 2.0 introduced a Membership service, which provides a forms authentica-
tion and user management framework, and a Profile service, which supports long-term
storage of users’ preferences and data. The ASP.NET 2.0 AJAX Extensions expose the
authentication portion of the Membership service and the Provider service as web
services. These services can be leveraged by the AJAX Library. The library’s
Sys.Service.Authentication class provides the ability to log users on to their site using
forms authentication, without requiring a postback to the server. Similarly, the library’s
Sys.Service.Profile class provides for asynchronous storage and retrieval of user set-
tings, such as the site theme. By avoiding postbacks to a web server, even while logging
on to your web site, users will perceive your site as being dynamic rather than just
another static web application.

Summary
A lot of this may not make much sense right now, but don’t worry if you didn't under-
stand all the details we’ve just discussed. As you work through the examples in this book
and see how elegantly ASP.NET AJAX script interacts with the underlying HTML and
understand how the server-side controls eliminate much of the manual scripting, it will
become much clearer.

In this chapter, you were introduced to the overall architecture of ASP.NET AJAX,
given a tour of the various features the architecture offers, and introduced to how it can
empower the development of richer browser-based clients.

ASP.NET AJAX is based on two pillars. The first pillar is the client-portion, Microsoft’s
AJAX Library, which encapsulates many common functions, provides an object-oriented
programming environment for JavaScript developers, and enables access to ASP.NET
Web Services. The second pillar is the ASP.NET 2.0 AJAX Extensions, which is a set of
server controls that implicitly generates the JavaScript code that is needed to implement
your AJAX application on the client.

In the next chapter, you’ll see in more detail how the AJAX Library makes writing the
JavaScript portion of your AJAX applications much easier and how the different aspects
of the library come together to provide a unified design and coding framework. You’ll also
get an overview of each of the library’s namespaces and their associated classes and will
learn about details of the object-oriented environment it provides, with features such as
types, namespaces, and inheritance.

CHAPTER 2 ■ TAKING AJAX TO THE NEXT LEVEL 29

828-8 CH02.qxd 9/9/07 5:19 PM Page 29

828-8 CH02.qxd 9/9/07 5:19 PM Page 30

The Microsoft AJAX Library:
Making Client-Side JavaScript
Easier

In the first two chapters, you began to get a sense of the power of AJAX and Microsoft’s
implementation: ASP.NET AJAX. In addition, you were shown how asynchronous
JavaScript and XML can make ordinary web applications more interactive and respon-
sive. Chapter 2 provided an overview of ASP.NET 2.0 and, in particular, server controls,
which simplify web development by giving developers the ability to drag and drop rich
controls such as calendars or data grids into web pages. By integrating AJAX with
ASP.NET 2.0 and Visual Studio 2005, Microsoft has greatly simplified the process of
developing, deploying, and debugging AJAX web applications. The second chapter also
introduced the features of the client-side aspect of ASP.NET AJAX: the Microsoft AJAX
Library. This chapter delves more deeply into the AJAX Library, demonstrating the object-
oriented programming paradigm it overlays on JavaScript and then providing some
examples of the different namespaces it offers.

JavaScript with the Microsoft AJAX Library
In the following sections, you’ll learn how to program JavaScript using the Microsoft AJAX
Library by creating your first ASP.NET AJAX-enabled application.

31

C H A P T E R 3

828-8 CH03.qxd 9/9/07 5:24 PM Page 31

Downloading and Installing ASP.NET 2.0 AJAX Extension 1.0

To use the Microsoft AJAX Library in your web applications, you must first download the
ASP.NET 2.0 AJAX framework from the ajax.asp.net web site. After clicking on the Download
link, you can choose either the ASP.NET 2.0 AJAX Extension 1.0 or Microsoft AJAX Library
options. Choose the first option because the Microsoft AJAX Library option contains just
the client JavaScript components that are included in the full ASP.NET AJAX installation.
On the other hand, besides the client JavaScript components, the ASP.NET 2.0 AJAX
Extension 1.0 option also allows developers to use Visual Studio 2005 to create ASP.NET
AJAX web applications easily. Moreover, the libraries contained in the ASP.NET AJAX
Extension 1.0 are needed to use the ASP.NET AJAX Controls Kit.

After downloading the ASP.NET AJAX Extension 1.0 setup, you can simply run the
executable and follow the easy wizard’s steps. The installer will add all the necessary files
and Visual Studio 2005 templates to use ASP.NET AJAX in your web applications.

Creating Your First AJAX Application

To get started, fire up Visual Studio 2005, and create a new AJAX web site by selecting
File ➤ New Web Site and then selecting ASP.NET AJAX-Enabled Web Site from the New
Web Site dialog box (see Figure 3-1).

When you click OK, Visual Studio 2005 creates a new solution for you that contains
everything you need to get started with ASP.NET AJAX. You can see the structure it sets
up in Figure 3-2. The web site is very straightforward; there is a default web page named
Default.aspx, a Web.config file, and an empty App_Data folder that can be used to store
any databases or data files used by the web site.

So what makes this an ASP.NET AJAX-enabled web site? Well, the work is all done for
you behind the scenes. When ASP.NET AJAX is installed, the assembly that provides its
functionality—System.Web.Extensions—was stored in the Microsoft .NET Global Assembly
Cache (GAC). When you created your web site, a reference to this assembly was added to
the web site’s Web.config file. Several other additions were also made to the Web.config file,
including several sections that are commented out, which may optionally be used to pro-
vide additional functionality such as the Profile and Authentication services. All of this will
be covered in more detail in the next chapter when we dive into the ASP.NET 2.0 AJAX
Extensions.

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER32

828-8 CH03.qxd 9/9/07 5:24 PM Page 32

Figure 3-1. Creating a new ASP.NET AJAX-enabled web site

■Note The web sites are created on HTTP because I have IIS installed on my development computer. If you
don't have it, choose File System from the Location drop-down list, and specify a location somewhere on
your hard disk. (It doesn't affect the example whether you use HTTP or the file system.)

Figure 3-2. Default ASP.NET AJAX-enabled web site solution structure

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER 33

828-8 CH03.qxd 9/9/07 5:24 PM Page 33

The Microsoft AJAX Library contains three core JavaScript files that deliver client-
side functionality for your web pages. These three JavaScript files are stored as resources
in the System.Web.Extensions assembly. At runtime, the HTTP handler ScriptResourceHan-
dler loads the files, caches them for future use, compresses them, and sends them to the
web browser when they’re requested. The files contain the following functionality:

• The primary file, named MicrosoftAjax.js, contains 90% of the Microsoft AJAX
Library’s functionality. It includes, among other things, the browser compatibility
layer, the core JavaScript classes, and the Base Class Library.

• The second file, named MicrosoftAjaxTimer.js, contains classes needed to support
the Timer server control. This control enables you to update either part of or an
entire web page at regular intervals; for example, you might want to update the
current value of stock prices every 30 seconds. You’ll see how to use the Timer con-
trol in the next chapter.

• The third file, named MicrosoftAjaxWebForms.js, includes classes that support par-
tial-page rendering, that is, the functionality that allows portions of a page to be
updated asynchronously. Without that, the whole page is postbacked to the server.

Adding a Custom JavaScript Class

Now that you’ve created your AJAX-enabled web site, you will create your own JavaScript
file that defines a namespace, which contains the class definition for a car. As you will see
in the next few sections, the AJAX Library brings object-oriented programming (OOP) to
JavaScript by providing namespaces, inheritance, interfaces, and other features. If you
are familiar with the OO paradigm, then the advantages are obvious. If not, you will start
to see how namespaces and inheritance make code simpler to write, debug, and under-
stand.

To create the JavaScript file, right-click the project within Solution Explorer, and click
on Add New Item (see Figure 3-3).

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER34

828-8 CH03.qxd 9/9/07 5:24 PM Page 34

Figure 3-3. Adding a new file to your solution

In the dialog box that is displayed, select the JScript File template, and enter a name
for the file. In this example, the name AJAXBook.js was used, but you may call it anything
you like (see Figure 3-4).

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER 35

828-8 CH03.qxd 9/9/07 5:24 PM Page 35

Figure 3-4. Creating a new JavaScript file

You can now add the code that implements the namespace AJAXBook and the class
Car. When you use Visual Studio 2005 to create and edit JavaScript code, it provides syn-
tax coloring to make the code easier to understand and maintain. Unfortunately, Visual
Studio 2005 doesn’t add Intellisense; in other words, when you say “Type,” it doesn't
bring up a list of members on the Type type.

Figure 3-5 shows the namespace AJAXBook and the class definition for Car in the editor.

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER36

828-8 CH03.qxd 9/9/07 5:24 PM Page 36

Figure 3-5. Implementing your namespace and class in JavaScript

You’ll learn what all this syntax means later in this chapter, but it will make more
sense if we run through the entire example first.

Using the AJAX Script Manager to Deliver Your Custom Class

To implement a web page that uses this class, add a new web form to the solution, and
call it TestAJAXBookNamespace.aspx (see Figure 3-6).

■Note The Default.aspx page already contains the ScriptManager server control, but we’ll use a new
page to show how to add the control to a new page.

To this web form, you will add an ASP.NET AJAX ScriptManager server control. This
server-side control manages the downloading of the Microsoft AJAX Library JavaScript
files to the client so that the support for your AJAX code will be available when the user
opens the web page. In addition, it will load any of your custom JavaScript files. The easi-
est way to add the server control to your web page is by simply dragging and dropping it
on the page designer.

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER 37

828-8 CH03.qxd 9/9/07 5:24 PM Page 37

Figure 3-6. Adding a web form to test your JavaScript

You’ll now see the suite of ASP.NET AJAX server controls in your Toolbox installed
into Visual Studio 2005 (see Figure 3-7). Drag and drop the ScriptManager control onto the
designer for TestAJAXBookNamespace.aspx (or whatever you called the web form). Also
drag and drop (from the HTML tab) an Input (Button) control to the web page. You can
see the result in Figure 3-8.

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER38

828-8 CH03.qxd 9/9/07 5:24 PM Page 38

Figure 3-7. The ASP.NET AJAX server control within the Toolbox

Figure 3-8. The ScriptManager server control and HTML button in the Visual Studio 2005
Designer

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER 39

828-8 CH03.qxd 9/9/07 5:24 PM Page 39

Coding and Running the Application

If you double-click the button in the designer, Visual Studio 2005 will add the onclick
attribute to the <input type="button"> HTML element, set its value to return
Button1_onclick(), and implement the stub of the function Button1_onclick inside a
<script> element within the HTML head element.

You can then put the following script into this function:

var testCar = new AJAXBook.Car('Honda','Pilot','2005');

alert(testCar.get_MakeandModel());

alert(testCar.get_Year());

return false;

The last step is to tell the ScriptManager to download your custom JavaScript file by
adding the following HTML inside the <ScriptManager> element:

<Scripts>

<asp:ScriptReference Path="~/AJAXBook.js" />

</Scripts>

You can see the HTML of the complete web page in Figure 3-9.

Figure 3-9. The HTML for your first ASP.NET AJAX web page

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER40

828-8 CH03.qxd 9/9/07 5:24 PM Page 40

Now run your application by pressing the F5 key. You’ll be asked if you want to
modify the Web.config file to enable debugging. After you click OK, your default web
browser will open, and you’ll see a pretty dull-looking web page with a single button that,
when clicked, returns the values for the properties of make, model, and year for this
instance of a Car object. In Figure 3-10, you can see the partial output of this application
because just the first message box has been captured (after closing this message box, the
other showing the year will be shown).

Figure 3-10. Running your first ASP.NET AJAX application that uses JavaScript classes and
namespaces

Using Namespaces and Classes in JavaScript
The AJAX core classes (MicrosoftAjax.js) contain the facility to register namespaces and
classes using the Type.registerNamespace and Type.registerClass methods. You can use
these to build objects in JavaScript and assign them to the namespaces for clearer, easier-
to-read, and easier-to-debug code. Listing 3-1 shows the definition of the Car class you
used earlier. This class is registered to the AJAXBook namespace.

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER 41

828-8 CH03.qxd 9/9/07 5:24 PM Page 41

Listing 3-1. Creating a Car Namespace

Type.registerNamespace("AJAXBook");

AJAXBook.Car = function(strMake, strModel, strYear)

{

this._Make = strMake;

this._Model = strModel;

this._Year = strYear;

};

AJAXBook.Car.prototype =

{

get_Make: function()

{

return this._Make;

},

get_Model: function()

{

return this._Model;

},

get_MakeandModel: function()

{

return this._Make + " " + this._Model;

},

get_Year: function()

{

return this._Year;

},

dispose: function()

{

alert("Bye");

}

};

AJAXBook.Car.registerClass("AJAXBook.Car");

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER42

828-8 CH03.qxd 9/9/07 5:24 PM Page 42

In the code, the namespace AJAXBook is registered using the Type.registerNamespace
method..registerNamespace command. Next, the class Car is implemented using the proto-
type model. In the prototype model, a class consists of two parts: the constructor, which
initializes the private variables, and the prototype, which is used to declare the methods
of the class and the dispose function in which you can perform any cleanup before your
object is reclaimed. It is important to note that in the prototype model, the notion of pri-
vate is handled by using variables that are prefixed with the underscore (_) character.

Finally, the class is registered to the namespace using the AJAXBook.Car.registerClass
method, which, in this case, takes a single parameter: the fully qualified name of the
class. Now any JavaScript that includes this JavaScript file will be able to create an
instance of an AJAXBook.Car object by using script such as the following:

var testCar = new AJAXBook.Car('Honda', 'Pilot', '2005');

Your code can then invoke methods on this object in the usual manner:

alert(testCar.get_Year());

Using Inheritance in JavaScript
In the previous section, you registered your class using the registerClass method proto-
type that accepts only a single parameter. You can also include a second parameter that
specifies the base class from which the class is inheriting. One of the goals of AJAX is to
make your JavaScript easier to read and debug. Inheritance is a useful way to prevent
replication of member variables and methods among your classes, thereby helping you
to achieve this goal.

This is probably best demonstrated by example. Earlier you created a Car class for a
generic car. Lots of different types of cars exist; for example, a sport utility vehicle (SUV)
is different from a sports car in that it will usually have four-wheel drive (4WD), whereas
the sports car will have only two-wheel drive. If you want to implement car classes where
you will query if the car has the 4WD, it makes sense to have a subclass of Car called SUV
that has a 4WD property.

You can try this by adding the following code to the bottom of the JavaScript file you
created earlier:

AJAXBook.SUV = function(strMake, strModel, strYear, strDriveType)

{

AJAXBook.SUV.initializeBase(this, [strMake, strModel, strYear]);

this._DriveType = strDriveType;

}

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER 43

828-8 CH03.qxd 9/9/07 5:24 PM Page 43

AJAXBook.SUV.prototype =

{

get_DriveType: function()

{

return this._DriveType;

},

dispose: function()

{

alert("Disposing instance of class SUV");

}

}

AJAXBook.SUV.registerClass("AJAXBook.SUV", AJAXBook.Car);

The earlier code implemented an AJAXBook.Car class that had a constructor that
received three parameters to initialize the _Make, _Model, and _Year members on the Car
object. This code now implements the SUV class. The SUV constructor takes the same
parameters as the Car constructor, plus an additional parameter (strDriveType) that spec-
ifies the type of 4WD the vehicle will use.

The first line of the SUV constructor passes the make, model, and year up to the base
class, so they can be initialized in the base class, thereby avoiding the need to duplicate
them in the initialization code in the AJAXBook.SUV class. The SUV constructor then imple-
ments and initializes the single distinct property of the SUV class: _DriveType. The
prototype of the class contains two methods: the first allows you to define the DriveType
property, and the second, the Dispose method, just displays an alert that the memory of
the class instance is being reclaimed. The last statement in the code shows how to use the
registerClass method to register the SUV class in the AJAXBook namespace. The first
parameter in the registerClass method, AJAXBook.SUV, specifies the fully qualified name
of the new class. The second parameter in the registerClass method, AJAXBook.Car, speci-
fies the base class. In other words, AJAXBook.SUV inherits from AJAXBook.Car.

To see the AJAXBook.SUV class in action, return to the web page you created earlier,
and change the Button1_onclick script to match the following code:

function Button1_onclick()

{

var testCar = new AJAXBook.Car('Honda','Pilot','2005');

alert(testCar.get_MakeandModel());

alert(testCar.get_Year());

var testSUV = new AJAXBook.SUV('Honda','Pilot','2005','Active');

alert("SUV Make and Model: " + testSUV.get_MakeandModel());

alert(testSUV.get_Year());

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER44

828-8 CH03.qxd 9/9/07 5:24 PM Page 44

alert(testSUV.get_DriveType());

return false;

}

We’ve added the creation of an instance of the class AJAXBook.SUV and invoked its
methods get_MakeandModel, get_Year, and get_DriveType. The instance of the class AJAX-
Book.SUV contains the method get_DriveType, but the get_MakeandModel and get_Year
methods are implemented by the base class AJAXBook.Car and inherited by the derived
class AJAXBook.SUV. Run the application, and you’ll see them in action (see Figure 3-11).

Figure 3-11. Calling a method from the base class on the derived class

Implementing Interfaces in JavaScript
The AJAX Library also adds support for interfaces to JavaScript. An interface is a con-
tract—by implementing an interface, you state that you will implement a specific set of
methods. Using interfaces allows you to implement a common set of methods across
multiple classes with less room for error (e.g., leaving a method out in one of the classes).

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER 45

828-8 CH03.qxd 9/9/07 5:24 PM Page 45

As an example, consider the following case. There are two types of sports cars: a “real”
sports car that has a stick shift (manual transmission) and an “imitation” sports car that
has an automatic transmission.

Here is the code that defines the stick shift interface:

AJAXBook.IStickShift = function()

{

this.get_GearCount = Function.abstractMethod;

this.set_GearCount = Function.abstractMethod;

this.get_CurrentGear = Function.abstractMethod;

this.set_CurrentGear = Function.abstractMethod;

}

AJAXBook.IStickShift.registerInterface('AJAXBook.IStickShift');

It defines four abstract methods that any class using this interface must support. The
abstractMethod property defines the method names and parameters but gives no method
implementation. They are “Set the current gear,” “Get the current gear,” “Set the number
of gears the transmission has,” and “Get the number of gears the transmission has.” A real
sports car is one that implements this interface and, by definition, these methods:

AJAXBook.SportsCar = function(strMake, strModel, strYear, strGears)

{

AJAXBook.SportsCar.initializeBase(this, [strMake, strModel, strYear]);

this._GearCount = strGears;

this._CurrentGear = 0;

}

AJAXBook.SportsCar.prototype =

{

get_GearCount: function()

{

return this._GearCount;

},

set_GearCount: function(strGears)

{

this._GearCount = strGears;

},

get_CurrentGear: function()

{

return this._CurrentGear;

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER46

828-8 CH03.qxd 9/9/07 5:24 PM Page 46

},

set_CurrentGear: function(strCurrentGear)

{

this._CurrentGear = strCurrentGear;

},

dispose: function()

{

alert("Disposing instance of class SportsCar");

}

}

AJAXBook.SportsCar.registerClass("AJAXBook.SportsCar",

AJAXBook.Car,

AJAXBook.IStickShift);

In this case, the registerClass method call passes the fully qualified name of the
class, the class it inherits from, and the interface it implements. You can implement more
than one interface with your class simply by specifying each interface into the register-
Class method and separating the interface’s name by a comma.

Conversely, an imitation sports car is just a fancy-looking normal car, so its class defi-
nition would look like this:

AJAXBook.ImitationSportsCar = function(strMake, strModel, strYear)

{

AJAXBook.ImitationSportsCar.initializeBase(this, [strMake, strModel, strYear]);

}

AJAXBook.ImitationSportsCar.prototype =

{

Dispose: function()

{

Alert("Disposing instance of class ImitationSportsCar");

}

}

AJAXBook.ImitationSportsCar.registerClass(

"AJAXBook.ImitationSportsCar",

AJAXBook.Car);

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER 47

828-8 CH03.qxd 9/9/07 5:24 PM Page 47

Within your client-side JavaScript, you can check whether or not your class imple-
ments the IStickShift interface so that you can determine what kind of car it is and
whether or not it implements the interface’s methods prior to using them.

The following example uses the web page from earlier but changes the content of the
button’s onclick event handler to this:

function Button1_onclick()

{

var testSportsCar = new AJAXBook.SportsCar('Porsche','999','2005','6');

var testImitationSportsCar = new AJAXBook.ImitationSportsCar('Shorspe',

'123',

'2005');

ProcessCar(testSportsCar);

ProcessCar(testImitationSportsCar);

return false;

}

This event handler calls a helper function named ProcessCar, which looks like this:

function ProcessCar(theCar)

{

if(AJAXBook.IStickShift.isImplementedBy(theCar))

{

alert("Current Car: "

+ theCar.get_MakeandModel()

+ " This is a good sports car "

+ " -- I can change gears with a stick shift.");

theCar.set_CurrentGear(5);

alert(theCar.get_MakeandModel()

+ " is now cruising in gear number: "

+ theCar.get_CurrentGear());

}

else

{

alert("Current Car: "

+ theCar.get_MakeandModel()

+ " This is an imitation sports car "

+ " -- it's an automatic with a sleek body.");

}

}

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER48

828-8 CH03.qxd 9/9/07 5:24 PM Page 48

This method checks to see whether the car being passed is a “real” sports car. It does
this by checking whether it implements the IStickShift interface using the method AJAX-
Book.IStickShift.isImplementedBy(), which returns true only if the specified object is an
instance of a class that implements the IStickShift interface. After it is determined that
the car object implements the interface, then it is safe to call the methods set_Current-
Gear() and get_CurrentGear(). If an attempt was made to call the methods and they didn’t
exist, an exception would be thrown.

You can see the application in action in Figure 3-12.

Figure 3-12. Implementing the IStickShift interface

Accessing Server Resources from JavaScript
A typical design pattern in web applications is consuming a web service and presenting
the data it returns to the user. This forms a typical n-tier architecture, with the web serv-
ice and the information it provides being a resource tier for your web application, which
is the presentation tier. To consume the web service, you would normally require the web
service to be invoked from the server because before the AJAX framework release, it was-
n’t possible to call it from the client side. This degrades the responsiveness of a web
application because it first must issue a postback to the server and then wait for a
response while the server-side code invokes the web service.

With ASP.NET AJAX, web applications can now invoke web services directly from the
client. The AJAX Library supports client-side web service proxies, which make calling a
web service as easy as calling a JavaScript function. To generate a client-side web service
proxy, you need to specify a <Services> tag within the <ScriptManager> tag that was dis-
cussed earlier. Within the <Services> tag, you need to add a <asp:ServiceReference> tag for
each web service you want to use.

Web services are ideally suited for business logic that needs to be used by a number
of applications. In the following example, a web service is what calculates the value of a
car based on its make, model, and how much it has depreciated in value. Depreciation is
not something that can normally be calculated on the client because it is based on a
complex formula that uses database lookups. For this example, the depreciation will sim-
ply be calculated as $2,000 in value for each year the car has aged.

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER 49

828-8 CH03.qxd 9/9/07 5:24 PM Page 49

First you need to add a new web service item to your Visual Studio 2005 project and
name it CarService.asmx. Add a new WebMethod to the web service named getCarValue.
You’ll need to add the following using statements at the top of the code file to provide
access to the ASP.NET 2.0 AJAX Extensions’ attributes and keywords:

using System.Web.Script;

using System.Web.Script.Services;

Now here’s the code for your getCarValue method:

[WebMethod]

public int getCarValue(string strCarMake,

string strCarModel,

int strCarYear)

{

int nReturn = 0;

if (strCarMake == "Honda")

{

if (strCarModel == "Pilot")

{

nReturn = 40000;

}

else

{

nReturn = 30000;

}

}

else

{

nReturn = 20000;

}

int nDepreciation = (System.DateTime.Now.Year - strCarYear) * 2000;

nReturn -= nDepreciation;

return Math.Max(0, nReturn);

}

This crude calculation establishes the base value of a Honda at $30,000 (unless it is a
Pilot, in which case, it is $40,000). Other makes of car have a base value of $20,000.
Depreciation is then subtracted from the car’s base value at $2,000 per year of age.

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER50

828-8 CH03.qxd 9/9/07 5:24 PM Page 50

Finally, you need to add a [ScriptService] attribute to the web service declaration. By
adding this tag to the web service, you’re telling the ASP.NET 2.0 AJAX Extensions to cre-
ate a proxy object for the web service so that it is accessible via JavaScript.

[ScriptService]

public class CarService : System.Web.Services.WebService

The web service is complete and ready to be invoked from the client; now it’s time to
create the web page that is going to call it. Open Default.aspx in the designer, and add a
ScriptManager element to the page by dragging it from the Toolbox and dropping it onto
the page designer. Now add three ASP.NET label controls, three HTML input (text) con-
trols, and an HTML input (button) control to the web page. Label the three text fields
“Make:”, “Model:”, and “Year:”, and name them txtMake, txtModel, and txtYear. Set the text
of the button to “Get Value”. The web page should look like Figure 3-13.

Figure 3-13. Designing the web service client application

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER 51

828-8 CH03.qxd 9/9/07 5:24 PM Page 51

■Note By using the HTML Input button, the page does not have to be posted back when the button is
clicked.

Next, go to the source view for this form, find the asp:ScriptManager tag, and add a
<Services> tag inside of it. Within the <Services> tag, add an <asp:ServiceReference> tag
with a Path attribute that points to the web service. This will cause the AJAX Library to
generate a web service proxy at runtime. The HTML should look like this:

<asp:ScriptManager ID="ScriptManager1" runat="server">

<Scripts>

<asp:ScriptReference Path="~/AJAXBook.js" />

</Scripts>

<Services>

<asp:ServiceReference Path="~/CarService.asmx" />

</Services>

</asp:ScriptManager>

Next, you need to implement the button’s onclick event handler, which will invoke
the web service, via its proxy, and pass it the parameters entered in the text fields. In
design view, double-click the button to create the event handler function. You will auto-
matically be returned to the source view and will be inside the Button1_onclick function.
Add the following code to this function:

requestValue = CarService.getCarValue(form1.txtMake.value,

form1.txtModel.value,

form1.txtYear.value,

OnComplete,

OnError);

return false;

In JavaScript, you refer to an HTML control by prefixing it with the name of the form
that it is on. In this case, the form is called form1; therefore, you can get the value of the
txtMake field using form1.txtMake.value.

To invoke a web service method via a proxy, you use the name of the web service, fol-
lowed by a period, followed by the name of the web method you want to call. You pass
parameters into the web method, and get the return value, just like for a normal function

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER52

828-8 CH03.qxd 9/9/07 5:24 PM Page 52

call. In this case, the web method is named getCarValue, and the service is called CarService,
so the method that needs to be called is CarService.getCarValue. If the web service is
defined within a namespace, then the name of the method would be prefixed by the
namespace (e.g., if the namespace is MyServicesForAjaxApps, then the method name
would be MyServicesForAjaxApps.CarService.getCarValue). If you are in doubt as to what
to use, then look at the value of the Class attribute in the web service’s .asmx file (see the
<%@ WebService %> attribute at the start of the .asmx file) and use that appended with the
name of the web method.

Now, the getCarValue web method only expects three parameters, but we’ve passed five
parameters into the web service proxy. Because the AJAX Library invokes web services
asynchronously, it needs to inform you when the call to the web service is complete.
The two additional parameters are the names of the methods to call if the web service
call completes successfully and the method to call if it fails. In this case, the function
onComplete will be called if the web service call completes successfully, and the function
onError will be called if there is a problem calling the web service.

In this example, you need to implement the callback functions like this:

function onComplete(result)

{

alert("The car is worth s$" + result);

}

function onError(error)

{

alert(error.get_message());

}

If the call to the web service completes successfully, then the result is passed back to
the onComplete function, in this case, the calculated value of the car. If it fails, an error
object is passed to the onError function. The message associated with the error can be
obtained by calling the object’s get_message method.

Figure 3-14 shows the application calculating the value of a 2005 Honda Pilot at
$36,000, and the method onComplete displaying the results.

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER 53

828-8 CH03.qxd 9/9/07 5:24 PM Page 53

Figure 3-14. The result of a call to the getCarValue web service

Summary
In this chapter, you were introduced to the power that the Microsoft AJAX Library adds to
JavaScript. You learned about the extensions implemented in the file MicrosoftAjax.js that
add true object-oriented programming to JavaScript, with features such as inheritance,
namespaces, interfaces, and classes. By walking through an example, you were able to
see how these features work and how you can use them to make JavaScript easier to code,
debug, and maintain. Additionally, you looked at the JavaScript features that automati-
cally encapsulate asynchronous web service calls from your browser application. You saw
how to implement and consume a web service as well as how to process the asynchro-
nous results. Comparing the complexity of this call to the AJAX code in Chapter 1, you
can see it is accomplishing almost the exact same task with less code and in an easier-
to-read and easier-to-maintain manner.

From here, you can begin to see the value that ASP.NET AJAX brings to developing
AJAX-style applications. The following chapter will provide details on the server-side
portion of ASP.NET AJAX: the ASP.NET 2.0 AJAX Extensions.

CHAPTER 3 ■ THE MICROSOFT AJAX L IBRARY: MAKING CLIENT-SIDE JAVASCRIPT EASIER54

828-8 CH03.qxd 9/9/07 5:24 PM Page 54

ASP.NET AJAX Client Libraries

In the first three chapters, you looked at the basics of ASP.NET AJAX and how you can
use it to build web applications that provide slick, clean, high-performing UIs by restrict-
ing the need for full-page postbacks to the server and that use the intelligence of the
browser on the client side. You also learned about the ASP.NET AJAX JavaScript exten-
sions that bring about a great deal of object-oriented support to JavaScript, thereby
allowing you to create classes, events, interfaces, and even the ability to implement
inheritance in JavaScript. These additions bring JavaScript one step closer to the .NET
programming model with which you’re already familiar. In this chapter, you’ll learn a bit
more about the JavaScript extensions and the built-in types as well as explore the main
components of the ASP.NET AJAX client library.

JavaScript Type Extensions
In the previous chapter, you saw the JavaScript extensions made available by the ASP.NET
AJAX client library and how you can use them to build object-oriented script files for your
web application. In this section, we’ll revisit the JavaScript extensions and discuss some
of the new types included in the base class libraries that to some extent resemble those
found in the .NET Framework. Keep in mind, however, that JavaScript by nature is not a
strongly typed language, and the classes discussed here are not natively supported types.
You still need to have a ScriptManager control on your page to use any of these JavaScript
type extensions.

Array and Boolean Extensions

Arrays are nothing new in JavaScript, but the added extensions in the ASP.NET AJAX
libraries make them a whole lot more functional and similar to those available in the
.NET Framework. Of course, these are not going to be exactly identical in signature and
behavior to the Array object of the .NET Framework. Another important point to note is
that the methods of the Array extension are provided as helper methods for an existing
JavaScript Array object, and thus using them does not require instantiation in a similar

55

C H A P T E R 4

828-8 CH04.qxd 10/14/07 8:07 PM Page 55

manner to static methods. Therefore, you can start using the methods without having to
instantiate the Array extension itself. Table 4-1 lists the methods of the Array extension.

Table 4-1. Methods of the Array Extension

Method Name Description

add Adds an element to the end of an array

addRange Copies all elements of one array to the end of another array

clear Deletes all elements of an array

clone Creates a shallow copy of an array

contains Boolean value indicating whether or not an element is in an array

dequeue Deletes the first element of an array

enqueue Another method for adding an element to the end of an array

forEach Iterates through the elements of an array

indexOf Returns the index of a specified element in an array (returns -1 if the
element wasn’t found in the array)

insert Inserts a value at a specified location in an array

pars Creates an Array object from a string variable

remove Removes the first occurrence of an element in an array

removeAt Removes an element at a specified location in an array

To better understand these methods and how they can be used, consider the follow-
ing JavaScript snippet:

<script type="text/javascript" language=javascript>

function ArraySample() {

//Instantiate a JavaScript array object

var myArray = [];

myArray[0] = 'First';

Array.add(myArray, 'Second');

var newArray = ['Third','Fourth','Fifth'];

//Add the newArray object to the myArray

Array.addRange(myArray,newArray);

//Remove the last item from the Array

Array.removeAt(myArray, 4);

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES56

828-8 CH04.qxd 10/14/07 8:07 PM Page 56

DisplayArray(myArray);

}

function DisplayArray(arr) {

var i;

var strArray='';

for (i in arr)

{

strArray+=(i+':'+arr[i]+', ');

}

alert (strArray);

}

</script>

In this example, a classic JavaScript Array object is created and given a value (First)
at the initial index. After that, the add and addRange methods of the Array extension are
used to add additional values to the array. Then the last value of the array is removed
using the removeAt method, and the underlying Array object is passed to the DisplayArray
function to be displayed as shown in Figure 4-1. Once again, notice how the array object
here, myArray, is passed in as a parameter to methods of the Array extension. It’s impor-
tant to realize that these additional methods listed in Table 4-1 are not new methods on
the native JavaScript Array object itself.

Figure 4-1. JavaScript output of the Array extension sample

The Boolean extension provided in the ASP.NET AJAX client library is the simplest one
with the least number of methods. It just provides one extra method, parse, which con-
verts a string into a Boolean value. The native JavaScript Boolean type does not natively
support string initialization. The following script simply declares a Boolean value set to
false and displays the Boolean value if false.

boolVar = Boolean.parse("false");

if (!boolVar)

alert ('False');

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES 57

828-8 CH04.qxd 10/14/07 8:07 PM Page 57

■Note In Visual Studio 2008, there is great Intellisense support for all types in xyz.

Date Extensions

Months, days, or years are fairly easy to get access to via the native JavaScript Date object,
but having globalization support for dates takes some work. The ASP.NET AJAX client
library Date extension provides excellent support for globalization of dates by enabling
a wide range of date formatting options based on the browser locale. Unlike the Array
extension, the methods provided by the Date extension are instance methods, so you
have to create a Date object before using them. Table 4-2 lists the four methods of this
extension.

Table 4-2. Methods of the Date Extension

Method Name Description

format Formats a date by using the invariant (culture-independent) culture

localeFormat Creates a date from a locale-specific string using the current culture

parseInvariant Creates a date from a string using the invariant culture

parseLocale Creates a date from a locale-specific string using the current culture

Note that there are two format methods here: format and localeFormat. The only dif-
ference is that the format method is culture invariant, meaning that regardless of the
current culture, it always uses the same formatting for the date. If you wanted to display
culture-sensitive dates (so that dates are displayed differently based on the country
and/or language), you first have to set the EnableScriptGlobalization property of the
ScriptManager control to true. This ensures that the current culture is serialized and sent
to the browser for the ASP.NET AJAX client library to correctly process the desired date
format based on the specified culture settings. Table 4-3 lists the various formatting
options supported by the format methods of the Date extension.

Table 4-3. List of the Supported Date Formats

Format Description

d Short date pattern (e.g., 05/10/07)

D Long date pattern (e.g., Thursday, 10 May 2007)

t Short time pattern (e.g., 18:05)

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES58

828-8 CH04.qxd 10/14/07 8:07 PM Page 58

T Long time pattern (e.g., 18:05:12)

F Full date pattern (e.g., Thursday, 10 May 2007 18:05:12)

M Month and day pattern (e.g., May 10)

s Sortable date and time pattern (e.g., 2007-05-10T18:05:12)

Y Year and month pattern (e.g., 2007 May)

For instance, to display the present date, you can just instantiate a new Date object, and
using the format method, pass in the intended format provider (as listed in Table 4-3).

function displayDate() {

var today = new Date();

alert (today.format('D'));

}

The formatted date as the result of the preceding script is shown in Figure 4-2.

Figure 4-2. Displaying the current date in long format

Error Extensions

JavaScript has an Error object and is often used in conjunction with try/catch blocks.
However, this is a generic Error object used to encapsulate all types of errors and report
them to the user. The ASP.NET AJAX client library Error extension provides support for
some degree of typed exceptions on the client. It contains some of the commonly typed
exceptions found in the .NET Framework. The Error extension allows developers to not
only handle exceptions based on the type of the error generated but also manually throw
errors of a certain type as needed.

The ASP.NET AJAX client library takes care of all necessary work required to properly
serialize these typed errors into and from JSON. When using the Error extension to throw

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES 59

Format Description

828-8 CH04.qxd 10/14/07 8:07 PM Page 59

an exception, a new type of exception based on the underlying exception type in the Sys
namespace (discussed in a later section in this chapter) is generated. You can even gener-
ate custom errors and make specific references pertaining to the original source of the
error. Table 4-4 lists all ten of the supported static methods of the Error extension.

Table 4-4. Methods of the Error Extension

Method Name Description

argument Creates an Error object based on the Sys.ArgumentException exception.

argumentNull Creates an Error object based on the Sys.ArgumentNullException
exception.

argumentOutOfRange Creates an Error object based on the Sys.ArgumentOutOfRangeException
exception.

argumentType Creates an Error object based on the Sys.ArgumentTypeException
exception.

argumentUndefined Creates an Error object based on the Sys.ArgumentUndefinedException
exception.

create Creates an Error object that can contain additional error information.

invalidOperation Creates an Error object based on the Sys.InvalidOperationException
exception.

notImplemented Creates an Error object based on the Sys.NotImplementedException
exception.

parameterCount Creates an Error object based on the Sys.ParameterCountException
exception.

popStackFrame Adds extra information to the fileName and lineNumber properties of an
Error instance regarding the source of the error. This is particularly
useful when creating custom errors.

Suppose you are writing some validation logic for a function and want to generate a
typed exception on the client for a missing parameter. You can use the Error.argumentNull
method to generate an exception of that type by passing the name of the missing param-
eter and a description as shown here:

Error.argumentNull("x", "The x parameter was not provided.");

Also, suppose you had implemented the classic try/catch block in your JavaScript,
and checking for a necessary condition turned out to be false. You can generate a custom
typed exception for proper handling later. The create method is all that is needed to cre-
ate a custom exception as shown in the following GenerateError function:

function GenerateError() {

try

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES60

828-8 CH04.qxd 10/14/07 8:07 PM Page 60

{

throw Error.create('A custom error was generated');

}

catch(e)

{

alert(e.message);

}

}

Running the function displays the error message to the user as shown in Figure 4-3.

Figure 4-3. Displaying a custom generated error

Consequently, if you needed to have additional properties in the custom exception,
you provide another object to the create method, which contains a list of key/value pairs
to the create method such as those illustrated in the following script:

var errParms = {source: 'GenerateError', ErrorID: '999'};

Error.create('A custom error was generated', errParms);

This additional information in the errParms object can then be used in the catch clause
for better error handling and logging.

Number Extension

The Number extension is similar to the Date extension in that it has a few static and
instance methods for extending the underlying JavaScript type and providing support for
parsing and output formatting. Just like dates, the formatting of numbers can vary based
on the specified culture. This is especially true when displaying currencies that are stored
as numbers. The Number extension has two methods for parsing and another two for for-
matting values as listed in Table 4-5.

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES 61

828-8 CH04.qxd 10/14/07 8:07 PM Page 61

Table 4-5. Methods of the Number Extension

Method Name Description

format Formats a number by the invariant culture

localeFormat Formats a number by the current culture

parseInvariant Parses a number value from a string

parseLocale Parses a number from a locale-specific string

The two formatting methods of the Number extension support four format providers
that can be used depending on a type of number (e.g., percentage, currency, etc.). These
format providers are listed in Table 4-6.

Table 4-6. List of the Supported Number Formats

Format Description

p The number is converted to a string that represents a percent (e.g., -
1,234.56 %).

d The number is converted to a string of decimal digits (0-9), prefixed by
a minus sign if the number is negative (e.g., -1234.56).

c The number is converted to a string that represents a currency amount
(e.g., $1,234.56).

n The number is converted to a string of the form "-d,ddd,ddd.ddd…"
(e.g., -1,234.56).

So as you can see the c format provider can be used to automatically format a num-
ber into currency and even localize as specified by the CultureInfo class on the server.
The following script uses the parseInvariant method to parse out a number from a string
value, and then using the localeFormat, the number is displayed as a currency value.

function DisplayCurrency() {

var num = Number.parseInvariant("130.52");

alert (num.localeFormat("c"));

}

And, because the current culture had been implicitly set to United States, the cur-
rency format is $ with cents displayed after the decimal place as shown in Figure 4-4.

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES62

828-8 CH04.qxd 10/14/07 8:07 PM Page 62

Figure 4-4. Displaying a currency value in US $

Once again, just as with the Date extension, if you plan to use any culture-specific
functionality, be sure to set the EnableScriptGlobalization property of the ScriptManager
control to true.

Object Extension

The Object extension in the ASP.NET AJAX client library provides some level of reflection
functionality to JavaScript types. This is a far cry from the rich feature set of reflection in
the .NET Framework, but it is a potentially useful functionality in JavaScript. The Object
extension contains methods to describe the type and the type name of an object. This
extension contains only two static-like methods, getType and getTypeName, as shown in
Table 4-7.

Table 4-7. Methods of the Object Extension

Method Name Description

getType Returns the type of a specified object

getTypeName Returns the type name of an object

Type discovery can be particularly useful when you need to control the logic flow
based on the type of a parameter or other variables. Consider the following script block:

<script language=javascript type="text/javascript">

var num = new Number(4);

var date = new Date('05/31/2007');

function DisplayTypeInfo(obj) {

document.writeln("Value: " + obj + " | Type: "+

Object.getType(obj)+ " | Type Name: " +

Object.getTypeName(obj));

document.writeln("
");

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES 63

828-8 CH04.qxd 10/14/07 8:07 PM Page 63

}

DisplayTypeInfo(num);

DisplayTypeInfo(date);

</script>

In this script, two variables of type Number and Date are instantiated and assigned ini-
tial values. After that, the DisplayTypeInfo function is called to display the type
information for these two variables. The getType method is called here for the type of the
variable followed by the getTypeName to get the name of the variable type. As you can see
in Figure 4-5, the type contains more information than the type name.

Figure 4-5. Displaying type and type names of two variables

String Extension

Last but not least, the JavaScript’s native String object has been extended in the xyz to
include a handful of useful additions to once again make it somewhat more similar to the
String class in the .NET Framework. These additions can be very useful because string
processing in one form or another is done quite often in most applications. Other than
two formatting methods (similar to those found in the Date and Number extensions), the
String extension includes a few trimming methods among others as shown in Table 4-8.

Table 4-8. Methods of the String Extension

Method Name Description

endsWith Returns a boolean value indicating whether or not the end of the
String object matches the specified string

format Formats a string by replacing placeholders with provided values

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES64

828-8 CH04.qxd 10/14/07 8:07 PM Page 64

localeFormat Formats a string by replacing placeholders with provided values with
locale specificity

startsWith Returns a boolean value indicating whether or not the start of the
String object matches the specified string

trim Removes leading and trailing spaces from a String object

trimEnd Removes trailing spaces from a String object

trimStart Removes leading white spaces from a String object

The following small script illustrates usage of some of the main methods of the
String extension:

<script language=javascript type="text/javascript">

var asp = " ASP";

var dotnet =".NET ";

var ajax = " Ajax ";

alert (String.format("{0}{1} {2} String Extension!",

asp.trimStart(),dotnet.trimEnd(),ajax.trim()));

</script>

In this script, all three available trimming methods were used to trim the extra space
from the start, end, and overall part of the designated string. These string variables were
then passed into the format method as arguments to be displayed (as shown in Figure 4-6)
just like it would be with the .NET Framework’s String class. One last point to note here is
that the two formatting methods of the String extension are static methods, unlike the rest
of the methods, which are instance based.

Figure 4-6. Using methods of the String extension

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES 65

Method Name Description

828-8 CH04.qxd 10/14/07 8:07 PM Page 65

■Note The ASP.NET AJAX client library also includes a StringBuilder class in the Sys namespace that
is quite similar in terms of functionality to the StringBuilder class in the .NET Framework and is a great
candidate to be used for extensive string manipulation on the client.

The Sys Namespace
The Sys namespace is the root namespace for xyz and basically is the running engine
behind ASP.NET AJAX. The members of this namespace are classes responsible for the
core AJAX functionality you have seen so far in the book. These classes do all the under
the hood heavy lifting, handling issues such as data serialization, application life cycle,
and asynchronous operation, to just name a few. Extensive coverage of all the classes and
features of this namespace is well beyond the scope of this chapter, but you will learn
about some of the key pieces of this important namespace.

Table 4-9 lists the main namespaces of the ASP.NET AJAX Client Library.

Table 4-9. Namespaces of the ASP.NET AJAX Client Library

Namespace Description

Sys Root namespace; also contains some base classes such as
Sys.CultureInfo

Sys.Net Provides networking and communication support such as facilities to
access web services

Sys.UI Contains a set of classes for comprehensive UI support, such as events
and control properties

Sys.Services Provides support for ASP.NET application services, such as
Login/Authentication

Sys.Serialization Provides support for data serialization/JSON

Sys.WebForms Contains classes for asynchronous page loading, among others

The root Sys namespace includes classes and interfaces used throughout the
ASP.NET AJAX Client Library by all other namespaces. One such interface is IDisposable,
which much like its cousin interface in the .NET Framework, provides a consistent inter-
face for proper deletion of objects in the ASP.NET AJAX Client Library. The root Sys
namespace also includes the all-important Sys.Application class, which plays a major
role in the page life cycle of an ASP.NET AJAX page. You can see the list of classes included
in the root Sys namespace in Table 4-10.

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES66

828-8 CH04.qxd 10/14/07 8:07 PM Page 66

Table 4-10. Classes of the Sys Root Namespace

Class Name Description

Application Provides objects and methods that expose client events and manage
client components and their life cycles

ApplicationLoadEventArgs Container object for arguments of the Application Load event

CancelEventArgs Base class for events that can be canceled

Component Base class for all ASP.NET AJAX objects, including the Control class and
the Behavior class

CultureInfo Culture information object that can be used to provide locale-specific
functionality (can be used for globalization)

Debug Provides debugging and tracing functionality for client-side JavaScript
code

EventArgs Base class used for storing event arguments

EventHandlerList A collection of client events for a component containing event names
and handlers as key/value pairs

PropertyChangedEventArgs Contains event arguments associated with changed properties

StringBuilder Provides facilities for better and more efficient string concatenation

As mentioned earlier, the classes of the Sys namespaces make up the underlying
engine of ASP.NET AJAX. If you inspect the individual JavaScript files that are dynamically
generated and loaded on the browser by the ScriptManager, you’ll see references to the Sys
namespace. With that said, let’s start by talking about the page life cycle and the
Sys.Application class.

Sys.Application
The Sys.Application class is an integral part of an ASP.NET AJAX page. After the initial
load of resources, including script files and other rendered components, from the server
onto the client, the Sys.Application class then manages the page life cycle. In fact, if you
view the source of any ASP.NET AJAX page, you would find the following script near the
bottom of the page:

<script type="text/javascript">

<!--

Sys.Application.initialize();

// -->

</script>

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES 67

828-8 CH04.qxd 10/14/07 8:07 PM Page 67

The call to the initialize() method, as the name suggests, initializes an instance of
the Application class by raising the load event, which then resides on the browser for the
remainder of the application life cycle. Therefore, the role and function of the Application
class is analogous to the role of the Page class in a typical ASP.NET page. For ASP.NET
AJAX pages, the Sys.Application class picks up where the Page class left off on the server
side. However, among other things, one big difference is that the client-side events of a
page as included in the Sys.Application class are a lot fewer than those offered in the
server-side Page class. In fact, there are only three events: init, load, and unload. Inter-
nally, the Sys.Application classes map events of JavaScript’s window object to these three
events. Table 4-11 lists these three events of the Sys.Application class.

Table 4-11. Events of the Sys.Application Class

Event Name Description

init Raised after scripts have been loaded and immediately before objects
are created

load Raised after scripts have been loaded and objects in the page have been
created and initialized

unload Raised right before all objects in the page are disposed of

Much like server-side ASP.NET, where Page_Load is the default event handler for the
server-side Load event, the Sys.Application class also provides default event handlers for
the client-side load and unload events. Consider the following script block:

function pageLoad()

{

alert ('Loading Page...');

//load components

}

function pageUnload()

{

alert ('Page unloading...');

}

pageLoad is automatically executed as soon as the load event is triggered; the
pageUnload method is executed when the unload event is triggered. Once again, you do not
have to write any custom event handlers for these two methods. These two methods are
automatically wired up to their corresponding events by the Sys.Application class.

Keep in mind that there can be many more than the aforementioned three events on
a page because components in a page can expose their own sets of events. We’ll discuss
event handling in a later section in this chapter.

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES68

828-8 CH04.qxd 10/14/07 8:08 PM Page 68

Other than events, the Sys.Application class also contains a number of methods for
managing components in a page. For instance, you can use the getComponents method to
get a list of all registered components on a page. You can also use the findComponent
method to check the existence of a component in the page. This method takes in two
parameters, the name of the component and the ID of the parent component (if any).
In the following script, we check for the existence of a control called CustomComponent in a
parent control with the ID of Panel1.

<script language=javascript type="text/javascript">

if ((Sys.Application.findComponent('CustomComponent', Panel1)))

alert ('CustomComponent was found on the page!');

</script>

■Note You can use $find as a shortcut to Sys.Application.findComponent. This is one of many
global shortcuts in the ASP.NET AJAX Client Library.

Table 4-12 contains a list of methods in the Application.Sys class.

Table 4-12. Methods of the Sys.Application Class

Method Name Description

addComponent Creates and initializes a component with the Application object

dispose Releases all dependencies held by the objects in the page

findComponent Finds and returns the specified component object

getComponents Returns an array of all components that have been registered in the
page using the addComponent method

initialize Initializes the Application object

notifyScriptLoaded Boolean value indicating whether all the scripts have been loaded

queueScriptReference Used to queue script files that will be loaded in a sequential order

raiseLoad Raises the load event

registerDisposableObject Registers an object/component with the application and manages
the object requiring disposal

removeComponent Removes an object from the application or disposes the object if it
is disposable

unregisterDisposableObject Removes/unregisters a disposable object from the application

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES 69

828-8 CH04.qxd 10/14/07 8:08 PM Page 69

Sys.Component and Client Component Model
The Sys.Component class is another pivotal component of the ASP.NET AJAX Client Library.
This is also the base class that is ultimately extended by all graphical or nongraphical
client controls (Sys.UI.Control actually inherits from Sys.Component). Again, there is a
good level of similarity in the model between this class and the
System.ComponentModel.Component class of the .NET Framework, a recurring theme with
many of the classes in the Sys namespace you have probably noticed by now.

Sys.Component uses three key interfaces and four properties. The interfaces include
Sys.IDisposable, Sys.INotifyDisposing, and Sys.INotifyPropertyChange. Sys.IDisposable
is just like its .NET Framework counterpart. An interface for implementing proper logic
for disposing an object and the other two interfaces provide facilities for implementing
events used to detect disposing and changes in property of the underlying control.

The four properties are events, id, isInitialized, and isUpdating. The events property
returns an EventHandlerList object, which contains references to all event handlers that
have subscribed to the events of the current component. And while the id property
returns the ID field of the current object, isInitialized and isUpdated return boolean
types depending on the self descriptive condition. Just like most properties of the classes
in the ASP.NET AJAX Client Library, the properties of the Sys.Component class as well can
be accessed with built-in get and set accessors as shown in the following script snippet:

if (myComponent.get_isInitialized())

alert ('My component is initialized');

You can just as easily set a value to a property using the set accessor as done in the
following script:

myComponent.set_id('UniqueComponentID');

Lastly, Table 4-13 lists the methods of the Sys.Component class.

Table 4-13. Methods of the Sys.Component Class

Method Name Description

beginUpdate A boolean value called by the create method to indicate that the
process of setting properties of a component instance has begun

create Creates and initializes a component

dispose Removes the component from the application

endUpdate Called by the create method to indicate that the process of setting
properties of a component instance has finished

initialize Initializes the component

raisePropertyChanged Raises the propertyChanged event of the current Component object for
a specified property

updated Called by the endUpdate method of the current Component object

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES70

828-8 CH04.qxd 10/14/07 8:08 PM Page 70

Sys.UI
The Sys.UI namespace provides much of the needed infrastructure for developing client
visual controls. This includes numerous properties, events, and classes that can be
extended. Sys.UI inherits some of its functionality from the Sys.Component namespace.
Some of the members of this namespace are critical for anyone implementing custom
client controls (Sys.UI.Control) or behaviors (Sys.UI.Behavior) but used less often for
everyday AJAX development. Lastly, there are also classes for better control over DOM
elements and events in the browser. Table 4-14 lists the classes of the Sys.UI namespace.

Table 4-14. Classes of the Sys.UI Namespace

Class Name Description

Behavior Base class for all ASP.NET AJAX client behaviors

Bounds Object containing a number of properties for a specific position such
as position, width, and height

Control Base class for all ASP.NET AJAX client controls

DomElement Main class for handling client-side controls in the browser DOM

DomEvent Main class for handling client-side events in the browser, which
includes the ability to dynamically attach and detach events from
corresponding event handlers

Point Object containing integer coordinates of a position

Sys.UI also includes three enumerations accounting for some key events of DOM
elements. These enumerations are also used as properties in the Sys.UI.DomEvent class.
These enumerations are listed in Table 4-15.

Table 4-15. Enumerations of the Sys.UI Namespace

Enumeration Description

Key Key codes. Values include nonalphanumeric keys (e.g., up, right, down,
backspace, home, space, end, etc.).

MouseButton Mouse button locations (leftButton, middleButton, rightButton).

VisibilityMode Layout of a DOM element in the page when the element’s visible
property is set to false. Allowed values are hide and collapse.

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES 71

828-8 CH04.qxd 10/14/07 8:08 PM Page 71

Sys.UI.DomElement

The Sys.UI.DomElement and the Sys.UI.DomEvent, which we’ll look at later, are both classes
designed to provide better, more consistent, and browser-agnostic access and handling
of DOM elements in the browser. With one programming interface, you can reliably work
with all major browsers (IE, Firefox, Opera, Safari). Before looking at an example, take a
look at the methods of the Sys.UI.DomElement class as shown in Table 4-16.

Table 4-16. Methods of the Sys.UI.DomElement Class

Method Name Description

addCssClass Adds a CSS class to a DOM element

containsCssClass Returns a value indicating whether or not the DOM element contains
the specified CSS class

getBounds Returns the Bounds object for a specified DOM element

getElementById Returns a DOM element by ID (the $get shortcut is mapped to this
method)

getLocation Returns the absolute position of a DOM element

removeCssClass Removes a CSS class from a DOM element

setLocation Sets the position of a DOM element

toggleCssClass Toggles a CSS class in a DOM element

To better illustrate a few of the methods of the Sys.UI.DomElement class, consider the
following markup:

<body>

<form id="form1" runat="server">

<asp:ScriptManager ID="ScriptManager1" runat="server">

</asp:ScriptManager>

<div id="MovePanel">

Move me to:

X Coordinate

<input type="text" id="txtX" />

Y Coordinate

<input type="text" id="txtY" />

<input id="Button1" type="button" value="Move"

onclick="repositionPanel ()" />

</div>

</form>

</body>

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES72

828-8 CH04.qxd 10/14/07 8:08 PM Page 72

Here, we have two text boxes and a button all in a <div> tag. The text boxes hold the
new X and Y position for the entire panel to which it will be moved. When the user clicks
the button, a function called repositionPanel is executed, and the panel is relocated using
absolute positioning and set to the new coordinates. Figure 4-7 depicts the page when
initially loaded.

Figure 4-7. Using DomElement sample page

Let’s now examine the script behind repositionPanel that is responsible for moving
the panel to a new location on the page:

function repositionPanel()

{

var panel = $get('MovePanel');

var newX = Number.parseInvariant($get('txtX').value);

var newY = Number.parseInvariant($get('txtY').value);

Sys.UI.DomElement.setLocation(panel, newX,newY);

//Now use getLocation to retrieve the new coordinates

var newPos = Sys.UI.DomElement.getLocation(panel);

alert(String.format("Moved to: {0}, {1}", newPos.x, newPos.y));

}

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES 73

828-8 CH04.qxd 10/14/07 8:08 PM Page 73

Notice how the $get shortcut is used to retrieve the control reference by a specified
ID. This is definitely a lot shorter than having to write document.getElementById(…) as
commonly done in raw JavaScript. After the X and Y coordinates are parsed out of the text
boxes using the parseInvariant static method of the Number object, they are passed onto
the setLocation method of the Sys.UI.DomElement for the panel to be moved to the new
coordinates. setLocation takes in three parameters: the control name, the new X coordi-
nate, and the new Y coordinate. After the relocation, the getLocation method is used to
fetch the new coordinates from the panel object itself (as represented by the MovePanel
<div> tag). Lastly, the format method of the String extension is used to display the new
coordinates to the user as shown in Figure 4-8.

Figure 4-8. The panel is relocated to the new coordinates with a message box showing the
new positional values.

Nothing is done here that could not be done by raw JavaScript alone. But using the
ASP.NET AJAX Client Library is not only a lot cleaner with much less code, but it also
provides a level of abstraction that guarantees expected behavior in all of the popular
browsers (IE, Firefox, Opera, Safari).

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES74

828-8 CH04.qxd 10/14/07 8:08 PM Page 74

Sys.UI.DomEvent

Sophisticated event handling has long been a major weakness of web applications in
general when compared to the rich and stateful desktop applications. The ASP.NET AJAX
Client Library takes a major step in closing the gap (to some extent) from a functional
standpoint between the event modeling in .NET Framework and client-side ASP.NET.
Sys.UI.DomEvent provides a browser-agnostic model packed with useful properties and
events that can be easily used with DOM elements. This comes in particularly handy con-
sidering the fact that browsers at times differ in their API and handling of DOM events.
Table 4-17 lists the methods of the Sys.UI.DomEvent class.

Table 4-17. Methods of the Sys.UI.DomEvent Class

Method Name Description

addHandler Adds a DOM event handler to the DOM element; also aliased by the
$addHandler shortcut

addHandlers Adds a list of DOM event handlers to the DOM element; also aliased by
the $addHandlers shortcut.

clearHandlers Removes all DOM event handlers from the DOM element that were
added through the addHandler or the addHandlers methods; also aliased
by the $clearHandlers shortcut

preventDefault Prevents the default DOM event from executing

removeHandler Removes a DOM event handler from the DOM element that exposes
the event; also aliased by the $removeHandler shortcut

stopPropagation Stops the propagation of an event to its parent elements

In the previous script sample, you saw how to move a panel around the screen with
client-side only code using the methods of the Sys.UI.DomElement class. In that example,
the function name was set to the onclick attribute of the button as is often done in classic
JavaScript. We could just as easily use the addHandler method to wire up the click event of
the button to the desired function.

The addHandler method has three required parameters: the target element, the name
of the event, and the event handler. So in the case of the previous sample, we would have

Sys.UI.DomElement.addHandler(Button1, "click", repositionPanel);

or by using the $addHandler shortcut, we would have

$addHandler(Button1, "click", repositionPanel);

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES 75

828-8 CH04.qxd 10/14/07 8:08 PM Page 75

In such a case, another thing that would have to be different is the function signature
of the click handler. It must now have support for the event object and the following sig-
nature:

function eventHandler (e) {…}

With that, we get all the added benefits of being able to extract potentially useful data
out of the event object. Speaking of useful data, take a look at the fields of the
Sys.UI.DomEvent class in Table 4-18.

Table 4-18. Fields of the Sys.UI.DomEvent Class

Parameter Name Description

altKey A boolean value indicating whether or not the event associated with the
Alt key occurred

button Returns a Sys.UI.MouseButton enumeration value indicating the actual
button of the mouse that was clicked

charCode Returns the character code of the key that initiated the event

clientX Returns the x-coordinate (in pixels) of the mouse pointer when the
event was triggered

clientY Returns the y-coordinate (in pixels) of the mouse pointer when the
event was triggered

ctrlKey A boolean value indicating whether or not the event associated with
the Ctrl key occurred

offsetX Returns the x-coordinate (in pixels)of the mouse relative to the object
that triggered the event

offsetY Returns the y-coordinate (in pixels)of the mouse relative to the object
that triggered the event

screenX Returns the x-coordinate (in pixels)of the mouse relative to the center
of the screen

screenY Returns the y-coordinate (in pixels)of the mouse relative to the center
of the screen

shiftKey A boolean value indicating whether or not the event associated with
the Shift key occurred

target Returns the target object used by the triggered event

type Returns the name of the triggered event

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES76

828-8 CH04.qxd 10/14/07 8:08 PM Page 76

The $addHandlers shortcut (Sys.UI.DomEvent.addHandlers) can be used to wire up
more than one event handler to a particular event; in which case, you can have multiple
event handlers that will be executed when the target event has been triggered.

To dynamically remove an event handler from an event on a control, use the
Sys.UI.DomEvent.removeHandler (or $removeHandler) with the identical signature as the
addHandler method (the target control, the event name, and the event handler). To
remove the repositionPanel method as the event handler of Button1, you would have the
following script:

$removeHandler(Button1, "click", repositionPanel);

Also, if you wanted to clear all the associated event handlers with an event on a
control, you could do so with the self-explanatory Sys.UI.DomEvent.clearHandler (or the
$clearHandler shortcut).

Global Shortcuts
All these shortcuts have been either mentioned or explained by this point in the chapter.
However, given their utility and importance, they’re worth another look in one location.
You will come across these not only in your development needs but also in countless
places in ASP.NET AJAX controls and libraries. Table 4-19 lists all the global shortcuts in
the ASP.NET AJAX Client Library.

Table 4-19. Global Shortcuts in the ASP.NET AJAX Client Library

Shortcut Description

$addHandler Shortcut to the Sys.UI.DomEvent.addHandler method

$addHandlers Shortcut to the Sys.UI.DomEvent.addHandlers method

$clearHandlers Shortcut to the Sys.UI.DomEvent.clearHandlers method

$create Shortcut to the Sys.Component.create method

$find Shortcut to the Sys.Application.findComponent method

$get Shortcut to the Sys.UI.DomElement.getElementById method

$removeHandler Shortcut to the System.UI.DomEvent.removeHandler method

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES 77

828-8 CH04.qxd 10/14/07 8:08 PM Page 77

Other Commonly Used Classes in the Sys
Namespace

The following sections describe other often-used classes in the Sys namespace in greater
detail.

Sys.Browser

One of the challenges of web development for more than a decade has been targeting
and accounting for browser-specific behaviors. Typically, JavaScript is used to query the
various user agent parameters (obtained from the HTTP headers) to identify the browser
type and version. The Sys.Browser class makes the task of browser detection and targeting
a lot simpler than the traditional approach with JavaScript. Consider the following line of
script:

if (Sys.Browser.agent === Sys.Browser.Firefox)

// Write browser-specific logic for Firefox

As you can see, it’s extremely easy to identify the browser type here with much less
code than it would take in raw JavaScript. There are four predefined browser types to
account for the four most popular browsers on the market:

* Sys.Browser.InternetExplorer

* Sys.Browser.Firefox

* Sys.Browser.Opera

* Sys.Browser.Safari

Identifying the browser version can just as easily be done with the version property
of the Sys.Browser class. Keep in mind that all methods of the Sys.Browser class are static
like and do not require instantiation.

Sys.StringBuilder

String concatenation is a relatively common task in JavaScript especially when you need
to dynamically inject HTML into a page via JavaScript. In such cases, plain old string con-
catenation can fast lead to very messy code. The Sys.StringBuilder class is somewhat
similar to its .NET Framework counterpart (System.Text.StringBuilder) in that they both
share similar method signatures for many of the methods. This class can also take in the
initial string as its constructor. All methods are instance based and thus require an

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES78

828-8 CH04.qxd 10/14/07 8:08 PM Page 78

instance object to be executed. Table 4-20 lists the methods of the Sys.StringBuilder
class.

Table 4-20. Methods of the Sys.StringBuilder Class

Method Name Description

append Appends a string to the end of the StringBuilder object

appendLine Appends a new string with a line feed at the end of the StringBuilder
instance

clear Clears the contents of the StringBuilder object

isEmpty Boolean value indicating whether or not the StringBuilder object has
any content

toString Returns a string from the contents of a StringBuilder instance

To see the Sys.StringBuilder class in action, take a look at the following function:

function stringBuilderSample()

{

var sb = new Sys.StringBuilder("<html>");

sb.appendLine('<head></head>');

sb.appendLine('<body>');

sb.appendLine('<div align=center>');

sb.appendLine('Chapter 4 - ASP.NET Ajax Client Libraries');

sb.append('</div>');

sb.append('</body></html>');

document.write(sb.toString());

}

In the preceding script snippet, a block of HTML is concatenated together to be sent
to the browser. Here you see that an instance of the Sys.StringBuilder class is created
with the initial string “<html>”, and additional lines are added using the appendLine
method. At the end, the entire content of the StringBuilder is thrown to the browser by
using the toString method of the StringBuilder instance. You can see the result of the
preceding script in Figure 4-9. This is a pattern you most certainly have already seen all
too often with the System.Text.StringBuilder class in the .NET Framework.

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES 79

828-8 CH04.qxd 10/14/07 8:08 PM Page 79

Figure 4-9. Generating HTML dynamically via JavaScript using the Sys.StringBuilder class

Summary
In this chapter, you learned about the JavaScript type extensions designed to enhance the
native types and associated utilities in JavaScript. You also learned about some of the
important classes in the Sys namespace of the ASP.NET AJAX Client Library and some of
the rich functionality they bring to the table in an effort to bring some similarity to the
.NET Framework in the world of client-side web development with JavaScript.

There is certainly a lot more to the ASP.NET AJAX Client Library that was not covered
in this chapter, including a few entire namespaces (Sys.Webforms, Sys.NET, and
Sys.Services). For a complete reference of the ASP.NET AJAX Client Library, feel free to
view the online documentation at http://ajax.asp.net/docs. In the next chapter, we’ll
look into the rich and powerful server controls in ASP.NET AJAX and how easily they can
be used to add quite capable AJAX functionality to your web applications.

CHAPTER 4 ■ ASP.NET AJAX CLIENT L IBRARIES80

828-8 CH04.qxd 10/14/07 8:08 PM Page 80

http://ajax.asp.net/docs

Introducing Server Controls in
ASP.NET AJAX

The first three chapters of this book gave you an overview of ASP.NET AJAX and how you
can use it to build web applications to restrict unnecessary full page postbacks and pro-
cessing on your web pages, thus improving the performance and polish of your web
applications. Chapters 3 and 4 introduced you to the client-side controls presented by
ASP.NET AJAX and stepped you through many examples of how to use these controls in
JavaScript and in a new XML-based script called ASP.NET AJAX Library.

You looked at some advanced aspects of the scripting framework, including actions,
which are compound commands associated with an event or stimulus on a control;
behaviors, which are automatic units of functionality that can be associated with a con-
trol, enabling things such as drag and drop; and data binding, which allows for controls
to be wired up to each other or to themselves to pass data between them.

In this chapter, you will go to the other side of the action—the server—and begin
exploring the various server-side controls available to you when building your AJAX
applications. You have seen one of these controls, the ScriptManager control, already. In
this chapter, you will look at ScriptManager in more detail among other ASP.NET AJAX
server controls. In Chapter 6 you will learn more about how these controls work by
navigating through an application that actually uses these controls.

Using ASP.NET AJAX Server Controls in Visual
Studio 2005
Visual Studio 2005 and ASP.NET offer some great design tools that allow you to visually
construct pages, which fits in neatly with the concepts that ASP.NET AJAX introduces.
Developers can place controls on a page, and these controls generate the JavaScript that
is necessary to implement the AJAX functionality. In the following sections, you’ll look at
how to use these controls within the integrated development environment (IDE).

81

C H A P T E R 5

828-8 CH05.qxd 10/8/07 4:10 PM Page 81

In Chapter 3, you learned how to create a new AJAX-enabled ASP.NET site. Alterna-
tively, you can just as easily create an AJAX-enabled ASP.NET web application if you have
installed the Web Application Project add-on or Visual Studio 2005 SP1. Either way, upon
creating the new project, you will notice the new added section to the Toolbox titled AJAX
Extensions as shown in Figure 5-1.

Figure 5-1. Your Toolbox tab containing AJAX server controls

Now that you have the controls in your Toolbox, you can drag and drop them onto
your web forms. The rest of this chapter discusses these controls and their object models,
and in the next chapter, you’ll start using these controls in hands-on examples. At the
time of this writing, five server controls are included in the first release version of
ASP.NET AJAX: Timer, ScriptManager, ScriptManagerProxy, UpdateProgress, and UpdatePanel.
Currently, additional controls are packaged in the Futures CTP builds of ASP.NET AJAX,
which should surface in future releases of ASP.NET AJAX.

Using ASP.NET AJAX server controls is the easiest and quickest path to implementing
AJAX functionality in your ASP.NET application. They are also ideal for when a minimal
amount of change in desired for existing ASP.NET applications that make extensive use of
ASP.NET server controls.

■Note If you plan on using Visual Studio 2005 AJAX-enabled web applications (following the web applica-
tion model and not the ASP.NET web site model), be sure to install ASP.NET AJAX after installing Visual Studio
2005 SP1.

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX82

828-8 CH05.qxd 10/8/07 4:10 PM Page 82

Introducing the ScriptManager Control
The ScriptManager control is pivotal at the very heart of ASP.NET AJAX. This control, as its
name suggests, manages the deployment of the various JavaScript libraries that implement
the client-side runtime functionality of ASP.NET AJAX. This control is also heavily used by
other sever controls to provide partial page rendering and script file management.

Using the ScriptManager

You’ve already used the ScriptManager control to create references on the client side with
the ASP.NET AJAX Library. To add ScriptManager to your page, simply drag and drop it
onto an ASP.NET page as shown in Figure 5-2.

Figure 5-2. The ScriptManger control

Now, if you take a look at the code behind this page, you’ll see that placing the
ScriptManager control has caused the following script to be added to your page:

<asp:ScriptManager ID="ScriptManager1" runat="server" />

When you run the page and select View ~TRA Source in the browser, you’ll see that
the preceding one-line script generated the following scripts among other code in the
page output:

<script src="/Ajax/WebResource.axd?d=HQhspev9RtnoVp5Ca4MubA2&

t=633008366579531250" type="text/javascript">

</script>

<script src="/Ajax/ScriptResource.axd?d=rbfRw_fjV44N4zFu5uugvXCg0fpE5bOdbRFvvkMhZEO1

-ghFYTQ7i9aLWWp9hO2901tgv-pDZFxuTtMikT21d-q8lo-xXLBcAYv3xq0hiRM1&t=

633051881703906250" type="text/javascript">

</script>

<script src="/Ajax3/ScriptResource.axd?d=rbfRw_fjV44N4zFu5uugvXCg0fpE5bOdbRFvvkMhZEO

1-ghFYTQ7i9aLWWp9hO2901tgv-pDZFxuTtMikT21d3JhQBwnJ44PsSIlv

SkVAgc1&t=633051881703906250" type="text/javascript">

</script>

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX 83

828-8 CH05.qxd 10/8/07 4:10 PM Page 83

<script type="text/javascript">

//<![CDATA[

Sys.WebForms.PageRequestManager._initialize('ScriptManager1',

document.getElementById('form1'));

Sys.WebForms.PageRequestManager.getInstance()._updateControls([], [], [], 90);

//]]>

</script>

■Note Because the client scripts are generated automatically, your results may vary somewhat from the
preceding script block.

ScriptResource.axd and WebResource.axd are, in fact, ASP.NET HTTP handlers that
emit client-side JavaScript for AJAX functionality in the page. The encoded data after the
querystring holds metadata information about the pertinent resources. The last script
block contains client-side scripts for any components on the page. If you look inside the
Web.config file of your ASP.NET AJAX-enabled project, you’ll notice the following block,
which registers the aforementioned HTTP handlers for use in your project:

<httpHandlers>

<add verb="*" path="*_AppService.axd" validate="false"

type="System.Web.Script.Services.ScriptHandlerFactory,

System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35"/>

<add verb="GET,HEAD" path="ScriptResource.axd"

type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions,

Version=1.0.61025.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"

validate="false"/>

</httpHandlers>

Programming with the ScriptManager

As a core component of ASP.NET AJAX, the ScriptManager control has much functionality,
including the capability to communicate with ASP.NET authentication services, to access
web services, to render culture-specific information, to perform sophisticated script
management, to do partial page rendering, and more. It inherits from the Control class
(in the System.Web.UI namespace), and in addition to the members of that class, also has
some of the following methods as shown in Table 5-1.

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX84

828-8 CH05.qxd 10/8/07 4:10 PM Page 84

Table 5-1. ScriptManager Control Methods

Method Name Function

GetCurrent (Static) Gets the ScriptManager instance for a Page object.

RegisterAsyncPostBackControl Registers a control for asynchronous postbacks.

RegisterDataItem Sends custom data to a control during partial-page rendering.

RegisterDispose Registers a script that can be used to properly dispose a control
inside an UpdatePanel control. This script is executed when the
UpdatePanel gets disposed.

RegisterExtenderControl Registers an extender control with the existing ScriptManager
instance.

RegisterPostBackControl Registers a control for postback. This method can be used for
existing controls inside an UpdatePanel that you require to do full
postbacks.

RegisterScriptControl Registers a script control with the existing ScriptManager
instance.

SetFocus Sets the browser focus to a specified control.

Table 5-2 lists the properties of the ScriptManager control excluding the properties
inherited from the Control and Object classes.

Table 5-2. ScriptManager Control Properties

Property Name Function

AllowCustomErrorsRedirect Boolean value indicating whether or not to use the custom errors
section of Web.config to handle errors in asynchronous postbacks

AsyncPostBackErrorMessage The error message that is sent to the client when an unhandled
server exception occurs during an asynchronous postback

AsyncPostBackSourceElementID The unique ID of the control that caused the asynchronous
postback

AsyncPostBackTimeout Indicates the period of time, in seconds, before asynchronous
postbacks time out if no response is received

AuthenticationService Returns the AuthenticationServiceManager object that is
associated with the current ScriptManager instance

EnablePageMethods Boolean value indicating whether static page methods on an
ASP.NET page can be called from client script

EnablePartialRendering Boolean value that enables partial rendering of a page

EnableScriptGlobalization Boolean value indicating whether the ScriptManager control
renders script in the browser to support parsing and formatting
culture-specific information

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX 85

Continued

828-8 CH05.qxd 10/8/07 4:10 PM Page 85

EnableScriptLocalization Boolean value indicating whether the ScriptManager control loads
localized versions of script files

IsDebuggingEnabled Boolean value indicating whether the debug versions of client
script libraries will be rendered

IsInAsyncPostBack Boolean value indicating whether the current postback is being
executed in partial-rendering mode

LoadScriptsBeforeUI Boolean value indicating whether scripts are loaded before or
after markup for the page UI is loaded

ScriptMode Determines whether to render debug or release versions of client
script libraries

ScriptPath The path to the location that is used to build the paths to ASP.NET
AJAX Extensions as well as other script files

Scripts Returns a ScriptReferenceCollection object that contains
ScriptReference objects that are registered with the
ScriptManager control declaratively or programmatically

Services Returns a ServiceReferenceCollection object that contains a
ServiceReference object for each web service that ASP.NET AJAX
Extensions expose on the client

SupportsPartialRendering Boolean value indicating whether the client supports partial-page
rendering

Performing Partial Rendering

The EnablePartialRendering property of this control sets how your page will behave con-
cerning updates. If this is false (the default), full-page refreshes occur on round-trips to
the server. If this is true, then postbacks and full-page refreshes are suppressed and
replaced with targeted and partial updates. Instead of the application performing a full
postback, the application simulates full postbacks using the XMLHttpRequest object when
this is set to true (as you would expect from an AJAX application).

On the server side, the page is processed in the normal way, responding to any con-
trols that call _doPostBack(). Existing server-side postback events continue to fire, and
event handlers continue to work as they always have. It is intended, by design, that
AJAX-enabled applications change existing ASP.NET applications as little as possible.

The power of the ScriptManager control, when partial rendering is enabled, comes at
render time. It determines, with the aid of the UpdatePanel control, which portions of the
page have changed. The UpdatePanel, which you will see more of later in this chapter,
defines regions in the page that get updated as a chunk. If, for example, you have a page

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX86

Table 5-2. Continued

Property Name Function

828-8 CH05.qxd 10/8/07 4:10 PM Page 86

containing a number of chat rooms and you want to update only a single chat room, you
would surround that area of the page with an UpdatePanel control.

The ScriptManager control overrides the rendering of the page and instead sends
HTML down to the XMLHttpRequest object for each of the UpdatePanel controls (which we
will discuss later) on the page.

Specifying Additional Script Components Using the ScriptReference Tag

The ScriptManager control has a <Scripts> child tag that can specify additional scripts to
download to the browser. This can contain one or more <asp:ScriptReference> tags that
specify the path to the script. Upon registering a script file through this object, you will be
able to call its methods on your page. The ScriptReference object has the capability to use
scripts that are either stored as embedded resources in an assembly or as files on the web
server.

To register an embedded script, you must first set the Name property of the
ScriptReference tag to the name of the actual file that contains the script and then
set the Assembly property to the name of the assembly containing the script. You can
see an example of this in the following script snippet:

<asp:ScriptManager ID="ScriptManager1" runat="server">

<Scripts>

<asp:ScriptReference Assembly="MyAssembly" Name="MyAssembly.MyScript.js" />

</Scripts>

</asp:ScriptManager>

More simply, to use a file-based script that resides on the web server, you can set the
Path property of the ScriptReference tag to the location of the file as shown here:

<asp:ScriptManager ID="ScriptManager1" runat="server">

<Scripts>

<asp:ScriptReference Path="MyScript.js" />

</Scripts>

</asp:ScriptManager>

When you run the page containing the preceding script and view the source of the
browser output, you’ll notice that a new script code block has been added:

<script src="MyScript.js" type="text/javascript"></script>

Before leaving the ScriptReference object, let’s take a look at its properties as shown
in Table 5-3.

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX 87

828-8 CH05.qxd 10/8/07 4:10 PM Page 87

Table 5-3. ScriptReference Tag Properties

Property Name Function

Assembly Actual name of the assembly that contains the client script file as an
embedded resource

IgnoreScriptPath Indicates whether the ScriptPath property is included in the URL when
you register a client script file from a resource

Name Name of the embedded resource that contains the client script file

NotifyScriptLoaded Indicates whether the additional code should be added to the script file
to notify the ScriptLoaded method of the Sys.Application class

Path Specifies the path where the ScriptManager control can find the
stand-alone script file to download

ResourceUICultures Comma-delimited list of UI cultures that are supported by the Path
property

ScriptMode The mode of the target script (debug, release, etc.)

Specifying Services

In Chapter 2, you saw how a service can be directly consumed in a client application
through a script-based proxy. You can use the ScriptManager control to reference
this using the <Services> child tag. This tag should contain one or more
<asp:ServiceReference> tags that specify the service you want to reference.

This tag has two attributes:

• Path: This specifies the path to the service. You briefly saw in Chapter 2 that
JavaScript proxies to web services on ASP.NET AJAX web sites can be automatically
generated by postfixing /js at the end of its URI. So, for example, the web service
at wstest.asmx would return a JavaScript <asp:ServiceReference> proxy that could
be used to call it at wstest.asmx/js. When using the tag to specify the service, most
of the work would be done automatically for you on the client side with the help
of the ScriptManager control. Here’s an example:

<Services>

<asp:ServiceReference Path="wstest.asmx"/>

</Services>

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX88

828-8 CH05.qxd 10/8/07 4:10 PM Page 88

• InlineScript: This is a boolean value (true or false) that specifies whether the proxy
generation script is included as an inline script block in the page itself or obtained
by a separate request. The default is false. When running the page that has this
property set to true and uses the <Services> tag of the ScriptManager control, you
get the following additional code on the client:

<script src="wstest.asmx/js" type="text/javascript"></script>

Error Handling in the ScriptManager Control

The ScriptManager control provides an error-handling mechanism whereby you can specify
an error message or implement more in-depth logic in the event of an error. This is particu-
larly useful for the client experience because you can then help your users gracefully
handle errors that occur within the contents of the ScriptManager.

The two easiest ways to implement error handling for the ScriptManager control are to
use either the AsyncPostBackError event or set the AsyncPostBackErrorMessage property of the
ScriptManager tag. Here’s an example of using the AsyncPostBackErrorMessage property:

<asp:ScriptManager ID="ScriptManager1" runat="server" AsyncPostBackErrorMessage=

"An error has occured within the ScriptManger tag." />

For more sophisticated error handling, however, it’s imperative to handle the
AsyncPostBackError event. You can, for instance, capture the message of the exception
and dynamically set it to the AsyncPostBackErrorMessage property among other desired
logic to handle the error:

protected void ScriptManager1_AsyncPostBackError(object sender,

AsyncPostBackErrorEventArgs e)

{

ScriptManager1.AsyncPostBackErrorMessage = e.Exception.Message;

//Implement further error handling logic

}

This concludes the tour of the ScriptManager control. In the rest of this chapter, we’ll
look at the other server-side controls offered by the ASP.NET AJAX framework. In the next
chapter, we’ll revisit this control through several examples.

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX 89

828-8 CH05.qxd 10/8/07 4:10 PM Page 89

Introducing the ScriptManagerProxy Control
The ScriptManagerProxy control is available as an additional script manager for a page.
It also allows for custom authentication services through its AuthenticationService prop-
erty and profile services through the ProfileServiceManager property. Because only one
ScriptManager control is allowed per ASP.NET page, if you use master and content pages,
you cannot place additional ScriptManager controls on any of the content pages. The
ScriptManagerProxy control enables you to place scripts and/or services in your content
pages. Before delving deeper into this control, let’s also look at the properties for the
supported child tags of this control in Table 5-4.

Table 5-4. ScriptManagerProxy Child Tags

Property Name Function

AuthenticationService Returns the AuthenticationServiceManager object (for custom
authentication service) that is associated with the current
ScriptManagerProxy instance

ProfileService Returns the ProfileServiceManager object that is associated with
the current ScriptManagerProxy instance

Scripts Returns a ScriptReferenceCollection object that contains a
ScriptReference object for each script file that is registered with
the ScriptManagerProxy control

Services Returns a ServiceReferenceCollection object that contains a
ServiceReference object for each service that is registered with
the ScriptManagerProxy control

As mentioned earlier, the ScriptMangerProxy control is ideal for use in content pages
where a ScriptManager has already been defined in the corresponding master page. To
better illustrate this, consider the following master page, MasterPage.aspx:

<%@ Master Language="C#" AutoEventWireup="true" CodeBehind=

"MasterPage.master.cs" Inherits="MasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX90

828-8 CH05.qxd 10/8/07 4:10 PM Page 90

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

<title>Sample Master Page</title>

</head>

<body>

<form id="form1" runat="server">

<div>

<asp:ScriptManager ID="ScriptManager1" runat="server" />

This is the Master page

It contains this ScriptManager control:

<asp:ContentPlaceHolder ID="ContentPlaceHolder1" runat="server">

</asp:ContentPlaceHolder>

</div>

</form>

</body>

</html>

And we also create a new content page based on this master page called
ContentPage.aspx with the following code:

<%@ Page Language="C#" MasterPageFile="~/MasterPage.Master" AutoEventWireup="true"

CodeBehind="ContentPage.aspx.cs" Inherits="ContentPage" Title="Sample Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID=➥

"ContentPlaceHolder1" runat="server">

</asp:Content>

If you run the ContentPage.aspx page and look at the output, as expected you will see
the same general output that is generated by the ScriptManager control from the master
page consisting of the three main script blocks (among others) pointing to the
WebResource.axd and ScriptResource.axd as shown here:

<script src="/Ajax/WebResource.axd?d=HQhspev9RtnoVp5Ca4MubA2&➥

t=633008366579531250" type="text/javascript"></script>

<script src="/Ajax/ScriptResource.axd?d=rbfRw_fjV44N4zFu5uugvXCg0fpE5bOdbRFvvkMhZEO1

-ghFYTQ7i9aLWWp9hO2901tgv-pDZFxuTtMikT21d-q8lo-xXLBcAYv3xq0hiRM1

&t=633051881703906250" type="text/javascript">

</script>

<script

src="/Ajax/ScriptResource.axd?d=rbfRw_fjV44N4zFu5uugvXCg0fpE5bOdbRFvvkMhZEO1➥

-ghFYTQ7i9aLWWp9hO2901tgv-pDZFxuTtMikT21d3JhQBwnJ44PsSIlvSkVAgc1➥

&t=633051881703906250" type="text/javascript"></script>

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX 91

828-8 CH05.qxd 10/8/07 4:10 PM Page 91

But suppose you need additional AJAX functionality in your content page. For exam-
ple, you might want to take advantage of one of many great controls available in the
ASP.NET AJAX Control Toolkit (covered extensively in Chapters 7 and 8). These controls
require additional scripts that may not have been included in the master page. That is
precisely where the ScriptManagerProxy control comes in.

Without getting into discussions about the ASP.NET AJAX Control Toolkit, we’ll add
one of its controls, the DragPanelExtender, to the content page with the help of the
ScriptManagerProxy control. To do this, drag and drop a ScriptManagerProxy control,
followed by a Label control, and a DragPanelExtender (from the AJAX Control Toolkit)
onto the page. Set the text property of the Label control to some text such as “You can
drag and drop this label.” At this point, your page should look similar to Figure 5-3 with
the following code:

<%@ Page Language="C#" MasterPageFile="~/MasterPage.Master" AutoEventWireup="true" ➥

CodeBehind="ContentPage.aspx.cs" Inherits="Ajax.ContentPage" ➥

Title="DragPanelExtender Demo" %>

<%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit" ➥

TagPrefix="cc1" %>

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1" ➥

runat="server">

<asp:ScriptManagerProxy ID="ScriptManagerProxy1" runat="server">

</asp:ScriptManagerProxy>

<cc1:DragPanelExtender ID="DragPanelExtender1" runat="server" EnableViewState=➥

"False" TargetControlID="Label1">

</cc1:DragPanelExtender>

<asp:Label ID="Label1" runat="server" Text="You can drag and drop this label.">

</asp:Label>

</asp:Content>

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX92

828-8 CH05.qxd 10/8/07 4:10 PM Page 92

Figure 5-3. Adding a ScriptManagerProxy control to a content page

The last step before running the page is to set the TargetControlID property of the
DragPanelExtender to the name of the Label control (i.e., Label1). When you run the page,
you can drag and drop the actual label throughout the page as shown in Figure 5-4.

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX 93

828-8 CH05.qxd 10/8/07 4:10 PM Page 93

Figure 5-4. Placing an UpdatePanel control on a web form

Now, if you view the browser output, you’ll notice that six additional script blocks
have been added to page output:

<script src="/Ajax3/ScriptResource.axd?d=IV7jia2nXbc7sCg1SWf3RbWQWNeQtdO8PGyfXw5p➥

BCt7QucJL9oE4uI487xHlPYvLbUfoMzAx0Dl7veKacOLUw2&t=633083898300000000” ➥

type="text/javascript">

</script>

<script src="/Ajax3/ScriptResource.axd?d=IV7jia2nXbc7sCg1SWf3RbWQWNeQtdO8PGyfXw5pBC➥

t6I1vaIgM5kgWHpAx-XLCYADQCoaENHDXR_fmnXYiB5Q2&t=633083898300000000"➥

type="text/javascript">

</script>

<script src="/Ajax3/ScriptResource.axd?d=IV7jia2nXbc7sCg1SWf3RbWQWNeQtdO8PGyfXw5p➥

BCuGnLpMX4aibann483UFkP4UcDhmgCv77Gz2BPJzb0sGQ2&t=633083898300000000"➥

type="text/javascript">

</script>

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX94

828-8 CH05.qxd 10/8/07 4:10 PM Page 94

<script src="/Ajax3/ScriptResource.axd?d=IV7jia2nXbc7sCg1SWf3RbWQWNeQtdO8PGyfXw5p➥

BCtjSYyc7zoec8BYAEgCq7Xfw8Q1uMQbSmJ5pFsFPdNdi53i7U-TPJGeX-iRo2uSjUM1&➥

;t=633083898300000000" type="text/javascript">

</script>

<script src="/Ajax3/ScriptResource.axd?d=IV7jia2nXbc7sCg1SWf3RbWQWNeQtdO8PGyfXw5p➥

BCsJ5ep-dAHOns9-VxfadeqV_ZfemVlTAoDxNenJwjPNYSz3EWAPxxWj3tXQmN4a7DI1&➥

;t=633083898300000000" type="text/javascript">

</script>

<script src="/Ajax3/ScriptResource.axd?d=IV7jia2nXbc7sCg1SWf3RbWQWNeQtdO8PGyfXw5p➥

BCtKZKNEWlh60o9nJAvWs0ew_AfDKm3BP43z3sXqwMBrtQT-xZwKhUv0ddRO4WY6Is41&➥

;t=633083898300000000" type="text/javascript">

</script>

These additional script blocks contain the extra scripting logic required for the func-
tionality by members of the AJAX Control Toolkit that were dynamically inserted into the
page by the ScriptManagerProxy control. Without ScriptManagerProxy, you couldn’t have
the required scripts handled automatically for you because this was all in the content
page.

Introducing the UpdatePanel Control
In typical ASP.NET 2.0 applications, if you do a postback on the web page, the entire page
will be rerendered. This causes a “blink” or a “flash” in the client or browser. On the
server, the postback is detected, which triggers the page life cycle. This ends up raising
the specific postback event handler code for the control that caused the postback, and
this calls upon the page’s event handler.

When you use UpdatePanel controls along with a ScriptManager control, you eliminate
the need for a full-page refresh. The UpdatePanel control is similar to a ContentPanel con-
trol in that it marks out a region on the web page that will automatically be updated
when the postback occurs (but without the aforementioned postback behavior on the
client). It instead communicates through the XMLHttpRequest channel—in true AJAX style.
The page on the server still handles the postback as expected and executes, raising event
handlers, and so on, but the final rendering of the page means that only the regions spec-
ified in the UpdatePanel control’s regions are created. Also, unlike the ScriptManager, you
can actually have multiple UpdatePanel controls on the same page and even have nested
UpdatePanel controls within one another.

Using the UpdatePanel Control

To use an UpdatePanel control, you simply drag and drop it onto the design surface of
your web form (see Figure 5-5).

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX 95

828-8 CH05.qxd 10/8/07 4:10 PM Page 95

Figure 5-5. Placing an UpdatePanel control on a web form

However, as you know, the UpdatePanel control cannot function without a
ScriptManager control on the page. Additionally, the ScriptManager control must be
located before any UpdatePanel controls on your page. In other words, as you read your
source code from top to bottom, the ScriptManager reference should appear before the
UpdatePanel ones. Using the Tasks Assistant will ensure that it is placed correctly. If your
ScriptManager control is not present or is incorrectly placed, you’ll get an error when you
try to open the page in a browser (see Figure 5-6).

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX96

828-8 CH05.qxd 10/8/07 4:10 PM Page 96

Figure 5-6. Error page when the UpdatePanel and ScriptManager controls aren’t properly
configured

The UpdatePanel control contains a designer surface where you can place HTML. This
markup is the only one updated upon a postback if the ScriptManager control is enabled
for partial updates. Consider Figure 5-7, where several text boxes and a button appear on
the screen. This application has two text boxes, two labels, and a button outside the
UpdatePanel control, and it has a label inside the UpdatePanel designer. The label on the
inside is called lblResult. The code behind the button reads as follows:

int x = Convert.ToInt16(txt1.Text);

int y = Convert.ToInt16(txt2.Text);

int z = x+y;

lblResult.Text = z.ToString();

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX 97

828-8 CH05.qxd 10/8/07 4:10 PM Page 97

As you can see, the label for the result gets updated to the value of the sum of the val-
ues of the text in the text boxes. Because lblResult is in the UpdatePanel control, and the
ScriptManager control is set to enable partial rendering, clicking the button updates only
the text within the UpdatePanel control. You will see and dissect more examples of this in
Chapter 6.

Figure 5-7. Simple application that uses the UpdatePanel control

Programming with UpdatePanel

The markup for the UpdatePanel control in the previous example is as follows:

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<ContentTemplate>

<asp:Label ID="lblResult" runat="server" Text="Label"></asp:Label>

</ContentTemplate>

</asp:UpdatePanel>

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX98

828-8 CH05.qxd 10/8/07 4:10 PM Page 98

The <asp:UpdatePanel> tag supports two child tags: the <ContentTemplate> tag and the
<Triggers> tag. Before moving on to discuss these tags, note the properties of the
UpdatePanel control excluding those inherited from the Control class as listed in Table 5-5.

Table 5-5. UpdatePanel Control Properties

Property Name Method

ChildrenAsTriggers Boolean value indicating whether postbacks from immediate child
controls of an UpdatePanel control update the panel’s content.

ContentTemplateContainer Returns a control object that you can then use later to add child
controls to.

Controls Returns ControlCollection object that contains the child controls for
the UpdatePanel control.

IsInPartialRendering Indicates whether the UpdatePanel control is being updated because
of an asynchronous postback.

RenderMode Indicates whether an UpdatePanel control’s content is enclosed in an
HTML <div> or element.

RequiresUpdate Indicates whether the content of the UpdatePanel control will be
updated.

UpdateMode Indicates when an UpdatePanel control’s content is updated. The
default is “always.”

Using the ContentTemplate Tag

The <ContentTemplate> tag defines the HTML or ASP.NET that will get updated by the
UpdatePanel control. You can use the designer to generate this HTML. If, for example, you
drag and drop a Calendar control onto the UpdatePanel control’s content template area
(see Figure 5-8), it will be defined within the <ContentTemplate> tag area.

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX 99

828-8 CH05.qxd 10/8/07 4:10 PM Page 99

Figure 5-8. Adding controls to the UpdatePanel control’s content template

You can see the markup that is produced by adding the calendar as follows:

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<ContentTemplate>

<asp:Label ID="lblResult" runat="server" Text="Label"></asp:Label>

<asp:Calendar ID="Calendar1" runat="server"></asp:Calendar>

</ContentTemplate>

</asp:UpdatePanel>

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX100

828-8 CH05.qxd 10/8/07 4:10 PM Page 100

Using Triggers

The other child tag for the UpdatePanel control is <Triggers>. This allows you to define
triggers for the update. As seen in the previous table, the UpdatePanel control has a prop-
erty calledUpdateMode. If you set this to Conditional (the default is Always), then updates to
the rendering of the markup will occur only when a trigger is hit. The Triggers tag con-
tains the collection of trigger definitions. In Visual Studio 2005, there is a designer-based
Trigger Collections Editor (accessed by clicking on the Triggers Collection property in the
property box for the UpdatePanel) that can be used to view and edit triggers within an
UpdatePanel as shown in Figure 5-9.

Figure 5-9. UpdatePanelTrigger Collections Editor in Visual Studio 200

There are two types of triggers supported within the <Triggers> tag:
AsyncPostBackTrigger and PostBackTrigger. You can actually use these triggers for
controls that are not within the UpdatePanel. The two tags differ only in the fact that
AsyncPostBackTrigger, as the name suggests, can handle asynchronous postback when
the trigger is raised. It also has an additional property called EventName, which allows you
to specify the event name of the target control responsible for initiating the update.

You define an AsyncPostBackTrigger trigger with an associated control (specified by
ControlID) and an event name (specified by the EventName). If the event is raised on that
control, then the trigger fires, and the UpdatePanel control is rendered. You specify a
PostBackTrigger with the <asp:PostBackTrigger> tag and an AsyncPostBackTrigger with the
<asp:AsyncPostBackTrigger> tag. Here’s a quick sample based on the last example we used:

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX 101

828-8 CH05.qxd 10/8/07 4:10 PM Page 101

<asp:Button ID="btnAdd" runat="server" Text="Add" OnClick="btnAdd_Click" />

<asp:UpdatePanel ID="UpdatePanel1" runat="server" UpdateMode=Conditional >

<ContentTemplate>

<asp:Label ID="lblResult" runat="server" Text="Label"></asp:Label>

<asp:Calendar ID="Calendar1" runat="server"></asp:Calendar>

</ContentTemplate>

<Triggers>

<asp:AsyncPostBackTrigger ControlID="btnAdd" EventName="Click" />

</Triggers>

</asp:UpdatePanel>

Here the AsyncPostBackTrigger specifies that the source for the trigger is the button
called btnAdd, and the event on which to trigger is the Click event. Therefore, when the
button is clicked, the AsyncPostBackTrigger fires, and the partial update occurs. Notice
that the declaration of the btnAdd button was actually outside the UpdatePanel block.

Introducing the UpdateProgress Control
Another server control that ASP.NET AJAX provides is the UpdateProgress control. This
indicates the progress of an asynchronous operation that is taking place. Typically, the
browser’s status bar serves as an indicator of activity. With the partial-rendering and
asynchronous postback model in AJAX applications, viewing the status bar of the
browser is no longer applicable, which is why the UpdateProgress control is ideal and
more user friendly for displaying activity indicators on a web page.

Using the UpdateProgress Control

You can have a single UpdateProgress control on your page for multiple UpdatePanels or
have multiple UpdateProgress controls with different UIs for the UpdatePanels if you want
to have different progress indicators for different sections of the page. By default, if you
don’t set the AssociatedUpdatePanelID property of the UpdateProgress control, it will be
triggered by events in all UpdatePanels on the page (assuming there is more than one).
To use an UpdateProgress control, you drag and drop it onto your page to create an
<asp:UpdateProgress> tag on your page:

<asp:UpdateProgress ID="UpdateProgress1" runat="server" />

The actual markup to display when the call is taking place is then defined using the
<ProgressTemplate> tag.

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX102

828-8 CH05.qxd 10/8/07 4:10 PM Page 102

When your application executes calls to the server, the HTML defined in the <Pro-

gressTemplate> tag is then displayed. This is where you could have an animating GIF or
some other custom message to inform the user about the status of the execution.

Programming with the UpdateProgress Control

Before showing an example using the UpdateProgress control, view its properties in Table 5-6.

Table 5-6. Properties of the UpdateProgress Control

Property Name Function

AssociatedUpdatePanelID ID of the UpdatePanel control that the UpdateProgress control displays
the status for.

DisplayAfter The value in milliseconds before the UpdateProgress control is
displayed.

DynamicLayout A value that determines whether the progress template is rendered
dynamically. If set to false, it will take up the required space at all times
even if the progress content is not displayed.

In many large web applications today, long running data operations are not uncom-
mon. In such cases, it’s helpful to use the UpdateProgress control to notify the user about
the running status of the application. For the sake of simplicity, let’s create a page that
simulates a long running process by pausing the running thread for a few seconds.

To build this page, drop new ScriptManager, UpdatePanel, and UpdateProgress controls
on a new WebForm page. After that, create a new Button control in the UpdatePanel. In the
source view of the .aspx page, create a new <ProgressTemplate> tag within the
UpdateProgress tag with the following markup:

<ProgressTemplate>

Calculating...

</ProgressTemplate>

Your page should now look similar to Figure 5-10.

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX 103

828-8 CH05.qxd 10/8/07 4:10 PM Page 103

Figure 5-10. Using the UpdateProgress control

Now, we can simulate a long running process when the button is clicked by pausing
the existing thread for four seconds in the event handler of the button:

protected void Button1_Click(object sender, EventArgs e)

{

System.Threading.Thread.Sleep(4000);

}

When you run the page and click the Calculate button, you’ll see that the string,
“Calculating…” appears for four seconds and then disappears as shown in Figure 5-11.

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX104

828-8 CH05.qxd 10/8/07 4:10 PM Page 104

Figure 5-11. UpdateProgress control demo

If you now view the browser output, you’ll notice a new <div> tag along with extra
JavaScript that has been emitted by the UpdateProgress control:

<div id="UpdateProgress1" style="display:none;">

Calculating...

<div>

The new scripts that have been injected into the page dynamically toggle the style
property of the div without you having to do any additional coding.

Introducing the Timer Control
Probably the simplest of the ASP.NET AJAX server controls is the Timer control. Similar in
many ways to the Timer control that has existed for some time for Winforms, the Timer con-
trol provides a simple-to-use timer functionality that can be configured to perform
operations repeatedly based on the time elapsed. Therefore, you can run certain operations
at a regular interval in a synchronous or asynchronous manner without having to do a
manual page refresh. This can come in handy in many scenarios for web applications.

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX 105

828-8 CH05.qxd 10/8/07 4:10 PM Page 105

Imagine, for instance, that your page contains critical and dynamic information such
as stock quotes or flight arrival information that needs to be updated on a regular basis.
You can use the Timer control on your page to trigger updates to an UpdatePanel control,
all without having to do any full-page refreshes.

Using the Timer Control

To use a Timer control, you of course need a ScriptManager control on the page. You can
add a Timer control to a page by dragging and dropping it onto the control surface. A
good use for timers is to update the contents of an UpdatePanel control when the timer
ticks.

To see the Timer control in action, you can add an UpdatePanel control to a blank page
along with a ScriptManager control. After you’ve done this, you can drag and drop a Timer
control onto the page. Also, place a Label control in the UpdatePanel. You can see what this
looks like in the designer in Figure 5-12.

Figure 5-12. Using a Timer control in the designer

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX106

828-8 CH05.qxd 10/8/07 4:10 PM Page 106

Lastly, double-click the Timer control so that it will generate the event handler stub for
the OnTick event of the Timer control. The markup in your page now has the <asp:Timer>
tag already defined. Here’s an example of a timer that has been customized with a
4,000-millisecond interval (4 seconds), with the name Timer1, and the event handler
Timer1_Tick:

<asp:Timer ID="Timer1" runat="server" Interval="4000" OnTick="Timer1_Tick">

</asp:Timer>

Now, within the Timer1_Tick method in the code-behind class, you can perform an
operation each time the timer fires, such as updating the time. An AsyncPostBackTrigger
trigger is used within an UpdatePanel to trigger an update on the Timer’s Tick event. You
can see this in the following markup:

<div>

<asp:ScriptManager ID="ScriptManager1" runat="server">

</asp:ScriptManager>

</div>

<asp:Timer ID="Timer1" runat="server" Interval="4000" OnTick="Timer1_Tick">

</asp:Timer>

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<Triggers>

<asp:AsyncPostBackTrigger ControlID="Timer1" EventName="Tick" />

</Triggers>

<ContentTemplate>

<asp:Label ID="Label1" runat="server" Text=""></asp:Label>

</ContentTemplate>

</asp:UpdatePanel>

If you run the page, you’ll notice that the Label control updates every four seconds
with the new time without doing a full page refresh (see Figure 5-13).

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX 107

828-8 CH05.qxd 10/8/07 4:10 PM Page 107

Figure 5-13. Timer control demo

Summary
This chapter introduced you to the server controls that are available to ASP.NET AJAX
programmers. It walked you through using the ScriptManager control, which is at the
heart of ASP.NET AJAX. This control takes care of managing the ASP.NET AJAX runtime as
well as associated scripts. Additionally, you looked at the UpdatePanel control, which is at
the heart of how ASP.NET AJAX enables AJAX functionality in existing ASP.NET pages
using partial-page updates.

This chapter gave you a high-level overview of the main ASP.NET AJAX server controls
and how they work. There is another group of ASP.NET AJAX server controls called the
extender controls that ship in the ASP.NET AJAX Control Toolkit. Although we didn’t
discuss these controls here, they will be covered thoroughly in Chapters 7 and 8. In the
next chapter, you will look at some applications and samples that use this functionality,
dissecting them to understand how you can program similar applications of your own
in ASP.NET AJAX.

CHAPTER 5 ■ INTRODUCING SERVER CONTROLS IN ASP.NET AJAX108

828-8 CH05.qxd 10/8/07 4:10 PM Page 108

Using Server Controls in ASP.NET
AJAX

This chapter follows on from Chapter 5, which introduced you to the ASP.NET AJAX
server controls and showed you how to use them. In this chapter, you’ll look at two small
ASP.NET AJAX applications and dissect them to see how they work. In the process, you’ll
glean a lot of new information about how to use the ASP.NET AJAX server controls to
build powerful AJAX-style applications and how to extend your existing applications with
asynchrony.

One of the applications that will be discussed happens to be also one of the first
small apps built to showcase some of the features of ASP.NET AJAX. This application,
called Scott’s ToDo List, is a great example of a simple data-driven AJAX-enabled ASP.NET
web application. But before that, let’s combine the controls discussed in the previous
chapter to create a practical solution to a common scenario.

Using the UpdatePanel, UpdateProgress, and
Timer Controls
For this first example, consider the following scenario: You have a data-driven web page
that needs to continuously alert the user with fast changing data, for instance, a page that
displays the major financial indices in the U.S. capital markets: Dow Jones Industrial Aver-
age (DJIA), NASDAQ, and S&P500. One approach is to place a <META> tag in your page with
refresh values that then force the page to refresh itself in regular intervals based on the pro-
vided value. But if you wanted to make the page behave more like a desktop application
and update the data without page refresh, AJAX is definitely the recommended path.

By now, you have seen the basics of the ScriptManager, UpdatePanel, UpdateProgress,
and the Timer server controls in ASP.NET AJAX and have a good understanding of their
functionality. So, with that in mind, let’s build a quick application that does exactly what
was talked about earlier: displays the three main indices of the American capital markets
and continues to update the page with (simulated) real-time data without any page
refresh.

109

C H A P T E R 6

828-8 CH06.qxd 9/28/07 4:46 PM Page 109

To accomplish this, create a new ASP.NET AJAX-enabled web site. Because the
ScriptManager control has already been placed on the page, drop new UpdatePanel,
UpdateProgress, and Timer controls onto the page called MarketData.aspx as shown in
Figure 6-1.

Figure 6-1. New page with ASP.NET AJAX server controls

After that, you just need an HTML table and a few label controls for the user inter-
face. Let’s take a look at the actual markup for this page:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="MarketData.aspx.cs" ➥

Inherits="MarketData" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

<title>Market Summary</title>

</head>

<body>

<form id="form1" runat="server">

<div>

<asp:ScriptManager ID="ScriptManager1" runat="server">

</asp:ScriptManager>

</div>

<u>Market Summary:</u>

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<Triggers>

<asp:AsyncPostBackTrigger ControlID="Timer1" EventName="Tick" />

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX110

828-8 CH06.qxd 9/28/07 4:46 PM Page 110

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

</Triggers>

<ContentTemplate>

<table border="1">

<tr>

<td><asp:Label ID="Label1" runat="server" Text="DJIA"></asp:Label>

</td>

<td align=right><asp:Label ID="lblDowJones" runat="server"

Text="12000"></asp:Label></td>

</tr>

<tr>

<td><asp:Label ID="Label2" runat="server" Text="NASDAQ"></asp:Label>

</td>

<td align=right><asp:Label ID="lblNasdaq" runat="server"

Text="2500"></asp:Label></td>

</tr>

<tr>

<td><asp:Label ID="Label3" runat="server" Text="S&P 500">

</asp:Label></td>

<td align=right><asp:Label ID="lblSnp" runat="server" Text="1400">

</asp:Label></td>

</tr>

</table>

</ContentTemplate>

</asp:UpdatePanel>

<asp:UpdateProgress ID="UpdateProgress1" runat="server">

<ProgressTemplate>Updating...</ProgressTemplate>

</asp:UpdateProgress>

<asp:Timer ID="Timer1" runat="server" Interval="2000" OnTick="Timer1_Tick" />

</form>

</body>

</html>

By now, you are probably familiar with most of this code. Basically, we are using an
<asp:AsyncPostBackTrigger> trigger in the main UpdatePanel control and associating it with
the Tick event of the Timer control. To better show the updates taking place, you use an
UpdateProgress control with the text “Updating…” in its <ProgressTemplate> tag. In the
Timer control, you set the interval to 2 seconds (2000 milliseconds) and point the OnTick
event to the Timer1_Tick event handler in the code behind, which will be responsible for
writing the logic to fetch and display the new values for the three indices.

Obviously, the point of this application is to showcase a good scenario for using
ASP.NET AJAX server controls and not to build a practical market data reporting
application. As such, the initial values for the three indices have been hard-coded in the
tags themselves. The initial value for the DJIA is set to 12000, the NASDAQ is set to 2500,

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX 111

828-8 CH06.qxd 9/28/07 4:46 PM Page 111

and the S&P is set to 1400. There will also be some simple logic to update the display
values of those indices with some fictitious data as shown in the following code block in
the code-behind class:

protected void Timer1_Tick(object sender, EventArgs e)

{

System.Threading.Thread.Sleep(1000);

lblDowJones.Text = ((int.Parse(lblDowJones.Text)) + 1).ToString();

lblNasdaq.Text = ((float.Parse(lblNasdaq.Text)) + 0.5).ToString();

lblSnp.Text = ((float.Parse(lblSnp.Text)) + 0.25).ToString();

}

First, you initiate a one-second delay by pausing the current thread, and then you
increment the values of each label control by holding the value for the market indices
and assigning them back to the corresponding labels. As you can see, the value for DJIA
is incremented by one point, the NASDAQ index is incremented by a half point, and the
S&P 500 index is incremented by a quarter point. This update effectively takes place every
three seconds because the Timer1_Tick event is called every two seconds followed by a
one-second delay in the method.

Figure 6-2 shows MarketData.aspx in the browser during an update.

Figure 6-2. MarketData.aspx updates the values for the indices every three seconds.

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX112

828-8 CH06.qxd 9/28/07 4:46 PM Page 112

As you can see, the index values in the page change every two seconds (with a one-
second pause between updates and one second after the update without any refresh at
all). If you were to refresh the page, you would notice all three values being reset to their
initial values that were set in the page designer. Now view the source in the browser, and
notice the generated client code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head><title>

Market Summary

</title></head>

<body>

<form name="form1" method="post" action="marketdata.aspx" id="form1">

<div>

<input type="hidden" name="__EVENTTARGET" id="__EVENTTARGET" value="" />

<input type="hidden" name="__EVENTARGUMENT" id="__EVENTARGUMENT" value="" />

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"

value="/wEPDwULLTE0NDcxODQxOTNkZBVyy3kZPCaHntKg63oJ/pIvM3rf" />

</div>

<script type="text/javascript">

<!--

var theForm = document.forms['form1'];

if (!theForm) {

theForm = document.form1;

}

function __doPostBack(eventTarget, eventArgument) {

if (!theForm.onsubmit || (theForm.onsubmit() != false)) {

theForm.__EVENTTARGET.value = eventTarget;

theForm.__EVENTARGUMENT.value = eventArgument;

theForm.submit();

}

}

// -->

</script>

<script src="/AjaxChapter7/WebResource.axd?d=2k35oXVI5C1fsATKa8kOpQ2&

amp;t=633008366579531250" type="text/javascript"></script>

<script src="/AjaxChapter7/ScriptResource.axd?d=zmjix_F07KXpA6m02uaB_q52a3TPiFz24p4h

x51TaC3HYCrvlQk4ongK5kg1IR8XFf7DTDlMUGM-Uucre6H3Yy1K_8vru25LXaz6lsl_p0U1&t=

633051881703906250" type="text/javascript"></script>

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX 113

828-8 CH06.qxd 9/28/07 4:46 PM Page 113

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

<script src="/AjaxChapter7/ScriptResource.axd?d=zmjix_F07KXpA6m02uaB_

q52a3TPiFz24p4hx51TaC3HYCrvlQk4ongK5kg1IR8XFf7DTDlMUGM-Uucre6H3Y1DyFBKNihsy-

OGXMoZEYtg1&t=633051881703906250" type="text/javascript"></script>

<script src="/AjaxChapter7/ScriptResource.axd?d=zmjix_F07KXpA6m02uaB_

q52a3TPiFz24p4hx51TaC3HYCrvlQk4ongK5kg1IR8XFf7DTDlMUGM-Uucre6H3Y9OmwbS8Igy_KW_

7MLdflso1&t=633051881703906250" type="text/javascript"></script>

<div>

<script type="text/javascript">

//<![CDATA[

Sys.WebForms.PageRequestManager._initialize('ScriptManager1',

document.getElementById('form1'));

Sys.WebForms.PageRequestManager.getInstance()._updateControls(['tUpdatePanel1'],

['Timer1'], [], 90);

//]]>

</script>

</div>

<u>Market Summary:</u>

<div id="UpdatePanel1">

<table border="1">

<tr>

<td>DJIA</td>

<td align=right>12000</td>

</tr>

<tr>

<td>NASDAQ</td>

<td align=right>2500</td>

</tr>

<tr>

<td>S&P 500</td>

<td align=right>1400</td>

</tr>

</table>

</div>

<div id="UpdateProgress1" style="display:none;">

Updating...

</div>

<script type="text/javascript">

<!--

Sys.Application.initialize();

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX114

828-8 CH06.qxd 9/28/07 4:46 PM Page 114

Sys.Application.add_init(function() {

$create(Sys.UI._UpdateProgress, {"associatedUpdatePanelId":null,"displayAfter"

:500,"dynamicLayout":true}, null, null, $get("UpdateProgress1"));

});

Sys.Application.add_init(function() {

$create(Sys.UI._Timer, {"enabled":true,"interval":2000,"uniqueID":"Timer1"},

null, null, $get("Timer1"));

});

// -->

</script>

</form>

</body>

</html>

The ASP.NET AJAX server controls emit JavaScript functions that copy and build a
new innerHTML property of the or <div> tags that contain the value getting updated.
They are also responsible for generating a request on XMLHttpRequest and a callback for
when the client request is complete. The callback then builds HTML code to put on the
innerHTML property of the named or <div> tags.

This is basically how the UpdatePanel works under the hood. It uses
Sys.WebForms.PageRequestManager to set up an asynchronous callback. These scripts are all
automatically generated by the ScriptManager. Near the end of the source in the last lines
of script in the page, you can also see the parameters of the Timer control being passed
via JavaScript with the interval set to two seconds and the ID of the control being Timer1.
Delving deeper into the generated script details piece by piece would fast take us beyond
the scope of this chapter. If you are interested in having a more in-depth understanding
of the inner workings of these script blocks on the page, you can view them by using
either an HTTP sniffer, the JSView plug-in for FireFox (https://addons.mozilla.org/
en-US/firefox/addon/2076), or other third-party tools designed to capture the browser
output.

Using a Task List Manager
One of the first reference applications publicly available for ASP.NET AJAX was Scott
Guthrie’s task list manager, ToDo List. This application is a simple yet powerful demon-
stration of the power of the ASP.NET 2.0 Framework and how easy it is to extend it for
AJAX-style functionality using ASP.NET AJAX.

This application is a simple task manager using SQL Server 2005 Express edition as
a container for its data. You can download and run it on your local machine with the
complete source available online. Feel free to customize this app in any way you want
by adding or modifying new items as long as you accommodate these changes in the

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX 115

828-8 CH06.qxd 9/28/07 4:46 PM Page 115

https://addons.mozilla.org/en-US/firefox/addon/2076
https://addons.mozilla.org/en-US/firefox/addon/2076
https://addons.mozilla.org/en-US/firefox/addon/2076
https://addons.mozilla.org/en-US/firefox/addon/2076

provided database. The entire application really consists of a single .aspx page and a
.master page. Figure 6-3 shows the main screen for this application.

■Note You can download Scott’s ToDo List application in addition to video tutorials about this and other
ASP.NET AJAX topics on http://ajax.asp.net.

Figure 6-3. The task list manager application

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX116

828-8 CH06.qxd 9/28/07 4:46 PM Page 116

http://ajax.asp.net

The main screen for this application shows a sortable list of tasks that you can add
to, edit, or mark complete. The drop-down button on the top switches the view between
Active and Completed status of the tasks. If you have already installed this application,
you can open the folder as an existing site in Visual Studio 2005. Let’s start by taking a
look at the MasterPage.master page in the designer as shown in Figure 6-4.

Figure 6-4. The task list manager master page in Visual Studio 2005

This page basically consists of a ContentPlaceHolder control in addition to the style
sheet. The main part of the application, as mentioned earlier, resides in the Default.aspx
page. Figure 6-5 shows this page in the designer.

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX 117

828-8 CH06.qxd 9/28/07 4:46 PM Page 117

Figure 6-5. Editing the task list in the ASP.NET designer

Once again, you see ScriptManager, UpdatePanel, and UpdateProgress controls as a
recurring theme. Let’s start by looking at the markup for the UpdateProgress control in
this page:

<asp:UpdateProgress ID="UpdateProgress1" runat="server">

<ProgressTemplate>

<div class="progress">

Updating

</div>

</ProgressTemplate>

</asp:UpdateProgress>

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX118

828-8 CH06.qxd 9/28/07 4:46 PM Page 118

You won’t find anything out of the ordinary here. Just a simple <asp:UpdateProgress>
tag with an animating GIF image and the text “Updating…” to notify the user about the
status in case there is a delay with data access during an operation such as update or
insert.

This page also contains two UpdatePanel controls. The first one is for the list of tasks,
whereas the second one allows the user to insert a new task. The top UpdatePanel control
contains an ASP.NET GridView control. Because it’s in an UpdatePanel control, and partial
rendering is enabled, postbacks caused by actions on this panel should incur only partial
refreshes, which improves the user experience. Let’s take a look at the markup for this
UpdatePanel control containing the GridView and other controls:

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<ContentTemplate>

<asp:GridView ID="GridView1" runat="server" AllowPaging="True"

AllowSorting="True"

AutoGenerateColumns="False"

DataKeyNames="TaskId"

DataSourceID="ObjectDataSource1"

CssClass="gridview"

AlternatingRowStyle-CssClass="even"

GridLines="None">

<Columns>

<asp:CommandField ShowEditButton="True" />

<asp:BoundField DataField="TaskId" HeaderText="TaskId" InsertVisible=

"False" ReadOnly="True" SortExpression="TaskId" />

<asp:BoundField DataField="Name" HeaderText="Name" SortExpression=

"Name" />

<asp:CheckBoxField DataField="Complete" HeaderText="Complete"

SortExpression="Complete" />

</Columns>

</asp:GridView>

</ContentTemplate>

<Triggers>

<asp:AsyncPostBackTrigger ControlID="DropDownList1" EventName=

"SelectedIndexChanged" />

</Triggers>

</asp:UpdatePanel>

The <ContentTemplate> tag holds the main grid containing the content that is going to
be partially updated. The GridView control is bound to ObjectDataSource1, which in turn is
bound to the Items dataset. Columns are set up as before with bindings to fields within

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX 119

828-8 CH06.qxd 9/28/07 4:46 PM Page 119

the dataset and with inline editing capability that allow these fields to be changed.
Because the grid is bound, changes to the underlying dataset trigger a refresh to the
grid and as such an update of the content via an event that fires when the bound data
changes. Really, the only trace of ASP.NET AJAX visible here is the <asp:UpdatePanel>
element.

The GridView control also has some properties defined for aesthetics, such as the
AlternatingRowStyle-CssClass property, and defines its content using the <Columns> tag.
Also, you automatically get sorting and paging capability by setting the AllowPaging and
AllowSorting properties of the GridView control to true.

The <asp:CommandField> tag defines actions such as Edit and Delete, whereas the
<asp:BoundField> tag defines data fields that are bound to a data source. Lastly, the
<asp:CheckBoxField> tag, as the name implies, defines the check box for the completed
tasks. Before leaving the <Columns> tag, let’s make a very quick and easy addition to this to
be able to delete tasks. You can do so by simply adding the ShowDeleteButton property to
the <asp:CommandField> tag as shown in the following line:

<asp:CommandField ShowEditButton="True" ShowDeleteButton="true"/>

Without any additional code, this single property adds the ability to easily delete
tasks from the grid as you’ll see a bit later.

After the <ContentTemplate> tag, you’ll notice an <asp:AsyncPostBackTrigger>, which
is used to associate the SelectedIndexChanged event of the main DropDownList with the
UpdatePanel as shown here:

<asp:AsyncPostBackTrigger ControlID="DropDownList1" EventName=➥

"SelectedIndexChanged"/>

The second UpdatePanel in the page is for inserting a new task and contains a
DetailsView control as opposed to a GridView inside the <ContentTemplate> tag.

<asp:UpdatePanel ID="UpdatePanel2" runat="server" UpdateMode="Conditional">

<ContentTemplate>

<asp:DetailsView ID="DetailsView1" runat="server"

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX120

828-8 CH06.qxd 9/28/07 4:46 PM Page 120

AutoGenerateRows="False"

DataKeyNames="TaskId"

DataSourceID="ObjectDataSource1"

DefaultMode="Insert"

CssClass="detailsview"

GridLines="None">

<Fields>

<asp:BoundField DataField="TaskId" HeaderText="TaskId" InsertVisible=

"False" ReadOnly="True"

SortExpression="TaskId" />

<asp:BoundField DataField="Name" HeaderText="Name" SortExpression="Name"

/>

<asp:CheckBoxField DataField="Complete" HeaderText="Complete"

SortExpression="Complete" />

<asp:CommandField ShowInsertButton="True" />

</Fields>

</asp:DetailsView>

</ContentTemplate>

</asp:UpdatePanel>

If you noticed, the UpdateMode property of this UpdatePanel control is set to
Conditional, meaning that it relies on external source to instigate an actual updated
rendering such as a <Triggers> tag, which was defined in the previous UpdatePanel
control. Note that these are two distinct mechanisms via which UpdatePanel implements
updates. Other than that, it’s very similar to the previous UpdatePanel control in structure,
and the <asp:CommandField> tag only has the ShowInsertButton property defined because
the user can only insert a task in this pane.

The other major portion of the markup for this page defines the ObjectDataSource
control, which handles the data for this page. But before getting into discussions about
the data side of this application, let’s try to use the app and see it in action. Figure 6-6
shows the main page after the Completed status was selected in the drop-down control
at the top of the page.

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX 121

828-8 CH06.qxd 9/28/07 4:46 PM Page 121

Figure 6-6. Viewing completed tasks

Toggling the status between Completed and Active changes the data of the GridView
almost instantaneously without any page refresh. Now, let’s add a new task called
“Become an AJAX expert” and click Insert on the lower UpdatePanel of the page. You’ll
see the task being immediately added to the Active list as shown in Figure 6-7.

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX122

828-8 CH06.qxd 9/28/07 4:46 PM Page 122

Figure 6-7. Newly added task in the Active list

As you can see, the task was added to the active list with the TaskId of 7. The TaskId is
an identity field in the table that is simply incremented with each new addition. Now, if
you were to mark the task completed by clicking the Edit link and then checking the
Complete check box followed by the Update link, you would see the contents of the
UpdateProgress control while the update is taking place. Figure 6-8 shows the update in
progress.

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX 123

828-8 CH06.qxd 9/28/07 4:46 PM Page 123

Figure 6-8. Updating a task to mark it complete

Upon updating the status change, you can switch to the Completed view by toggling
the main drop-down box, and you’ll see the recently created task marked as completed as
shown in Figure 6-9. Also, you can now delete a task by simply clicking the Delete link.

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX124

828-8 CH06.qxd 9/28/07 4:46 PM Page 124

Figure 6-9. The updated task is now in Completed status.

Let’s now turn our attention back to the code and look at the data side of this app. As
mentioned earlier, a SQL 2005 Express data file is the data container for Scott’s ToDo List
application and resides in the App_Data folder of the site. You may have to manually add
the ASP.NET user of your machine to this database before being able to access it. This
database has only one table called Tasks with three fields as shown in Figure 6.10.

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX 125

828-8 CH06.qxd 9/28/07 4:46 PM Page 125

Figure 6-10. Tasks table containing all data for the ToDo List application

As you can see, this table contains the bare minimum columns required to run a
ToDo List application. The first field is an int field, TaskId, which is also the primary key
of this table and thus cannot be null. It is set to Identity so that each new task gets a
unique ID (one larger than the previous ID) that increments by one for each new task
that is added. The second field is Name with varchar(100) as its type. The third and the
final field is Complete, which is just a bit field (SQL type for boolean) representing the
check box. Once again, keep in mind that you can easily modify the table and the
corresponding code to add support for additional fields or functionality.

Now that you are familiar with the extremely simple data model behind this applica-
tion, turn your attention to the <asp:ObjectDataSource> tag in the page, which controls all
interaction with the database. An ObjectDataSource control allows you to create a declara-
tive link between your web page controls and data access components that query and
update data. The control contains methods that describe how to select, insert, update,
and delete rows in the database. It’s flexible and can work with many different compo-
nents, making it suitable for an application such as this one. This ObjectDataSource
control ties to a SQL Server Express Edition database that contains the tables for the
tasks and items lists. Note that most of the code for this tag can usually be auto
generated by Visual Studio because there are great design-time tools for configuring
the ObjectDataSource control (see Figure 6.11). You can view that tool by right-clicking
the ObjectDataSource control and selecting the Configure Data Source option.

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX126

828-8 CH06.qxd 9/28/07 4:46 PM Page 126

Figure 6-11. Design-time tool for configuring the ObjectDataSource control

This tool includes support for defining SELECT, INSERT, UPDATE, and DELETE operations
on the selected data source. Each tab enables you to specify which method in the under-
lying Data Access Component (DAC) class to invoke to perform a data-access operation.
For example, the SELECT tab here is linked to the GetTasksByStatus method in the DAC
class. This particular method receives a boolean parameter to indicate whether you want
to find the completed tasks or the active tasks. The ObjectDataSource control invokes this
method automatically when it needs to get task data from the database; you’ll see how it
supplies the parameter (i.e., the IsComplete boolean parameter in this example) shortly.

You have probably also noticed that there is an .xsd file in the App_Code folder of this
site. This also can be (and often is) generated with the help of the aforementioned
design-time tool of the ObjectDataSource control. The actual SQL code for the various
operations, such as SELECT and UPDATE, reside here. Part of this code is shown in
Figure 6-12.

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX 127

828-8 CH06.qxd 9/28/07 4:46 PM Page 127

Figure 6-12. TaskDataSet.xsd containing the SQL code for the main operations

Once again, you can enter most of the query information and/or other configuration
data using a graphical interface by viewing the TaskDataSet.xsd file in design mode as
shown in Figure 6-13.

Figure 6-13. TaskDataSet.xsd in design mode

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX128

828-8 CH06.qxd 9/28/07 4:46 PM Page 128

Whether done manually or by using this tool, the end result for the ObjectDataSource
control is the script code generated in the .aspx page as you can see in the following code
snippet:

<asp:ObjectDataSource ID="ObjectDataSource1" runat="server" DeleteMethod=

"Delete" InsertMethod="Insert" OldValuesParameterFormatString="original_{0}"

SelectMethod="GetTasksByStatus"

TypeName="TaskDataSetTableAdapters.TasksTableAdapter" UpdateMethod="Update"

OnUpdating="ObjectDataSource1_Updating">

<DeleteParameters>

<asp:Parameter Name="Original_TaskId" Type="Int32" />

</DeleteParameters>

<UpdateParameters>

<asp:Parameter Name="Name" Type="String" />

<asp:Parameter Name="Complete" Type="Boolean" />

<asp:Parameter Name="Original_TaskId" Type="Int32" />

</UpdateParameters>

<SelectParameters>

<asp:ControlParameter ControlID="DropDownList1" Name="IsComplete"

PropertyName="SelectedValue" Type="Boolean" />

</SelectParameters>

<InsertParameters>

<asp:Parameter Name="Name" Type="String" />

<asp:Parameter Name="Complete" Type="Boolean" />

</InsertParameters>

</asp:ObjectDataSource>

The parameters are clearly defined by their intended operations (e.g., InsertParameters,
UpdateParameters, etc.). The SQL operation method name attributes are equally well
defined with names such as SelectMethod and UpdateMethod. The ObjectDataSource is a
great control for small web applications but may not always be so ideal for larger and
more sophisticated apps that need logical and physical separation of the data tier that
has complex data objects and a data access layer.

Summary
The ToDo List application is an excellent example of an ASP.NET application and how it
can be enhanced with AJAX functionality using ASP.NET AJAX server controls. The server
control set you saw in the previous chapter has been carefully designed and imple-
mented to allow you to enhance existing applications as easily as possible and in a
manner that involves touching your existing code as little as possible.

Additionally, for new applications, it involves reusing your existing skills in ASP.NET
and lowers the learning curve drastically.

CHAPTER 6 ■ USING SERVER CONTROLS IN ASP.NET AJAX 129

828-8 CH06.qxd 9/28/07 4:46 PM Page 129

828-8 CH06.qxd 9/28/07 4:46 PM Page 130

Using the ASP.NET AJAX Control
Toolkit (Part 1)

By now, you are quite familiar with the ASP.NET AJAX server controls and have seen
many examples of their use. The first release version of ASP.NET AJAX also shipped with a
set of controls packed under the ASP.NET AJAX Toolkit moniker. These are open source
control extensions that have been created by Microsoft as well as the broader commu-
nity. This package is readily available at http://ajax.asp.net along with documentation
and instructional videos. You can also obtain the latest source code at CodePlex
(http://codeplex.com), Microsoft’s open source project depository. Either way, you have
the option to download just the binaries or the full source code.

You will find the ASP.NET AJAX Control Toolkit extremely useful because it contains
some very rich UI functionality ideal for AJAX-enabled Web 2.0 sites. And the best part is
that these controls are just as easy as other server controls to use. You don’t have to write
any custom JavaScript to add effects to your page. The controls in this toolkit are also often
referred to as control extenders because they rely on existing ASP.NET server controls and
augment them with built-in client-side JavaScript code to provide impressive effects.

You can also easily create your own custom extensions because this toolkit also
comes with Visual Studio templates to assist you. At the time of this writing, there are
about 40 controls (there will most likely be even more controls due to community contri-
butions by the time you read this), which we will cover in this and the next chapter. As
you work through this chapter and the next, you’ll learn more about the structure of
these control extenders and how they complement the existing ASP.NET server controls.
You will also see by example, going through most of the controls this toolkit offers and
finding out how to use them in your applications. The examples in this chapter only
cover the basics of this toolkit and, in some cases (such as the animation control), there
is much functionality that is beyond the scope of this chapter.

Installing the ASP.NET AJAX Control Toolkit
The ASP.NET AJAX Control Toolkit is not a stand-alone entity and requires ASP.NET AJAX
to be installed because it heavily relies on certain controls, such as ScriptManager, and 131

C H A P T E R 7

828-8 CH07.qxd 10/8/07 4:22 PM Page 131

http://ajax.asp.net
http://codeplex.com
http://codeplex.com

libraries for its infrastructure. Also, at the time of this writing, unlike the ASP.NET AJAX
installable .Msi package, the toolkit is simply shipped as a ZIP file containing the source
code and therefore requires a little work before it’s ready to use.

You can download the ASP.NET AJAX Toolkit at http://ajax.asp.net/downloads. After
unzipping the files to a folder such as AjaxToolKit, you can add the controls to your Visual
Studio 2005 toolbox. First create a new tab in the toolbox, and name it something similar
to ASP.NET AJAX Control Toolkit. After that, right-click the new tab, and select Choose
Items from the context menu. At that point, simply browse to the designated folder to
which you had extracted the compressed files, and you’ll find a DLL named
AjaxControlToolkit.dll in a subfolder of the Bin folder. Selecting this file populates the
controls in the new tab created in your toolbox as shown in Figure 7-1. You are now ready
to use these controls in your ASP.NET AJAX-enabled web application.

Figure 7-1. ASP.NET AJAX Control Toolkit toolbox in Visual Studio 2005

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)132

828-8 CH07.qxd 10/8/07 4:22 PM Page 132

http://ajax.asp.net/downloads

Alternatively, you can open and build the TemplateVSI project, which creates a new
project template to Visual Studio 2005 for creating ASP.NET AJAX Control Toolkit web
sites. Now let’s talk about the individual controls in this toolkit and see how they can be
used.

The Accordion and AccordionPane Controls
You have most certainly seen this UI element in one form or shape before. Outlook 97
was one of the first big applications to use this type of information organization in a UI.
Basically, this control includes multiple panes where only one pane at a time is displayed
with the rest of the panes visible in a collapsed manner showing only the headers (as the
Accordion name suggests). The Accordion control, much like many others in the AJAX
Control Toolkit, derives from the WebControl class. It is used in conjunction with Accor-
dionPane controls, which represent the actual panes. These AccordionPane controls are
held within the <Pane> tag of the Accordion control. You’ll explore the Accordion control in
more depth through an example but first some of its properties are listed in Table 7-1.

Table 7-1. A Few of the Accordion Control Properties

Property Name Description

AutoSize Controls the growth and collapse of the panes. There are three
enumerations: None, Limit, and Fill. None allows the control to grow
unrestricted, whereas Limit confines the maximum size of the
accordion by the Height property. Fill always keeps the size of the
overall accordion constant.

ContentCssClass CSS class applied to the content.

DataMember Field name of the data source (databinding).

DataSource Data source used for binding (databinding).

DataSourceID The ID of the data source control.

FramesPerSecond Frames per second used for animation during the transition between
panes.

FadeTransitions Boolean value indicating whether or not to apply the fade effect during
transition.

HeaderCssClass CSS class applied to the header.

RequireOpenedPane Boolean value indicating whether or not a pane is always open.

SelectedIndex The initial pane that is visible in the accordion.

SuppressHeaderPostbacks Blocks events from the controls in the header of the accordion.

TransitionDuration The duration of the transition animation for when one pane is closing
with another one opening (in milliseconds).

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1) 133

828-8 CH07.qxd 10/8/07 4:22 PM Page 133

To see this control in action, you will create a simple page with an Accordion control
that has three sections each containing four lines of text. First, you drag and drop an
Accordion control on a new AJAX-enabled .aspx page. As always, remember to have
already added the ScriptManager control to the page when working with any of the
control extenders in the AJAX Control Toolkit if the created web application project
or web site was not AJAX enabled. Set the FramesPerSecond property to 30 and the
TransitionDuration to 100 ms. Within the Accordion control, first create a <Panes> tag
followed by three <AccordionPane> tags with the corresponding text within the <Panes>
tag as shown in the following code snippet:

<cc1:Accordion ID="Accordion1" runat="server"➥

FadeTransitions="true" FramesPerSecond="30"

TransitionDuration="100" AutoSize="None">

<Panes>

<cc1:AccordionPane ID="AccordionPane1" runat="server">

<Header>➥

<div style="background-color:Black; color:White;

font-weight:bold;"> Section 1</div>

</Header>

<Content>

Item 1

Item 2

Item 3

Item 4

</Content>

</cc1:AccordionPane>

<cc1:AccordionPane ID="AccordionPane2" runat="server">

...

</cc1:AccordionPane>

<cc1:AccordionPane ID="AccordionPane3" runat="server">

...

</cc1:AccordionPane>

</Panes>

</cc1:Accordion>

As you can see, the AccordionPane tags are within the <Panes> tag of the Accordion
control. The <Panes> tag is a container for one or more <AccordionPane> tags. When you
run this page in the browser, you’ll see the collapsible panels (see Figure 7-2). Additional
styling code has been added to signify the three sections, which is why the three sections
have different shades.

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)134

828-8 CH07.qxd 10/8/07 4:22 PM Page 134

Figure 7-2. The Accordion control with three headers

If you view the browser output from this page, you’ll notice that a collection of <div>
tags with a lot of JavaScript is used to simulate the accordion effects on the client
browser. This JavaScript was dynamically emitted by the Accordion control in conjunction
with support from the ScriptManager.

AlwaysVisibleControlExtender Control
This self-descriptive control needs little introduction as its name more or less sums up its
functionality. You can use this extender to pin down a control, or a composite control
containing other controls, to a part of the page. AlwaysVisibleControlExtender then makes
sure that the target control remains visible irrespective of window resizing or scrolls up
and down. It also has properties to allow for specific displacement in the page as shown
in Table 7-2.

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1) 135

828-8 CH07.qxd 10/8/07 4:22 PM Page 135

Table 7-2. AlwaysVisibleControlExtender Control Properties

Property Name Description

HorizontalOffset Horizontal displacement from the edge of the browser window (in
pixels)

HorizontalSide Horizontal placement of the control (left, center, right)

ScrollEffectDuration Duration of the scrolling effect when the target control is being
repositioned to the same relative place in the screen

TargetControlID The ID of the control to be pinned down and always visible

VerticalOffset Vertical displacement from the edge of the browser window (in pixels)

VerticalSide Vertical placement of the control (top, middle, bottom)

You have surely seen this type of control before in web pages. Often, the control is
used as a quick customer feedback control or for an advertisement of some sort. It’s usu-
ally best to use absolute positioning (DHTML) for control(s) used with this extender,
otherwise, the AlwaysVisibleControlExtender may at times exhibit unexpected behavior.
As mentioned earlier, you can use this extender with composite controls such as panels
containing other controls, but for simplicity, the following example just uses an ASP.NET
Label control as the target control:

<cc1:AlwaysVisibleControlExtender ID="AlwaysVisibleControlExtender1"➥

runat="server" TargetControlID="Label1" HorizontalOffset="2"➥

ScrollEffectDuration="1" HorizontalSide="Right" VerticalSide="Top" >

</cc1:AlwaysVisibleControlExtender>

<asp:Label ID="Label1" runat="server" BackColor="#0000C0" Font-Bold="True"➥

Font-Size="Larger" ForeColor="White" Height="28px" Text="ASP.NET ➥

AJAX" Width="127px">

</asp:Label>

The preceding code snippet uses the AlwaysVisibleControlExtender to pin down a
Label control to the top right of the screen. When scrolling down to see if there are pages
of content below it, you would notice that this Label control is static in its top-right cor-
ner of the page position as shown in Figure 7-3.

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)136

828-8 CH07.qxd 10/8/07 4:22 PM Page 136

Figure 7-3. Using the AlwaysVisibleControlExtender to pin down a label on the top-right
part of the page

The AnimationExtender Control
The Animation control is by far the most capable and feature-packed control in the
ASP.NET Control Toolkit. It provides excellent support for a wide range of animation fea-
tures in an AJAX-enabled ASP.NET page. This powerful control, which can also be
considered a framework given its depth, enables rich animation in a declarative/XML
fashion. Coverage of this control in its entirety is well outside the scope of this chapter,
so we’ll cover only a few animation types.

The AnimationExtender control attaches on to some of the key events of the target
control within the page, such as Onclick, OnMouseOver, and so on. The target control is
specified with the TargetControlID property. The AnimationExtender control also provides
the means to manage the target control and/or other controls involved in animation via
actions. Actions allow you to include/exclude certain controls from the animation, and
restrict their behavior and visibility, among other things. To better understand the
Animation control, let’s now explore three of the many supported animation types: fade
animation, length animation, and discrete animation.

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1) 137

828-8 CH07.qxd 10/8/07 4:22 PM Page 137

Using Fade Animation

The first animation that we’ll look at is the fade animation, which as the name implies,
allows you to add fading effects to a control on your page. Two types of fading animation
are supported: FadeIn and FadeOut. To illustrate fade animation, let’s look at a small exam-
ple that shows a control fading in and out. The target control is a Label control with blue
text and yellow background.

<asp:Label ID="Label1" runat="server" BackColor="Yellow" Font-Size="X-

Large"

ForeColor="Blue" Height="68px" Text="Fading In & Out" Width="165px">

</asp:Label>

<cc1:AnimationExtender ID="AnimationExtender1" TargetControlID="Label1"➥

runat="server">

<Animations>

<OnMouseOver>

<FadeOut Duration="1.5" Fps="30" />

</OnMouseOver>

<OnMouseOut>

<FadeIn Duration="1.5" Fps="30" />

</OnMouseOut>

</Animations>

</cc1:AnimationExtender>

After running this page, you will see that when you hover the mouse over the Label
control, it begins to fade as shown in Figure 7-4.

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)138

828-8 CH07.qxd 10/8/07 4:22 PM Page 138

Figure 7-4. Hovering over the Label control makes it start to fade out.

Subsequently, when the mouse cursor is moved away from the Label (target control)
control, it starts fading right back in (see Figure 7-5).

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1) 139

828-8 CH07.qxd 10/8/07 4:22 PM Page 139

Figure 7-5. Moving the mouse away from the target control makes it fade back in.

In the code segment, the <OnMouseOver> event was defined along with the <FadeOut>
tag. After that, the exact opposite was done with the <OnMouseOut> event over <FadeIn> tag.
In both cases, the Fps (frames per second used for the animation) property was set to 30
and the Duration (duration of the animation) property set to 1.5 seconds.

Using Length Animation

The length animation changes the state of a property between a start value and an end
value that you can specify. You can typically use this to animate the setting of the width or
height of a control that uses them. Before you see a short example, look at the properties
of the <Length> tag used in length animation as listed in Table 7-3.

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)140

828-8 CH07.qxd 10/8/07 4:22 PM Page 140

Table 7-3. Properties of the <Length> Tag

Property Name Description

AnimationTarget The target control for the animation. This is the control that will be
affected as the result of the animation.

Duration Duration (in seconds) that it should take to play the animation.

EndValue The end value of a specified range used for animation.

Fps Frames per second used for the animation. Higher FPS values can yield
smoother animation but are potentially slower.

Property The property that will be the target for the animation (e.g., Height).

PropertyKey Property key of the target control.

StartValue Starting value of a specified range used for animation.

Unit Actual unit of the property such as % or px (px by default).

Once again, to understand this animation type better, examine the following small
code segment:

<asp:Image ID="Image1" runat="server" ImageUrl="sample.jpg" />

<cc1:AnimationExtender ID="AnimationExtender1" TargetControlID="Image1"➥

runat="server">

<Animations>

<OnClick>

<Sequence>

<Length AnimationTarget="Image1" fps="30" property="style"

propertyKey="width" startValue="800" endValue="200"

duration="15" unit="px" />

</Sequence>

</OnClick>

</Animations>

</cc1:AnimationExtender>

Here you have an <asp:Image> control with an image being the target control of the
animation. The actual animation is defined where a sequence is described within the
<OnClick> event of the image control. The length animation itself is defined in a single
line with the <Length> tag and its corresponding properties. This <Length> tag resides
inside a <Sequence> tag, which basically defines an animation sequence segment. Start by
setting the AnimationTarget property to the target control, Image1. The default unit on the
length animation property is "px", so the animation will change the width property to a
number of pixels.

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1) 141

828-8 CH07.qxd 10/8/07 4:22 PM Page 141

You define this number by specifying startValue and endValue. In this case, set
startValue to 800, and set endValue to 200. Because you want these values to apply to the
width of the image, set the Property to "style" and the PropertyKey property to "width".
Finally, set the duration to 15. This means the values 800px–200px will be sent to the width
property of the image over a duration of 15 seconds. Changing the duration to a smaller
value will mean that the image will grow to its final size more quickly, and changing it to
a larger value will mean that it grows more slowly.

Additionally, the animation is smart enough to know that if startValue is greater than
endValue, the animation will play backward, reducing the text from startValue to endValue,
and in a case like this, the image will shrink in size over the specified duration.

You can see the length animation in action in Figure 7-6, Figure 7-7, and Figure 7-8.
Figure 7-6 shows the application before the animation begins, Figure 7-7 shows the ani-
mation as it is in progress and the image is growing, and Figure 7-8 shows the completed
animation.

Figure 7-6. Beginning the animation

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)142

828-8 CH07.qxd 10/8/07 4:22 PM Page 142

Figure 7-7. The animation as it progresses

Figure 7-8. The completed animation

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1) 143

828-8 CH07.qxd 10/8/07 4:22 PM Page 143

Using Discrete Animation

Discrete animations are similar to length animations in that they will cycle through a
range of values during a fixed duration. For both of these animation types, you specify
the values, and the Animation framework calculates the interim values for the animation.
The main difference is that the discrete animation tag (<Discrete>) uses a parameter
called ValuesScript as opposed to StartValue and EndValue properties that the <Length>
tag uses for animation. The ValuesScript property usually contains a comma-separated
list of values that resemble a JavaScript array. The animation then goes through these val-
ues and applies them to the indicated property/propertyKey properties for the duration of
the animation. To better understand this, look at the following code segment:

<asp:Image ID="Image1" runat="server" ImageUrl="sample.jpg" />

<cc1:AnimationExtender ID="AnimationExtender1" runat="server"➥

TargetControlID="Image1">

<Animations>

<OnClick>

<Sequence>

<Discrete fps="30" Duration="10" Property="style"

PropertyKey="width"ValuesScript="['700', '600', '500',

'400', '300']"/>

</Sequence>

</OnClick>

</Animations>

</cc1:AnimationExtender>

In this case, five numbers will be the different width values for the image during the
animation, but it can be any width value within the visible screen size. The end result will
be very much like the previous example, but instead, the image will shrink in set time
intervals (2 seconds in this case because there are five items in the animation with a total
duration of 10 seconds) as opposed to the continuous shrinking you saw using length
animation.

AutoCompleteExtender Control
The AutoCompleteExtender control is used to suggest text as a user types into a text box and
therefore needs to be associated with an ASP.NET TextBox control. You may think that
most browsers already have the AutoComplete feature turned on because you often see
your name, phone number, and other frequently entered information appear with Auto-
Complete as you type in the same information in other sites. But there is a distinct
difference. The kind of AutoComplete that most browsers have support for only works for

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)144

828-8 CH07.qxd 10/8/07 4:22 PM Page 144

certain fields where it recognizes the field type and suggests text based on your previous
entries.

The AutoCompleteExtender control allows you to define a web service as the data
provider for suggestions. It can query this web service and serve the data back to the
client in true AJAX form without the user noticing any postbacks. The properties of this
control are listed in Table 7-4.

Table 7-4. Attribute Properties of the AutoCompleteExtender Control

Property Name Description

CompletionInterval Elapsed time between suggestions (in milliseconds)

CompletionSetCount Number of suggestions to get from the web service

EnableCaching Boolean value indicating whether or not client caching is enabled

MinimumPrefixLength Minimum number of characters before suggestions are made

ServiceMethod Name of the web method used to retrieve the suggestions

ServicePath Path of the web service used to retrieve a list of suggestions

TargetControlID Target TextBox control for which suggestions will be made

To see this control in action, you would need to create a web service in addition to
the ASP.NET page in which the AutoCompleteExtender will reside. But first, let’s start
with the page itself. Create an ASP.NET TextBox control on the page, followed by the
ScriptManager and the AutoCompleteExtender control. After that, specify the parameters
as shown here:

<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>

<cc1:AutoCompleteExtender ID="AutoCompleteExtender1"

ServicePath="AutoComplete.asmx" MinimumPrefixLength="3"

ServiceMethod="GetSuggestedStrings" TargetControlID="TextBox1"

CompletionInterval="10" CompletionSetCount="3"

EnableCaching="true" runat="server">

</cc1:AutoCompleteExtender>

The code basically set the AutoCompleteExtender control up to suggest three pieces of
text as long as at least three characters have been entered into the text box. The code also
specified the ServicePath and set the ServiceMethod property to GetSuggestedStrings, so
the control now expects this web method as its data source for the suggestions. The
expected web service method must match the following signature:

public string[] GetSuggestedStrings(string prefixText, int count)

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1) 145

828-8 CH07.qxd 10/8/07 4:22 PM Page 145

The name of the method of course can be different from what is listed here, but the
parameters and return types much match that exactly, or the AutoCompleteExtender will
not work properly. With that in mind, create a new .asmx page and use the following code
to create the main web method:

[WebMethod]

public string[] GetSuggestedStrings(string prefixText, int count)

{

//Default to 3 if the count is zero

if (count == 0)

count = 3;

List<string> stringList = new List<string>(count);

for (int i = 0; i < count; i++)

{

stringList.Add(prefixText + i.ToString());

}

return stringList.ToArray();

}

This simple web method returns at least three suggested strings that, for the pur-
poses of this sample, are simply the prefix with the index number of the list array. In most
practical cases, you want to use more complex logic for suggestions of value, but you
must be careful about performing very long and resource-intensive operations here. If
you are planning to make database calls with intricate queries, make sure you have done
ample testing to ensure its feasibility because the suggestions are useless if they take a
long time to return. When you run this page in the browser, you can see the suggested
terms three at a time as you type in the text box (see Figure 7-9).

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)146

828-8 CH07.qxd 10/8/07 4:22 PM Page 146

Figure 7-9. TextBox in a page suggesting terms

CalendarExtender Control
ASP.NET already provides a great and capable Calendar control. However, it requires post-
backs for many of its operations. The CalendarExtender control in the ASP.NET AJAX
Toolkit enables better overall user experience with its enhanced visual capabilities and
postback-free performance. This control is used in conjunction with a TextBox control
and has four properties as listed in Table 7-5.

Table 7-5. Attribute Properties of the CalendarExtender Control

Property Name Description

CssClass The CSS class used for the CalendarExtender control

Format Format string for the date generated

PopupButtonID The ID of the Button control used to show the CalendarExtender control
(optional)

TargetControlID ID of the corresponding Textbox to be used

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1) 147

828-8 CH07.qxd 10/8/07 4:22 PM Page 147

This is a very simple and straightforward control to use. Simply drag and drop the
CalendarExtender control on a page along with a TextBox control, and set the appropriate
properties similar to the following code snippet:

<asp:TextBox ID="TextBox1" runat="server" Width="173px"></asp:TextBox>

<cc1:CalendarExtender ID="CalendarExtender1" TargetControlID=

"TextBox1" runat="server">

</cc1:CalendarExtender>

When you run this page, you only have to click the text box to see the Calendar
control pop up with the result of the date selection entered into the text box as shown
in Figure 7-10.

Figure 7-10. ASP.NET AJAX Calendar control

Notice the great transition from month to month when you click on the arrows of the
Calendar control. Of course, you can further enhance the appearance of the control by
using CSS and assigning it to the CssClass property of the Calendar control. Also, if you
click on the month (on top of the control), the calendar switches to the year view (see
Figure 7-11).

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)148

828-8 CH07.qxd 10/8/07 4:22 PM Page 148

Figure 7-11. ASP.NET AJAX Calendar control (Year view)

Lastly, if you wanted to have a little button next to the text box as the agent to open
the calendar, all you have to do is set the PopupButtonID property of this control to the ID
of the button.

CascadingDropDown Control
The CascadingDropDown control is ideal for situations when you need to have multiple
drop-downs on a web page with the value(s) of each drop-down control being dependent
on the selection from the previous one. In fact, you’ve probably seen many sites taking
advantage of this pattern. For instance, when you visit your printer or other computer
accessories’ manufacturer site in search of the appropriate driver(s), you are often pre-
sented with a list of drop-down controls in order to find the right model.

CascadingDropDown, much like the AutoCompleteExtender control, relies on web services
to provide the necessary data. This allows for much flexibility in retrieving the data. You
could, for instance, fetch the data from a database, serialized file, XML file, or some third-
party source. Before jumping right into an example, Table 7-6 shows the properties of the
CascadingDropDown control.

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1) 149

828-8 CH07.qxd 10/8/07 4:22 PM Page 149

Table 7-6. Properties of the CascadingDropDown Control

Property Name Description

Category Category name of the CascadingDropDown control

LoadingText Status text shown on the control itself while the data for the drop-down
is being fetched

ParentControlID The ID of the other drop-down control whose selection impacts this
control

PromptText Text shown if the drop-down is empty

ServiceMethod Name of the web method used to retrieve the data

ServicePath Path of the web service used to retrieve the data

TargetControlID ID of the target corresponding DropDown control

You may have also seen cascading drop-downs on many car shopping/searching
sites, in which you start with the manufacturer of the car and end up with the exact
model of the car. We’ll look one such example, which comes with the full-source version
of the ASP.NET AJAX Control Toolkit available for download at http://ajax.asp.net.

After you load the solution into Visual Studio, under the SampleWebSite project,
locate the CascadingDropDown folder with an .aspx and .asmx page. Set CascadingDrop-
Down.aspx as the start page, and then run the application (Ctrl+F5). You are presented
with three drop-down controls asking you to enter the make, model, and color of a car.
With each selection, the values of the subsequent drop-down control change, and the
complete specs of the car are displayed (see Figure 7-12).

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)150

828-8 CH07.qxd 10/8/07 4:22 PM Page 150

http://ajax.asp.net

Figure 7-12. Selecting a car using CascadingDropDown controls

Let’s examine the markup for this page:

<div class="demoheading">CascadingDropDown Demonstration</div>

<table>

<tr>

<td>Make</td>

<td><asp:DropDownList ID="DropDownList1" runat="server"

Width="170" />

</td>

</tr>

<tr>

<td>Model</td>

<td><asp:DropDownList ID="DropDownList2" runat="server"

Width="170" />

</td>

</tr>

<tr>

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1) 151

828-8 CH07.qxd 10/8/07 4:22 PM Page 151

<td>Color</td>

<td><asp:DropDownList ID="DropDownList3" runat="server"

Width="170" AutoPostBack="true" OnSelectedIndexChanged="DropDownList3

SelectedIndexChanged" />

</td>

</tr>

</table>

<ajaxToolkit:CascadingDropDown ID="CascadingDropDown1" runat="server"

TargetControlID="DropDownList1" Category="Make"

PromptText="Please select a make"

LoadingText="[Loading makes...]"

ServicePath="CarsService.asmx"

ServiceMethod="GetDropDownContents" />

<ajaxToolkit:CascadingDropDown ID="CascadingDropDown2" runat="server"

TargetControlID="DropDownList2" Category="Model"

PromptText="Please select a model"

LoadingText="[Loading models...]"

ServiceMethod="GetDropDownContentsPageMethod"

ParentControlID="DropDownList1" />

<ajaxToolkit:CascadingDropDown ID="CascadingDropDown3" runat="server"

TargetControlID="DropDownList3" Category="Color"

PromptText="Please select a color" LoadingText="[Loading

colors...]" ServicePath="CarsService.asmx"

ServiceMethod="GetDropDownContents" ParentControlID="DropDownList2" />

...

</div>

The three ASP.NET drop-down controls at the beginning of this code segment make
up the three selection points, which are followed by the three CascadingDropDown controls.
Each of these extender controls specifies the corresponding drop-down (by using the
TargetControlID property) as well as the ServicePath ServiceMethod properties, which will
be used as a data source. And that’s it! Beyond that, there is a little more code on the web
form itself that displays text to the users in the appropriate event handlers. The rest of the
work is done in a web service as listed here:

[WebMethod]

public AjaxControlToolkit.CascadingDropDownNameValue[]

GetDropDownContents(string knownCategoryValues, string category)

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)152

828-8 CH07.qxd 10/8/07 4:22 PM Page 152

{

StringDictionary knownCategoryValuesDictionary = AjaxControlToolkit.

CascadingDropDown.ParseKnownCategoryValuesString(knownCategoryValues);

return AjaxControlToolkit.CascadingDropDown.

QuerySimpleCascadingDropDownDocument(Document, Hierarchy,

knownCategoryValuesDictionary, category);

}

The main part of this web service is the GetDropDownContents web method shown in
the preceding code segment. This method first gets a dictionary object of known cate-
gory/value pairs and queries the data document for results. This data document is
nothing more than an XmlDocument object loaded with data from an XML file. In fact, if
you look in the App_Data folder in the solution, you’ll see an XML file called
CarService.xml, which holds the data for the drop-down controls. Figure 7-13 shows the
contents of CarService.xml.

Figure 7-13. CarService.xml

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1) 153

828-8 CH07.qxd 10/8/07 4:22 PM Page 153

CollapsiblePanelExtender Control
The CollapsiblePanelExtender control allows you to easily make visually appealing col-
lapsing and expanding effects on panels used in your web page with minimal code. This
extender is quite simple yet very flexible and is particularly useful in scenarios where you
have large amounts of text, some of which does not need to be initially presented to the
users. Also with many useful properties, its collapse/expansion behavior can be well cus-
tomized. This includes the ability to have the panel auto expand or auto collapse
depending on the mouse hovering. Table 7-7 lists some of the properties of the
CollapsiblePanelExtender control.

Table 7-7. Properties of the CollapsiblePanelExtender Control

Property Name Description

AutoCollapse Boolean value indicating whether or not to collapse the panel when the
mouse moves away from it

AutoExpand Boolean value indicating whether or not to expand the panel when the
mouse hovers over it

Collapsed The initial state of the panel

CollapseControlID ID of the control responsible for collapsing the panel

CollapsedImage Path to the image file used by ImageControlID (when collapsed)

CollapsedSize Collapsed size of the target control in pixels

CollapsedText Displayed text when the panel is collapsed

ExpandControlID ID of the control responsible for expanding the panel

ExpandDirection Direction of expansion of the panel (horizontal/vertical)

ExpandedImage Displayed image when the panel is expanded

ExpandedSize Expanded size of the target control in pixels

ExpandedText Displayed text when the panel is expanded

ImageControlID ID of the image control serving as status indicator for the state of the
panel (collapsed/expanded)

ScrollContents Boolean value indicating whether or not to make the panel scrollable

TargetControlID ID of the target panel control

TextLabelID ID of the Label control containing the status text of the panel

Let’s turn our attention again to the SampleWebSite project that ships the full source
version of the ASP.NET AJAX Control Toolkit where the CollapsiblePanel is used exten-
sively in nearly all pages. Specifically, in Solution Explorer, expand the CollapsiblePanel
folder, and take a look at the CollapsiblePanel,aspx page where the focus is this extender.

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)154

828-8 CH07.qxd 10/8/07 4:22 PM Page 154

For the purposes of this demo, let’s focus only on the first panel on top of the page as
shown in Figure 7-14.

Figure 7-14. Example of CollapsiblePanel (in collapsed mode)

This portion of the page consists of two panels with a CollapsiblePanelExtender, and
it displays some basic information about ASP.NET AJAX. There is a little image on the
right side of the panel that collapses or expands the panel when clicked. Here’s the .aspx
markup for this portion of the page:

<asp:Panel ID="Panel2" runat="server" CssClass="collapsePanelHeader" Height="30px">

<div style="padding:5px; cursor: pointer; vertical-align: middle;">

<div style="float: left;">What is ASP.NET AJAX?</div>

<div style="float: left; margin-left: 20px;">

<asp:Label ID="Label1" runat="server">(Show

Details...) ➥

</asp:Label>

</div>

<div style="float: right; vertical-align: middle;">

<asp:ImageButton ID="Image1" runat="server"

ImageUrl="~/images/expand_blue.jpg" AlternateText="

(Show Details...) " />

</div>

</div>

</asp:Panel>

<asp:Panel ID="Panel1" runat="server" CssClass="collapsePanel" Height="0">

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1) 155

828-8 CH07.qxd 10/8/07 4:22 PM Page 155

<p>

<asp:ImageButton ID="Image2" runat="server"

ImageUrl="~/images/AJAX.gif"

AlternateText="ASP.NET AJAX" ImageAlign="right" />

<%= GetContentFillerText() %>

</p>

</asp:Panel>

</div>

<ajaxToolkit:CollapsiblePanelExtender ID="cpeDemo" runat="Server"

TargetControlID="Panel1"

ExpandControlID="Panel2"

CollapseControlID="Panel2"

Collapsed="True"

TextLabelID="Label1"

ExpandedText="(Hide Details...)"

CollapsedText="(Show Details...)"

ImageControlID="Image1"

ExpandedImage="~/images/collapse_blue.jpg"

CollapsedImage="~/images/expand_blue.jpg"

SuppressPostBack="true" />

The first panel (Panel2) is essentially the header where the image to expand/collapse
the panel is located. The majority of the actual content is in the second panel. In this
case, the content is being generated by a method called GetContentFillerText. So notice
that while the TargetContronID property of the CollapsiblePanelExtender is set to Panel1,
the ExpandControlID and CollapseControlID properties are both set to Panel2, which is
essentially the header panel. The small icon on the right portion of the header changes
depending on the state of the panel as specified by the ExpandedImage and CollapsedImage
properties. Figure 7-15 shows this panel in expanded mode.

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)156

828-8 CH07.qxd 10/8/07 4:22 PM Page 156

Figure 7-15. Example of CollapsiblePanel (in expanded mode)

ConfirmButtonExtender Control
The ConfirmButtonExtender control, as the name suggests, captures the Click event of a
button and displays a confirmation dialog box. If the user clicks OK after that, the button
will function as implemented; otherwise, the Click event will simply be ignored. This
control is so simple that it only has two properties: TargetControlID and ConfirmText. As
you probably have guessed already, TargetControlID contains the ID of the target button,
and ConfirmText holds the text message that will be displayed in the dialog box requiring
user confirmation.

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1) 157

828-8 CH07.qxd 10/8/07 4:22 PM Page 157

The ConfirmButtonExtender control is ideal in situations where the user is about to
submit an order or other important unit of data. It works equally well with ASP.NET
Button and LinkButton controls. To see this in a page, create an ASP.NET button control on
a page followed by the ConfirmButtonExtender control. After that, set the TargetControlID
property of your ConfirmButtonExtender control to that of the regular button, and set the
text for the ConfirmText property. Lastly, create a Label control, and in the event handler
for the button, set the label’s text to a message indicating the successful receipt of the
Click event. Your ASPX markup should look similar to the following code snippet:

<asp:Button ID="Button1" runat="server" Text="Submit"➥

OnClick="Button1_Click" />

<cc1:ConfirmButtonExtender ID="ConfirmButtonExtender1"

TargetControlID="Button1" ConfirmText="Are you sure ?"

runat="server">

</cc1:ConfirmButtonExtender>

<asp:Label ID="Label1" runat="server" Width="360px"></asp:Label>

When you click this submit button, you will be presented with a dialog box as shown
in Figure 7-16.

Figure 7-16. Dialog box of the ConfirmButtonExtender control

If you cancel the dialog box, the initial Click event of the Submit button will be dis-
carded. However, if you click OK, the Click event is accepted, and the click-event method
is invoked. The click-event method displays a confirmation message in the Label control
as shown in Figure 7-17.

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)158

828-8 CH07.qxd 10/8/07 4:22 PM Page 158

Figure 7-17. Submit button accepted

DragPanelExtender Control
The DragPanelExtender control is without a doubt one of the coolest controls in the
ASP.NET AJAX Control Toolkit; it allows the user to drag around a panel on a web page.
As you can imagine, manually implementing this type of functionality with client-side
JavaScript is a grand endeavor.

In addition to that, this control has only two properties and is extremely easy to use.
Other than the TargetControlID property, which you know all too well by now, the
DragPanelExtender control has another property called DragHandleID. This property speci-
fies the subpanel with which the user can drag the overall panel. In the SampleWebSite
project that you saw earlier, there is also an excellent example for the DragPanelExtender
control found in DragPanel.aspx. Before looking at the code, run the page, and drag the
panel around to see how nicely it works (see Figure 7-18).

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1) 159

828-8 CH07.qxd 10/8/07 4:22 PM Page 159

Figure 7-18. DragPanel control in action

When you view the ASPX markup for this page, you’ll see a few nested Panel controls
and the DragPanel control:

<asp:Panel ID="Panel6" runat="server" Width="250px" ➥

style="z-index: 20;">

<asp:Panel ID="Panel7" runat="server" Width="100%" Height="20px"

BorderStyle="Solid" BorderWidth="2px" BorderColor="black">

<div class="dragMe">Drag Me</div>

</asp:Panel>

<asp:Panel ID="Panel8" runat="server" Width="100%" Height="250px"

Style="overflow: scroll;" BackColor="#0B3D73"

ForeColor="whitesmoke" BorderWidth="2px" BorderColor="black"

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)160

828-8 CH07.qxd 10/8/07 4:22 PM Page 160

BorderStyle="Solid" >

<div>

<p>This panel will reset its position on a postback or

page refresh.

</p>

<hr />

<p><%= GetContentFillerText() %></p>

</div>

</asp:Panel>

</asp:Panel>

</div>

<div style="clear: both;"></div>

<ajaxToolkit:DragPanelExtender ID="DragPanelExtender1" runat="server"➥

TargetControlID="Panel6" DragHandleID="Panel7" />

The key thing to note is that Panel6 was set as the TargetControlID because it is the
topmost panel and contains all the content, whereas Panel7 is being assigned to the
DragHandleID because it makes up the top part of the panel and the ideal point for the
user to drag.

DropDownExtender Control
The DropDownExtender control is another extender that can be used with a number of
ASP.NET controls for enhanced visual rendering of a drop-down control. Despite its
name, the DropDownExtender is not only limited to ASP.NET DropDownList controls and can,
in fact, be used with many other controls such as a TextBox control or even a Label con-
trol. And much like the previous control, it has an additional property called
DropDownControlID, which is the ID of the control containing the actual content for Drop-
Down. Take a look at the sample that comes with the ASP.NET AJAX Control Toolkit and
focus your attention on the DropDown.aspx page as shown in Figure 7-19.

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1) 161

828-8 CH07.qxd 10/8/07 4:22 PM Page 161

Figure 7-19. Example of the DropDown extender control

Viewing the code reveals a few LinkButton controls as options for the drop-down:

<asp:Label ID="TextLabel" runat="server" Text=" Select your favorite➥

exotic ice-cream flavor" Style="display: block; width: 300px; ➥

padding:2px; padding-right: 50px;font-family: Tahoma; font-size: ➥

11px;" />

<asp:Panel ID="DropPanel" runat="server" CssClass="ContextMenuPanel"➥

Style="display :none; visibility: hidden;">

<asp:LinkButton runat="server" ID="Option1" Text=" Mocha Blast "➥

CssClass="ContextMenuItem" OnClick="OnSelect" />

<asp:LinkButton runat="server" ID="Option2" Text=" Java Cyclone "➥

CssClass="ContextMenuItem" OnClick="OnSelect" />

<asp:LinkButton runat="server" ID="Option3" Text=" Dry Fruit➥

CssClass="ContextMenuItem" OnClick="OnSelect" />

</asp:Panel>

<ajaxToolkit:DropDownExtender runat="server" ID="DDE"

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1)162

828-8 CH07.qxd 10/8/07 4:22 PM Page 162

TargetControlID="TextLabel"

DropDownControlID="DropPanel" />

So, in this case, the drop-down list items are LinkButton controls held within a Panel
control and not an ASP.NET DropDownExtender control—a perfect example of the flexibility
of this extender control.

Summary
The ASP.NET AJAX Control Toolkit is a fantastic add-on to the UI control arsenal of any
ASP.NET developer. It contains a number of very useful and attractive controls that can
leverage the existing ASP.NET server controls and are relatively easy to implement. This
toolkit is available with many samples as well as the full source code allowing developers
to customize it even further.

In the next chapter, we’ll continue to tour through the various other controls in the
ASP.NET AJAX Control Toolkit.

CHAPTER 7 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 1) 163

828-8 CH07.qxd 10/8/07 4:22 PM Page 163

828-8 CH07.qxd 10/8/07 4:22 PM Page 164

Using the ASP.NET AJAX Control
Toolkit (Part 2)

In the previous chapter, you were introduced to some of the controls in the ASP.NET
AJAX Control Toolkit. As mentioned before, this package is readily available on
http://ajax.asp.net along with documentation and instructional videos. You can also
obtain the latest source code on CodePlex.com, Microsoft’s open source project deposi-
tory. In this chapter, we will continue going over some of the remaining controls in the
toolkit and how they can be applied in ASP.NET web applications.

DropShadow and RoundedCorners Extenders
The DropShadow and RoundedCorners extenders are similar in that they both offer visual
enhancements to panels and other controls, particularly curved corners. First, let’s
examine the DropShadow extender.

DropShadow Extender

The DropShadow extender enables you to enhance the appearance of panels by adding
curved corners and background shadow to the panel control. Typically, this is done by
using images for the curved corners and CSS styling, among other things, for the shadow
effect. The DropShadow extender allows you to easily add such effects to any panel with a
number of parameters to tweak the appearance of these effects (see Table 8-1).

165

C H A P T E R 8

828-8 CH08.qxd 10/11/07 10:56 AM Page 165

http://ajax.asp.net

Table 8-1. DropShadow Extender Properties

Property Name Description

BehaviorID ID of the client-side Behavior (used for custom DOM behaviors) to be
applied to the target panel

Opacity Opacity of the DropShadow extender (ranges from 0 to 1 on a percentage
point basis)

Radius Radius of the curved corners of the panel bar (in pixels)

Rounded Boolean value indicating whether or not to round the corners of the
panel

TargetControlID ID of the target control to which the DropShadow extender will be
applied

TrackPosition Boolean value indicating whether or not the drop shadow will track the
position of the target panel control

Width Width of the background shadow of the panel (in pixels)

To see a working example of the DropShadow extender, let’s take a look at the example
for the DropShadow extender provided in the documentation for the ASP.NET AJAX Control
Toolkit shown in Figure 8-1.

Figure 8-1. An example of the DropShadow extender applied to a panel

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)166

828-8 CH08.qxd 10/11/07 10:56 AM Page 166

Basically, you just need to set the TargetControlID property of the DropShadow extender
to the ID of the panel control to which you want to add shadow and curved corners. After
that, you can set the appropriate properties to get the desired visual appearance such as
those used in this example. In the following code snippet, the panel is given 75% opacity
with the radius of 6 pixels for the rounded corners and a width of 5 pixels for the back-
ground shadow.

<ajaxToolkit:DropShadowExtender ID="DropShadowExtender1" runat="server"

BehaviorID="DropShadowBehavior1"

TargetControlID="Panel1"

Width="5"

Rounded="true"

Radius="6"

Opacity=".75"

TrackPosition="true" />

RoundedCorners Extender

As mentioned earlier, this is very similar to the DropShadow extender and has many of the
same properties. However, the RoundedCorners extender is most ideal when you simply
want to add rounded corners to your panel or another control. This extender provides a
property, Corners, with which you can specify the corners of the target control you want
rounded. This is convenient in cases where you want one half of your panel to merge into
anther control and only want one side with rounded edges. The Corners property sup-
ports the following self-descriptive values: None, TopLeft, TopRight, BottomLeft,
BottomRight, Top, Right, Bottom, Left, and All. You can apply this extender to your control
with just three properties as shown here:

<ajaxToolkit:RoundedCornersExtender ID="RoundedCornersExtender1" runat="server"

TargetControlID="Panel1"

Radius="6"

Corners="All" />

Also, much like the DropShadow extender, the Radius property is provided, and thus the
radius of the rounded corners is adjustable. Figure 8-2 shows a great example of the
RoundedCorners extender as included in the ASP.NET AJAX Toolkit samples.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 167

828-8 CH08.qxd 10/11/07 10:56 AM Page 167

Figure 8-2. RoundedCorners extender applied to a panel with all corners rounded

DynamicPopulate Extender
The DynamicPopulate extender can asynchronously populate an ASP.NET control (e.g.,
TextBox, Panel) with HTML content generated by a method either in the same page or an
external web service. Although using this extender can save much time and effort in
some cases, it’s not ideal in all situations, such as when the back-end functionality is
abstracted away via various access layers. However, if you are using a web service directly
in your page and/or have some business logic in the same page, the DynamicPopulate
extender can be a good alternative to writing custom code to manually populate a con-
trol with data. Table 8-2 lists the properties of this extender.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)168

828-8 CH08.qxd 10/11/07 10:56 AM Page 168

Table 8-2. DynamicPopulate Extender Properties

Property Name Description

CacheDynamicResults Boolean value indicating whether or not values fetched from a web
service should be cached for subsequent use. This is set to False by
default.

ClearContentsDuringUpdate Boolean value indicating whether or not the present content of the
target control should be cleared during the update.

ContextKey A key value used to pass context information to the data-providing
method.

CustomScript Name of custom script to be used instead of a web service method
for fetching data.

PopulateTriggerControlID ID of the control that will trigger the update on the target control
(where the data will be displayed).

ServiceMethod Name of the web method used to retrieve the data.

ServicePath Path of the web service used to retrieve the data.

TargetControlID Target control of the DynamicPopulate extender.

UpdatingCssClass CSS class applied to the target control while its inner content is
being updated.

The following code segment displays the current date onto a Panel control. It gets the
date from a web service method called GetHtml as set in the ServiceMethod property:

<ajaxToolkit:DynamicPopulateExtender ID="dp" runat="server"

TargetControlID="Panel1"

ClearContentsDuringUpdate="true"

PopulateTriggerControlID="Label1"

ServiceMethod="GetHtml"

UpdatingCssClass="dynamicPopulate_Updating" />

The GetHtml method is provided as a web service in the same page, DynamicPopu-
late.aspx, for the purposes of this example. Based on the contextKey parameter (which is
passed to it via the various radio buttons for date formatting), this method returns the
date with appropriate formatting after a 250ms delay. The following is the actual code of
the GetHtml web method:

[System.Web.Services.WebMethod]

[System.Web.Script.Services.ScriptMethod]

public static string GetHtml(string contextKey)

{

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 169

828-8 CH08.qxd 10/11/07 10:56 AM Page 169

// A little pause to mimic a latent call

System.Threading.Thread.Sleep(250);

string value = (contextKey == "U") ?

DateTime.UtcNow.ToString() :

String.Format("{0:" + contextKey + "}", DateTime.Now);

return String.Format("<span style='font-family:courier➥

new;font-weight:bold;'>{0}", value);

}

The contextKey variable contains the value of the selected radio button in this case
and is used to determine the selected formatting for the date. You can see the Dynam-
icPopulate.aspx page in Figure 8-3.

Figure 8-3. DynamicPopulate extender displaying the date fetched from a web service

One last point to notice about this example is that during the update of the panel bar,
the circular animating GIF image informs the user of the update status of this control.
This is accomplished by setting the UpdateCssClass property of the DynamicPopulate exten-
der in which you can have animating GIFs along with any other desired CSS code to have
the proper decoration for the target control during the update.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)170

828-8 CH08.qxd 10/11/07 10:56 AM Page 170

FilteredTextBox Extender
A common function of a client web application is data entry through forms. The typical
workflow for forms is that the user enters information, and a special type of input tag
called a submit button triggers an HTTP postback of the information to a server. The
server then processes the submitted information and returns a response. If the data is
invalid, the server returns a message indicating this, and the page developer writes a
script that emphasizes this to the user. This transaction involves at least one round-trip
to the server. You can also perform basic validation in JavaScript prior to form submis-
sion; this can be very effective and certainly faster for the user. However, performing
validation using JavaScript can be a complex task, which ASP.NET AJAX control extenders
lend themselves naturally to.

The FilteredTextBox extender is very useful in that it forces inline validation on a tar-
get control. You can apply a custom validator or one of the provided ones to a TextBox
control and prevent the user from entering invalid input. This guarantees that invalid
data cannot be passed on from the text box (excluding HTTP data injection or other
advanced malicious attempts). The main properties of the FilteredTextBox extender are
listed in Table 8-3.

Table 8-3. FilteredTextBox Extender Properties

Property Name Description

FilterMode If the selected FilterType property is Custom, FilterMode can be either
InvalidChars or ValidChars.

FilterType Type of filter to be applied to the target TextBox (can be more than one
value separated by a comma). Potential values are Numbers,
LowercaseLetters, UppercaseLetters, and Custom.

InvalidChars When FilterType is set to Custom, and FilterMode is set to
InvalidChars, this property can contain a list of all invalid characters.

TargetControlID ID of the target TextBox control.

ValidChars When FilterType is set to Custom, and FilterMode is set to ValidChars,
this property can contain a list of all valid characters.

For instance, if you want an input box that only accepts digits, you can use this exten-
der with the FilterType property set to Numbers to prevent the user from entering any other
nonnumeric characters as shown in the following code snippet and in Figure 8-4.

You can only type numbers here: <asp:TextBox ID="TextBox1" runat="server" />

<ajaxToolkit:FilteredTextBoxExtender

ID="FilteredTextBoxExtender1"

runat="server"

TargetControlID="TextBox1"

FilterType="Numbers" />

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 171

828-8 CH08.qxd 10/11/07 10:56 AM Page 171

Figure 8-4. FilteredTextBox extender displaying the date fetched from a web service

FilterType has four types that can be used in conjunction with one another: Numbers,
LowercaseLetters, UppercaseLetters, and Custom. If you choose Custom, then you must pro-
vide a list of characters to the ValidChars or InvalidChars property depending on the
need. If you have a combination of values for FilterType, (e.g., Numbers, Custom), the
FilterTextBox extender applies the more stringent inclusion or exclusion of character as
specified on top of allowing only digits.

HoverMenu Extender
Hover menus can be a powerful UI tool in any application, and until recently, it took a
good amount of effort to implement them in most web applications. The HoverMenu
extender allows you to add a hover menu to any ASP.NET web control in your page. When
the user hovers over the target control, another control (as specified in the properties)
pops up along with any defined CSS styles applied. Table 8-4 lists the properties of the
HoverMenu extender.

Table 8-4. HoverMenu Extender Properties

Property Name Description

HoverCssClass CSS class to be applied when the pop-up menu is displayed.

OffsetX/OffsetY Offset values (in pixels) for the pop-up control when the mouse hovers
over the target control from the top-left corner.

PopDelay Amount of time elapsed (ms) until the pop-up control disappears after
the initial hover.

PopupControlID ID of the pop-up control that will be displayed when the mouse hovers
over the target control.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)172

828-8 CH08.qxd 10/11/07 10:56 AM Page 172

PopupPosition Position of the pop-up control relative to the target control (Left, Right,
Center, Top, Bottom).

TargetControlID ID of the target control over which the pop-up control will display
when the mouse hovers over it.

Once again, the provided sample in the ASP.NET AJAX Toolkit, which can also be
found online at http://ajax.asp.net, does a great job of illustrating the potential use of
this extender. In this example, a hover menu, which is composed of a panel with two
links, is used with a GridView control. When the user hovers over the items in the grid, a
pop-up menu appears to the left of the item with two links: Edit and Delete. If Delete is
clicked, the target row is deleted, and the user can choose to edit the data inline as speci-
fied in the EditTemplate of the GridView control. You can see this sample in Figure 8-5.

Figure 8-5. HoverMenu extender used on a GridView control

<ajaxToolkit:HoverMenuExtender ID="hme2" runat="server"

HoverCssClass="popupHover"

PopupControlID="PopupMenu"

PopupPosition="Left"

TargetControlID="Panel9"

PopDelay="25" />

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 173

Property Name Description

828-8 CH08.qxd 10/11/07 10:56 AM Page 173

http://ajax.asp.net

In the preceding code segment, we have an instance of the HoverMenu extender with
its PopupControlID property set to PopupMenu, which is the ID of the panel control contain-
ing the menu items displayed when a user hovers over an item in the GridView control.
PopupPosition is set to Left, so a menu will appear to the left of the GridView row. With that
in mind, take a look at the code for the PopupMenu panel.

<asp:Panel CssClass="popupMenu" ID="PopupMenu" runat="server">

<div style="border:1px outset white;padding:2px;"➥

<div>

<asp:LinkButton ID="LinkButton1" runat="server" CommandName="Edit"➥

Text="Edit" />➥

</div>

<div>

<asp:LinkButton ID="LinkButton2" runat="server"➥

CommandName="Delete" Text="Delete" />

</div>

</div>

</asp:Panel>

This is essentially a simple panel with two ASP.NET LinkButton controls, one for
Delete and another for Edit. These trigger the appropriate template in the GridView and
provide the functionality of inline editing or row deletion. More in-depth discussion of
the templates in the GridView control is beyond the scope of this section but feel free to
view the code because it is quite straightforward.

MaskedEdit and MaskedEditValidator Extenders
As mentioned earlier, often most web applications require input from the user in one
form or another. Validation logic is usually written on either the client or server side or
quite often both. Client-side JavaScript can provide quick feedback to the user without
a round-trip to the server, whereas server-side validation has the added benefit of having
access to business logic and/or data access on the server. However, ensuring data
integrity and validation is best done when the range of user input is limited based on
expected data. Much like the FilteredTextBox extender, the MaskedEdit extender is
designed to enforce validation on user input by using a “mask” and thus restricting the
range of possible values entered into a TextBox control. The MaskedEdit is a little more
sophisticated than the FilteredTextBox extender in that it offers visual guidance to the
user to enter the correct data and supports more complex rules through the use of
MaskedEditValidator controls. Table 8-5 lists the properties of this extender.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)174

828-8 CH08.qxd 10/11/07 10:56 AM Page 174

Table 8-5. Main Properties of the MaskedEdit Extender

Property Name Description

AcceptAMPM Boolean value indicating whether or not to display AM/PM for time
values.

AcceptNegative Whether or not negative values are allowed in the target TextBox.
Possible values are None, Left, and Right.

AutoComplete Boolean value indicating whether or not to enable autocomplete for
the target TextBox.

AutoCompleteValue Default character set to use when autocomplete is enabled.

Century Default century used when the date mask has only two digits for the
year.

ClearMaskOnLostFocus Boolean value indicating whether or not to clear the input mask when
the target TextBox loses focus.

ClearTextOnInvalid Boolean value indicating whether or not to clear the existing text in the
target TextBox if the input has proven to be invalid.

ClipboardEnabled Boolean value indicating whether or not to allow access to the
clipboard for input into the target TextBox.

DisplayMoney Whether or not the currency symbol is displayed in the target TextBox.
Possible values are None, Left, and Right.

ErrorTooltipCssClass CSS class applied to the tool tip error message.

ErrorTooltipEnabled Boolean value indicating whether or not to display an error tool tip
when the user hovers over an invalid entry in the target TextBox.

Filtered Valid characters for mask type "C" (case-sensitive).

InputDirection Input direction for the target TextBox. Possible values are LeftToRight
and RightToLeft.

Mask Actual mask to be applied (e.g., 00/00/0000).

MaskType Type of the specified mask (None, Number, Date, DateTime, Time).

MessageValidatorTip Message displayed in target TextBox when its value is being changed.

PromptChararacter Prompt character used for unspecified mask characters.

UserDateFormat Custom date format string for the target TextBox.

UserTimeFormat Custom time format string for the target TextBox.

OnFocusCssClass CSS class applied to the target TextBox when it receives focus.

OnFocusCssNegative CSS class applied to the target TextBox when it receives focus with a
negative value.

OnBlurCssNegative CSS class applied to the target TextBox when it loses focus with a
negative value.

OnInvalidCssClass CSS class applied to the target TextBox when it contains an invalid
entry.

CultureName Name of the culture applied to the input mask.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 175

828-8 CH08.qxd 10/11/07 10:56 AM Page 175

The two important properties to note here are Mask and MaskType. MaskType simply
specifies the type of the target validation mask, which can be None, Number, Date, DateTime,
and Time. The Mask property contains the actual mask itself, which can be a combination
of characters, digits, and/or separators, including wildcard characters. Suppose we take
the TextBox from the earlier example and now ask the user to enter a nine-digit social
security number (United States only) following the standard format DDD-DD-DDDD as
shown in the following code snippet:

Please enter your SSN number: <asp:TextBox ID="TextBox1" runat="server" />

<ajaxToolkit:MaskedEditExtender ID="MaskedEditExtender1" runat="server"

TargetControlID="TextBox1"

MaskType= "Number"

Mask="999-99-9999"

ClearTextOnInvalid=true />

With that small code segment, the text box now has an input mask guiding the user
through entering the data. The user can only type in nine numbers and nothing else. All
other characters are completely ignored. The mask also helps the user by applying the
appropriate formatting to the entered data. You can see this Figure 8-6.

Figure 8-6. MaskedEdit extender used for entering proper social security numbers

You may have noticed that although the MaskedEdit control offers an excellent mech-
anism for restricting user input to the intended values, it lacks a way to further control
the input data as well as a good notification mechanism for informing the user about
missing or invalid data in the TextBox.

This is precisely where the MaskedEditValidator control comes in handy. This
control was specifically designed to work alongside the MaskedEdit extender. The
MaskedEditValidator control can be used to further validate the user input and display a
custom message back to the user. The properties for this control are listed in Table 8-6.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)176

828-8 CH08.qxd 10/11/07 10:56 AM Page 176

Table 8-6. Properties of the MaskedEditValidator Control

Property Name Description

AcceptAMPM Boolean value indicating whether or not AM/PM is an acceptable entry
in time fields.

ClientValidationFunction Client-side JavaScript stated for client-side JavaScript validation.

ControlExtender ID of the MaskedEditExtender extender attached to the TextBox.

ControlToValidate ID of the target TextBox control to validate.

EmptyValueMessage Error message displayed when the target TextBox is empty and has
focus.

InitialValue Initial value of the target TextBox control.

InvalidValueMessage Error message displayed when the target TextBox has an invalid value
and has focus.

IsValidEmpty Boolean value indicating whether or not it is valid for the target TextBox
to be empty.

MaximumValue Maximum allowed input value.

MaximumValueMessage Error message displayed when the value of target TextBox has exceeded
the maximum allowed value and the TextBox still has focus.

MinimumValue Minimum allowed input value.

MinimumValueMessage Error message displayed when the value of target TextBox is less than
the minimum allowed value and the TextBox still has focus.

TooltipMessage Tool tip message displayed when the target TextBox is empty.

ValidationExpression Regular expression used to validate the input. (This offers the greatest
level of control and flexibility with the input.)

As you can see in the preceding table, the MaskedEditValidator control has a number
of useful properties to allow you to enforce better data integrity and user experience for
input controls in your form. You can even assign a regular expression to this extender for
validation by using the ValidatonExpression property.

ModalPopup Extender
Modal pop-ups are commonly seen in desktop applications. This UI construct is often
used in cases where user input (such as login or configuration information) is imperative
for access to the main application. The other option, of course, is to have a regular HTML
pop-up that is not modal; however, that defeats the whole purpose of the pop-up in that
the user can easily bypass it en route to the target page. Due to the limitations of web
technologies early on and the difficulty associated with creating modal pop-ups in recent
years, few web applications implemented them. In many cases, users were directed to

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 177

828-8 CH08.qxd 10/11/07 10:56 AM Page 177

other pages, and upon successful entry of the required data, were then redirected back to
the original page. Again, a perfect example of this scenario is a login page.

The ModalPopup extender is ideal when there is a need in web pages to display a pop-
up in a modal fashion. The modal pop-up is triggered by an event on the target control,
after which it blocks all user access to the underlying page until the user makes a selec-
tion in the modal pop-up. The pop-up itself is typically a Panel control, although it could
be other controls as well. This control can be positioned anywhere on the page as stated
by its X and Y properties. Table 8-7 lists the main properties of this extender.

Table 8-7. ModalPopup Extender Properties

Property Name Description

BackgroundCssClass CSS class to be applied to the background when the modal pop-up is
displayed.

DropShadow Boolean value indicating whether or not to display a drop shadow for
the modal pop-up.

CancelControlID ID of the Cancel button for the modal pop-up.

OkControlID ID of the OK button for the modal pop-up.

OnCancelScript Client JavaScript script to load when the modal pop-up is dismissed
with the Cancel button.

OnOkScript Client JavaScript script to load when the modal pop-up is dismissed
with the OK button.

PopupControlID ID of the control to display as a modal pop-up (often a Panel control).

PopupDragHandleControlID ID of the control used as the drag handle for the modal pop-up.

TargetControlID ID of the control that instigates the modal pop-up.

X The initial X coordinate of the modal pop-up.

Y The initial Y coordinate of the modal pop-up.

For a great example of the ModalPopup extender, turn to the sample web site provided
with the ASP.NET AJAX Toolkit and view the file ModalPopup.aspx. When you click the
Click here to change the paragraph style link, a modal pop-up menu appears offering a
range of paragraph styling options to the user via several radio buttons. After the selec-
tion, the user can then click on the OK or Cancel button to gain back control of the page.
You can see this in Figure 8-7.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)178

828-8 CH08.qxd 10/11/07 10:56 AM Page 178

Figure 8-7. ModalPopup extender used to block access to the main page

Take a look at the following code segment, which was used to define the ModalPopup
in this page:

<ajaxToolkit:ModalPopupExtender ID="ModalPopupExtender" runat="server"

TargetControlID="LinkButton1"

PopupControlID="Panel1"

BackgroundCssClass="modalBackground"

OkControlID="OkButton"

OnOkScript="onOk()"

CancelControlID="CancelButton"

DropShadow="true"

PopupDragHandleControlID="Panel3" />

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 179

828-8 CH08.qxd 10/11/07 10:56 AM Page 179

As specified in the properties, the link button (LinkButton1) instigates the modal pop-
up with Panel1 being the control behind the actual pop-up. Because no X and Y
parameters have been defined, the pop-up panel by default launches in the center of the
screen. Also the Panel3 control is used to define the header of the main panel as a section
where the user can drag and drop the panel anywhere throughout the page. To best take
advantage of this extender, CSS styling is highly recommended to provide the panel with
proper UI decorations. The ModalPopup.aspx page also showcases an example where a
modal pop-up is generated dynamically from the contents of the page with the help of
some additional server-side and client-side JavaScript code.

NoBot Extender
In an effort to prevent crawlers, automated scripts, and/or other programs (also referred
to as BOTS) from creating false accounts or getting access to sensitive information, many
web sites started using CAPTCHA (Completely Automated Public Turing test to tell Com-
puters and Humans Apart) controls, which are credited to the Carnegie Mellon
University. CAPTCHAs are simply distorted images of encoded text that are displayed
alongside a text box that the user is challenged to enter the encoded text into. Once
again, this is done to ensure that a human being is at the other end of the terminal using
the web application and not some automated program. Although the CAPTCHA controls
can offer somewhat better security, they also have the downside of causing extra incon-
venience for the users. Not only do they require additional input from the user, but they
could be at times cumbersome to read. They are also not 100% bullet proof as more
advanced crawlers use OCR technology to decipher the encoded text in them.

NoBot attempts to provide the same functionality as CAPTCHA controls without
requiring the user to read and enter cryptic text. It’s essentially invisible and works by set-
ting a number of parameters designed to protect against the bots. One such measure is to
request the browser to perform a simple JavaScript task, which can help ensure there is a
browser at the other end. Figure 8-8 shows a sample page with login information using
the NoBot extender without asking the user for any additional information.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)180

828-8 CH08.qxd 10/11/07 10:56 AM Page 180

Figure 8-8. NoBot control used invisibly in a login page

The NoBot extender can also limit the number of requests per IP address as well as a
delay between the request and postbacks. These are all attributes of a human user
accessing the web application through a browser. Table 8-8 lists the main properties of
the NoBot control.

Table 8-8. NoBot Control Properties

Property Name Description

CutoffMaximumInstances Maximum number of postbacks allowed by a single IP
address within the allowed timeframe

CutoffWindowSeconds Cutoff window (in seconds) for previous postbacks from an
IP address

OnGenerateChallengeAndResponse An event used to implement custom challenge/response
logic

ResponseMinimumDelaySeconds Minimum number of seconds required for a postback

To use the NoBot extender in your page, you can start with a couple of TextBox con-
trols for user input signifying a typical form and an instance of the NoBot extender.
In the following code segment, a method name is assigned to the
OnGenerateChallengeAndResponse property.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 181

828-8 CH08.qxd 10/11/07 10:56 AM Page 181

<ajaxToolkit:NoBot ID="NoBot1" runat="server" OnGenerateChallengeAndResponse= ➥

"CustomChallengeResponse" />

Let’s briefly look at the CustomChallengeResponse method in the page’s code behind:

protected void CustomChallengeResponse(object sender, NoBotEventArgs e)

{

Panel p = new Panel();

p.ID = "NoBotSamplePanel";

Random rand = new Random();

p.Width = rand.Next(300);

p.Height = rand.Next(200);

p.Style.Add(HtmlTextWriterStyle.Visibility, "hidden");

p.Style.Add(HtmlTextWriterStyle.Position, "absolute");

((NoBot) sender).Controls.Add(p);

e.ChallengeScript = string.Format("var e = document.getElementById('{0}');

e.offsetWidth * e.offsetHeight;", p.ClientID);

e.RequiredResponse = (p.Width.Value * p.Height.Value).ToString();

}

This method is trying to access and set properties accessible only in the browser
DOM in an effort to verify the validity of the user and the absence of bots. One key object
here is NoBotEventArgs, which contains the event arguments of the underlying object.
BOTS/automated agents are usually incapable of processing JavaScript and also obvi-
ously do not have the browser DOM that browsers have, therefore failing the brief but
often effective test code of the CustomChallengeResponse method.

One last note to mention about the NoBot extender is that it must be tested thor-
oughly before deployed. It may not be consistent in all environments and may falsely
identify legitimate users as bots. When developing the Challenge/Response mechanism
or tweaking the other parameters, be sure to test your application for the legitimacy of
the NoBot extender results.

NumericUpDown Extender
The NumericUpDown extender can easily be associated with any TextBox control and allow
the user to increment or decrement numeric values as well as custom-defined values
defined at design time, such as the days in a week or months in a year. By default, this
extender assumes +/- 1 for incrementing or decrementing values, but you can define a
set of values for the NumericUpDown extender to enumerate through by using the RefValues
property. Table 8-9 lists the main properties of this extender.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)182

828-8 CH08.qxd 10/11/07 10:56 AM Page 182

Table 8-9. NumericUpDown Extender Properties

Property Name Description

Minimum Smallest value allowed in the target TextBox

Maximum Largest value allowed in the target TextBox

RefValues List of semicolon-delimited values used as a data source for the
NumericUpDown extender

ServiceDownMethod Web method used to retrieve the next value when the Down button is
clicked

ServiceUpMethod Web method used to retrieve the next value when the Up button is clicked

ServiceDownPath Path of the web service used to retrieve the next value when the Down
button is clicked

ServiceUpPath Path of the web service used to retrieve the next value when the Up button is
clicked

Step Numeric steps used for incrementing/decrementing values (default is 1)

Tag Custom parameter to be passed to the web service for the data

TargetButtonDownID ID of the down Button control

TargetButtonUpID ID of the up Button control

TargetControlID ID of the target TextBox control

Width Width of the target TextBox combined with the Up/Down buttons

The ASP.NET AJAX Control Toolkit reference application mentioned before has four
great examples showcasing the various types of increment/decrement values that can be
implemented with this extender. The first one is very simple because it just
increments/decrements a number between 1 and 7:

<ajaxToolkit:NumericUpDownExtender ID="NumericUpDownExtender1" runat="server"

TargetControlID="TextBox1"

Width="120"

RefValues=""

ServiceDownMethod=""

ServiceUpMethod=""

TargetButtonDownID=""

TargetButtonUpID=""

Minimum = "1"

Maximum = "7" />

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 183

828-8 CH08.qxd 10/11/07 10:56 AM Page 183

Basically, in this code segment, this extender was associated with a TextBox control,
and the Minimum and Maximum properties were set with the lower and upper bound of the
permissible values for the text box. The next sample is similar except that it defines a set
of values for months for the NumericUpDown control to iterate through instead of the
default +/-1 increment/decrement behavior:

<ajaxToolkit:NumericUpDownExtender ID="NumericUpDownExtender2" runat="server"

TargetControlID="TextBox2"

Width="120" RefValues="January;February; March;April;May;June;

July;August;September;October;November;December"

ServiceDownMethod=""

ServiceUpMethod=""

TargetButtonDownID=""

TargetButtonUpID="" />

Not much notable here other than the 12 months listed in the RefValues property.
However, when the RefValues property is used, Minimum and Maximum values are empty. The
next example gets its data from a web service that just picks a random integer between 0
and 1000, either higher or lower than the existing value in the text box:

<ajaxToolkit:NumericUpDownExtender ID="NumericUpDownExtender3" runat="server"

TargetControlID="TextBox3"

Tag=""

Width="120"

ServiceUpPath="NumericUpDown.asmx"

ServiceDownPath="NumericUpDown.asmx"

ServiceUpMethod="NextValue"

ServiceDownMethod="PrevValue"

RefValues=""

TargetButtonDownID=""

TargetButtonUpID="" />

Because the NumericUpDown extender allows you to specify different web services for
the increment and decrement functionality, there are also different properties in which to
state them. ServiceUpPath and ServiceDownPath each define the necessary web services,
whereas the ServiceUpMethod and ServiceDownMethod define the desired web method for
providing the data for incrementing or decrementing the value of the target TextBox. Here
is an example of using the NumericUpDownExtender with images for Up and Down buttons:

<ajaxToolkit:NumericUpDownExtender ID="NumericUpDownExtender4" runat="server"

TargetControlID="TextBox4"

Width="80"

TargetButtonDownID="img1"

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)184

828-8 CH08.qxd 10/11/07 10:56 AM Page 184

TargetButtonUpID="img2"

RefValues=""

ServiceDownMethod=""

ServiceUpMethod="" />

Lastly, the preceding code segment demonstrates how to have image buttons replace
the plain up and down arrows for incrementing or decrementing the value inside the
TextBox. You can use the TargetButtonDownID and TargetButtonUpID properties to specify
desired images to replace the standard buttons, but keep in mind that there are no refer-
ences to image files but rather ASP.NET ImageButton controls. Figure 8-9 shows the
NumericUpDown.aspx file containing all four samples.

Figure 8-9. Four samples of using the NumericUpDown extender for incrementing/
decrementing values

PasswordStrength Extender
At times, security is of particular concern in your web application, and you may need to
consider enforcing a password policy, most commonly in a login page. Although it’s pos-
sible to do so today with existing validation controls and/or custom code, it can be
somewhat tedious to enforce a password policy along with responsive user feedback
without postbacks. The PasswordStrength extender is associated with a TextBox control

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 185

828-8 CH08.qxd 10/11/07 10:56 AM Page 185

and is highly configurable as to what constitutes a strong or weak password. Before look-
ing at an example, let’s view the properties of the PasswordStrength extender as shown in
Table 8-10.

Table 8-10. PasswordStrength Extender Properties

Property Name Description

BarBorderCssClass CSS class used for the border of the bar.

BarIndicatorCssClass CSS class used for the bar indicator.

CalculationWeightings Calculation weightings for determining the strength of
the password. This semicolon-delimited list must
contain four values (length weighting, numeric
weighting, casing weighting, symbol weighting) whose
sum is 100. The default value for this property is
50;15;15;20.

DisplayPosition Position of the strength indicator in respect to the target
control.

HelpHandleCssClass CSS class applied to the password help handle.

HelpHandlePosition Position of the help handle element.

MinimumNumericCharacters Minimum number of numeric characters.

MinimumSymbolCharacters Minimum number of symbol characters.

PreferredPasswordLength Preferred length for ideal password strength.

PrefixText Prefix text to be displayed before the strength indicator.

RequiresUpperAndLowerCaseCharacters Boolean value indicating whether or not to force the
password to include a mixture of lowercase and
uppercase characters.

StrengthIndicatorType Type of the strength indicator (bar or text).

TargetControlID ID of the target TextBox control.

TextCssClass CSS class applied to the text used for the strength
indicator.

TextStrengthDescriptions List of semicolon-delimited values used to display the
strength indicator (can range from 2 to 10 values).

TextStrengthDescriptionStyles List of semicolon-delimited style classes applied to the
descriptions. This could be used to apply different styles
to each of the indicator descriptions.

Suppose you need to recommend the user to create a password of at least ten charac-
ters without regard to case sensitivity. You can use the PasswordStrength extender to
provide instant feedback to the user about the strength of the password as it is being
typed in. Consider the following markup:

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)186

828-8 CH08.qxd 10/11/07 10:56 AM Page 186

<asp:TextBox ID="TextBox1" Width="150" runat="server" autocomplete="off" />

<asp:Label ID="TextBox1_HelpLabel" runat="server" />

<ajaxToolkit:PasswordStrength ID="PasswordStrength1"

runat="server" TargetControlID="TextBox1"

DisplayPosition="RightSide"

StrengthIndicatorType="Text"

PreferredPasswordLength="10"

PrefixText="Strength:"

HelpStatusLabelID="TextBox1_HelpLabel"

TextStrengthDescriptions="Very Poor;Weak;Average;➥

Strong;Excellent"

TextStrengthDescriptionStyles= "TextIndicator_TextBox1➥

Strength1;TextIndicator_TextBox1_Strength2; ➥

TextIndicator_TextBox1_Strength3; TextIndicator_TextBox1➥

Strength4; TextIndicator_TextBox1_Strength5"

MinimumNumericCharacters="0"

MinimumSymbolCharacters="0"

RequiresUpperAndLowerCaseCharacters="false" />

Here a TextBox control and a Label control are used to notify the user of the pass-
word’s strength level as typed. Because this message is being delivered to this Label
control, you can decorate it with a CSS class, skin, or other styling code. The
TextStrengthDescriptions property contains a semicolon-delimited list of messages to be
displayed to the user as the password goes through the range of predefined strengths
(from very poor to excellent). This property is complemented by the PreferredPass-
wordLength, which specifies the ideal length for the password and what is considered to be
excellent strength. TextStrengthDescriptionStyles is used to add styling to the strength
description presented to the user. Here you could set background colors for the descrip-
tion so that a weak password can have a red background in the message and an excellent
password can have a green background or something to that effect. See Figure 8-10 to see
the preceding code in the browser.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 187

828-8 CH08.qxd 10/11/07 10:56 AM Page 187

Figure 8-10. PasswordStrength extender used to recommend a password policy to the user

While typing in the password, the user will be able to see the number of characters
remaining to achieve the excellent strength level desired for the password. The user will
also notice the strength description to the right of the password TextBox change as the
characters are typed.

PopupControl Extender
The PopupControl extender allows you to easily enhance an existing control, such as a
TextBox, in your page with richer content that is hosted inside another control (most
often a Panel control). An important point to note here is that because most often this
richer content contains interactive element(s), using an UpdatePanel is highly recommend
to handle postback issues and make a responsive AJAX-style user experience. Table 8-11
displays the main properties of the PopupControl extender.

Table 8-11. PopupControl Extender Properties

Property Name Description

CommitProperty Additional property settings applied after the pop-up is loaded

CommitScript Additional script to be executed after the pop-up is loaded

OffsetX/OffsetY Offset values (in pixels) for the pop-up control from the initial position

PopupControlID ID of the pop-up control that will be displayed when triggered

Position Initial position of the pop-up in respect to the target control (Left,
Right, Top, Bottom, Center)

TargetControlID The target control over which the pop-up will display

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)188

828-8 CH08.qxd 10/11/07 10:56 AM Page 188

Figure 8-11 shows a sample page containing two controls with the PopupControl
extender. The first control displays a Calendar control as a pop-up when the TextBox is
clicked. Clicking the second TextBox control displays a list of radio buttons.

Figure 8-11. An example of the PopupControl extender

The following segment is the code behind the second TextBox displayed in that sam-
ple page shown in Figure 8-11. There is an empty TextBox control along with a Panel
control that contains a RadioButtonList control with a few options. There is also an
UpdatePanel defined for AJAX-style user interaction when the user makes a selection.

<asp:TextBox ID="MessageTextBox" runat="server" Width="200" autocomplete="off" />

<asp:Panel ID="Panel2" runat="server" CssClass="popupControl">

<div style="border: 1px outset white; width: 100px">

<asp:UpdatePanel runat="server" ID="up2">

<ContentTemplate>

<asp:RadioButtonList ID="RadioButtonList1" runat="server"➥

AutoPostBack="true" OnSelectedIndexChanged=

"RadioButtonList1_SelectedIndexChanged">

<asp:ListItem Text="Walk dog" />

<asp:ListItem Text="Feed dog" />

<asp:ListItem Text="Feed cat" />

<asp:ListItem Text="Feed fish" />

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 189

828-8 CH08.qxd 10/11/07 10:56 AM Page 189

<asp:ListItem Text="Cancel" Value="" />

</asp:RadioButtonList>

</ContentTemplate>

</asp:UpdatePanel>

</div>

</asp:Panel>

<ajaxToolkit:PopupControlExtender ID="PopupControlExtender2" runat="server"

TargetControlID="MessageTextBox"

PopupControlID="Panel2"

CommitProperty="value"

Position="Bottom"

CommitScript="e.value += ' - do not forget!';" />

The RadioButtonList1_SelectedIndexChanged method commits the selected value
from the radio button lists to the underlying TextBox control. Other than that, the only
other piece worth noting here is the addition of the PopupControl extender with the
MessageTextBox control set as its TargetControlID. The CommitScript property just displays
additional text along with the selected value from the RadioButtonList control. And that’s
all! It’s that easy to use the PopupControl extender and associate extra content with a
TextBox or other HTML controls. The main common denominator in the supported
controls is that they must all have support for a Click event.

Rating Control
From various product reviews to feedback forms, songs, and other media online, some
variation of a Rating control is becoming common on web sites these days. These con-
trols are often a simple manifestation of a finite rating system and usually appear as a
number of stars or other small icons. The Rating control provides very similar functional-
ity by displaying a star-based Rating control with a minimum amount of code while
allowing the flexibility of applying various styles to get the intended appearance.
Table 8-12 lists the main properties of this control.

Table 8-12. Rating Extender Properties

Property Name Description

AutoPostBack Boolean value indicating whether or not postback is initiated with a
change in ratings

CurrentRating Current value of the Rating control

EmptyStarCssClass CSS class used for empty (unselected) stars

FilledStarCssClass CSS class used for filled (selected) stars

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)190

828-8 CH08.qxd 10/11/07 10:56 AM Page 190

MaxRating Highest possible rating

OnChanged Client-side event fired when the rating is changed

RatingAlign General alignment of the starts (Vertical/Horizontal)

RatingDirection Flow direction of the stars (LeftToRight, TopToBottom, etc.)

ReadOnly Boolean value indicating whether or not the rating can be changed

StarCssClass CSS class for stars in the Rating control

Tag Parameter used to store auxiliary information to pass to the client

WaitingStarCssClass CSS class for stars in waiting mode

Here we have an example of a Rating control with a max number of five stars (as
stated by the MaxRating property) with the initial rating set to two stars:

<ajaxToolkit:Rating ID="ThaiRating" runat="server"

CurrentRating="2"

MaxRating="5"

StarCssClass="ratingStar"

WaitingStarCssClass="savedRatingStar"

FilledStarCssClass="filledRatingStar"

EmptyStarCssClass="emptyRatingStar"

OnChanged="ThaiRating_Changed"

style="float: left;" />

The ThaiRating_Changed method simulates logic processing by 400ms of pause and
notifies the user as shown in the following code:

protected void ThaiRating_Changed(object sender, RatingEventArgs e)

{

Thread.Sleep(400);

e.CallbackResult = "Update done. Value = " + e.Value + " Tag = " + e.Tag;

}

Beyond these basic properties, there are a few CSS-based properties such as Wait-
ingStarCssClass and FilledStarCssClass for various states of the control. In addition to
that, in the OnChanged event, you can specify a server-side method to implement more
custom logic. You can see an example running on the browser in Figure 8-12.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 191

Property Name Description

828-8 CH08.qxd 10/11/07 10:56 AM Page 191

Figure 8-12. Rating control being used to rate a person’s preference of Thai food

ReorderList Control
In many web and desktop applications, you may have come across the typical UI con-
struct for reordering lists that is often done by two buttons (one for Up and another for
Down) placed adjacent to the list itself. The user then has to select the item in the list and
click the appropriate button enough times to get the selected item in the designated
position. It would certainly be nice to be able to simply drag the item to the desired posi-
tion instead.

You have already seen how easy it is with the controls provided in the ASP.NET AJAX
tools to implement dragging and dropping of various controls on the page without page
postbacks. However, trying to implement a data-bound list still requires much work to
allow the user to reorganize the order of the items. The ReorderList control can be
applied to a bound object source, such as an ObjectDataSource control, and provide AJAX-
style reordering of the bound items. Table 8-13 lists the main properties of this control.

Table 8-13. ReorderList Control Properties

Property Name Description

AllowReorder Boolean value indicating whether or not to enable reordering of the
items in the list.

DataKeyField Field containing the primary key for the underlying data source.

DataMember Designated field name in the specified data source.

DataSource Data source object used to bind to the ReorderList control.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)192

828-8 CH08.qxd 10/11/07 10:56 AM Page 192

DataSourceID ID of the data source control used to retrieve the list of items.

DragHandleAlignment Layout alignment of the drag handle (Top, Bottom, Left, Right).

DragHandleTemplate Markup/template used for the drag handle. (All template-based
properties derive from ITemplate and can be assigned
programmatically as well.)

EditItemTemplate Markup/template used when the item is edited.

EmptyListTemplate Markup/template used when there are no underlying items.

InsertItemTemplate Markup/template used to create a new item.

ItemInsertLocation Location of the newly created item (Beginning or End of the list).

ItemTemplate Markup/template used to display an individual item.

PostbackOnReorder Boolean value indicating whether or not to initiate a postback each
time an item is reordered.

ReorderTemplate Markup/template used to show where the new item is being relocated
to.

SortOrderField The key field in the data used to sort the list.

ShowInsertItem Boolean value indicating whether or not to display the inserted item.

As you can see by the properties, the ReorderList control not only provides the ability
to manually drag and drop items to different positions in the list, it can also perform auto
sorting if specified in its property, SortOrderField. One classic case for a list of items that
can really take advantage of a reordering functionality is a to-do list of tasks including
items whose priority can change. The following markup is used to create a to-do list that
allows the user to reorganize its members by simply moving the individual items
throughout the list.

<ajaxToolkit:ReorderList ID="ReorderList1" runat="server"

PostBackOnReorder="false"

DataSourceID="ObjectDataSource1"

CallbackCssStyle="callbackStyle"

DragHandleAlignment="Left"

ItemInsertLocation="Beginning"

DataKeyField="ItemID"

SortOrderField="Priority">

<ItemTemplate>

. . .

</ItemTemplate>

<EditItemTemplate>

. . .

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 193

Property Name Description

828-8 CH08.qxd 10/11/07 10:56 AM Page 193

</EditItemTemplate>

<ReorderTemplate>

<asp:Panel ID="Panel2" runat="server"

CssClass="reorderCue" />

</ReorderTemplate>

<DragHandleTemplate>

<div class="dragHandle"></div>

</DragHandleTemplate>

<InsertItemTemplate>

. . .

</InsertItemTemplate>

</ajaxToolkit:ReorderList>

As you can see, much like many other data-bound controls such as the ASP.NET
DataList control, the ReorderList control has support for ItemTemplate, EditItemplate, and
more, thereby allowing ample flexibility when dealing with lists of data. Figure 8-13
shows the sample page containing this code in the browser.

Figure 8-13. Items of a to-do list can be rearranged using the ReorderList control.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)194

828-8 CH08.qxd 10/11/07 10:56 AM Page 194

ResizableControl Extender
The ResizableConrol extender is a very well implemented and easy to use extender that
can be associated with just about any HTML or ASP.NET UI control. The user can then
drag the lower-right corner of the control and resize it much like any window. Before
looking at how this extender can be used, take a look at its main properties in Table 8-14.

Table 8-14. ResizableControl Extender Properties

Property Name Description

HandleCssClass CSS class to be applied to the resize handle of the target control

HandleOffsetX/HandleOffsetY X and Y offsets applied to the resize handle in respect to the target
control

MaximumHeight Maximum allowed height of the target control

MaximumWidth Maximum allowed width of the target control

MinimumHeight Minimum allowed height of the target control

MinimumWidth Minimum allowed width of the target control

OnClientResize The client event triggered right after the target control has been
resized

OnClientResizing The client event triggered when while resizing the target control

OnClientResizeBegin The client event triggered when resizing starts to occur on the
target control

ResizableCssClass The CSS class to be applied to the target control during resize

TargetControlID ID of the target control associated with the ResizableControl
extender

So, let’s say we have a panel in our web page that contains an image as shown here:

<asp:Panel ID="PanelImage" runat="server" CssClass="frameImage">

<asp:Image ID="Image1" runat="server" ImageUrl="~/images/AJAX.gif"

AlternateText="ASP.NET AJAX" style="width:100%; height:100%;" />

</asp:Panel>

We could enable this panel to be resizable by using the ResizableControl extender
and assigning its TargetControlID property to the ID of this Panel:

<ajaxToolkit:ResizableControlExtender ID="ResizableControlExtender1" runat="server"

TargetControlID="PanelImage"

ResizableCssClass="resizingImage"

HandleCssClass="handleImage"

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 195

828-8 CH08.qxd 10/11/07 10:56 AM Page 195

MinimumWidth="50"

MinimumHeight="26"

MaximumWidth="250"

MaximumHeight="170"

HandleOffsetX="3"

HandleOffsetY="3"

OnClientResize="OnClientResizeImage" />

The OnClientResize property defines a client-side function to execute when the
image is resized, which in this case has the following script:

function OnClientResizeImage(sender, eventArgs) {

$get("lastResize").innerHTML = "Last image resize at " + (new Date()).toString();

}

You can use HandleCssClass, HandleOffsetX, and HandleOffsetY to better control the
appearance of the lower-right drag handle for the resize. Furthermore, using the
OnClientResize property, you can write a client-side JavaScript function to modify the behav-
ior of the extender as the underlying control is being resized. The user can use the small hand
icon on the bottom-right corner of the image to resize the image (see Figure 8-14).

Figure 8-14. An image on a page can be resized by the user using the ResizableControl
extender.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)196

828-8 CH08.qxd 10/11/07 10:56 AM Page 196

Slider Extender
Slider controls are excellent UI constructs for allowing the user to change the settings for
some entity. This is essentially a graphical way of changing an underlying number value.
And as if you couldn’t have guessed by now, the Slider extender provides an easy way to
implement a slider-type control in your web pages by extending a TextBox control. By
default, the range of numbers for this extender is from 0 to 100, but that can certainly be
changed using the Minimum and Maximum properties. Some of the main properties of the
Slider extender are listed in Table 8-15.

Table 8-15. Slider Extender Properties

Property Name Description

BoundControlID ID of the Label and TextBox control that displays the value of the Slider
control

Decimals Decimal points used for the value of the slider handle

EnableHandleAnimation Boolean value indicating whether or not the slider handle will have
animation (sliding/gliding effect)

HandleCssClass CSS class used for the Slider control’s handle

HandleImageUrl URL of the image used for the Slider control’s handle

Length Length of the Slider control expressed as Width/Height

Minimum Minimum value of the Slider control

Maximum Maximum value of the Slider control

RailCssClass Boolean value indicating whether or not to fire the Change event after a
left mouse click

Steps Number of discrete values in the range of the Slider control

Steps Tool tip text displayed when the user hovers the mouse over the slider
handle

TargetControlID ID of the target TextBox control

TooltipText Current value of the Slider control

To start using the Slider extender, you just need a couple of TextBox controls: one to
be extended by the Slider extender and another to display the current value of the slider.
Beyond that you just need the Slider extender itself.

<table>

<tr>

<td style="width:140px;border:solid 1px #808080">

<asp:TextBox ID="Slider1" runat="server" style="right:0px"➥

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 197

828-8 CH08.qxd 10/11/07 10:56 AM Page 197

Text="0" />

</td>

<td style="width:15px"></td>

<td style="width:auto">

<asp:TextBox ID="Slider1BoundControl" runat="server"➥

Width="30" />

</td>

</tr>

</table>

<ajaxToolkit:SliderExtender ID="SliderExtender1" runat="server"

TargetControlID="Slider1"

BoundControlID="Slider1BoundControl"

Orientation="Horizontal"

EnableHandleAnimation="true"

TooltipText="Slider: value {0}. Please slide to change value." />

In this case, we have chosen Horizontal for the Orientation property of the Slider
extender as opposed to Vertical. In this particular example, the EnableHandleAnimation
property is set to True, thus providing smoother slides as the user changes the values. You
can also use the ToolTipText property to display a message to the users when they hover
over the target TextBox control. Figure 8-15 shows the Slider extender in action.

Figure 8-15. A simple Slider extender

SlideShow Extender
Once rare, you don’t have to look far on the Internet to find a plethora of sites with slide
show elements in them. In addition to large photo-sharing sites, many smaller sites now
allow their users to create custom slide shows. With the ASP.NET AJAX SlideShow extender,
you too could easily add a simple slide show to your site. This extender uses a web service

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)198

828-8 CH08.qxd 10/11/07 10:56 AM Page 198

to get a list of images through which it will iterate. In addition to the configurable delay
time between the image transitions, you can also have custom Play, Pause, and Stop but-
tons for manual control of the slide show. Table 8-16 lists the main properties of the
SlideShow extender.

Table 8-16. SlideShow Extender Properties

Property Name Description

AutoPlay Boolean value indicating whether or not the SlideShow control should
automatically start upon launch

ContextKey A user-defined context key to be used when fetching the list of images
from the web service

ImageDescriptionLabelID ID of the Label control displaying the current image’s description.

ImageTitleLabelID ID of the Label control displaying the current image’s title

Loop Boolean value indicating whether or not the slide show should
automatically loop through the list of images

NextButtonID ID of the ASP.NET Button control for the Next button

PlayButtonID ID of the ASP.NET Button control for the Play button

PlayButtonText Text displayed in the Play button to play the slide show

PlayInterval Slide show interval between image transitions (in milliseconds)

PreviousButtonID ID of the ASP.NET Button control for the Previous button

SlideShowServiceMethod Name of the web method used for fetching the images

SlideShowServicePath Path of the web service used to fetch the images from

StopButtonText Text displayed in the Play button to stop the slide show

UseContextKey Boolean value indicating whether or not ContextKey should be used

Now that you’ve seen the properties of the SlideShow extender, let’s see what it would
take to actually implement it. Consider the following code snippet used to create a sim-
ple slide show with three buttons for manual control on top of the automatic time delay
between each image’s transition:

<asp:Image ID="Image1" runat="server"

Height="300"

Style="border: 1px solid black;width:auto"

ImageUrl="~/SlideShow/images/Blue hills.jpg"

AlternateText="Blue Hills image" />

<asp:Label runat="server" ID="imageDescription" CssClass= ➥

"slideDescription" />➥

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 199

828-8 CH08.qxd 10/11/07 10:56 AM Page 199

<asp:Button runat="Server" ID="prevButton" Text="Prev" ➥

Font-Size="Larger" />

<asp:Button runat="Server" ID="playButton" Text="Play" ➥

Font-Size="Larger" />

<asp:Button runat="Server" ID="nextButton" Text="Next" ➥

Font-Size="Larger" />

<ajaxToolkit:SlideShowExtender ID="slideshowextend1" runat="server"

TargetControlID="Image1"

SlideShowServiceMethod="GetSlides"

AutoPlay="true"

ImageTitleLabelID="imageTitle"

ImageDescriptionLabelID="imageDescription"

NextButtonID="nextButton"

PlayButtonText="Play"

StopButtonText="Stop"

PreviousButtonID="prevButton"

PlayButtonID="playButton"

Loop="true" />

The TargetControlID of this extender is set to an ASP.NET Image control, which starts
off the slide show with the initial image. The AutoPlay and Loop properties set to True start
the slide show immediately and instruct it to loop through the images (as provided by the
web service) again and again. Basically, other than the various ButtonID properties used
to specify the Play, Stop, and Previous buttons, the only other noteworthy point here is
the SlideshowSeviceMethod, which is set to GetSlides, the web method that will feed the
extender with a list of images to display as shown here:

public static AjaxControlToolkit.Slide[] GetSlides()

{

return new AjaxControlToolkit.Slide[] {

new AjaxControlToolkit.Slide("images/Blue hills.jpg", "Blue Hills", "Go Blue"),

new AjaxControlToolkit.Slide("images/Sunset.jpg", "Sunset", "Setting sun"),

new AjaxControlToolkit.Slide("images/Winter.jpg", "Winter", "Wintery..."),

new AjaxControlToolkit.Slide("images/Water lilies.jpg", "Water lillies",

"Lillies in the water"), new AjaxControlToolkit.Slide(

"images/VerticalPicture.jpg" , "Sedona", "Portrait style picture");

}

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)200

828-8 CH08.qxd 10/11/07 10:56 AM Page 200

Figure 8-16 shows the SlideShow extender in the browser.

Figure 8-16. A slide show with three control buttons using the SlideShow extender

TabContainer and TabPanel Control
Tabs are fundamental and useful UI elements that are becoming increasingly popular in
web applications. The highly extensible duo controls TabContainer and TabPanel provide
for a highly functional and AJAX-style tab support in your web application. The TabCon-
tainer control is a host control that can contain one or more TabPanel controls. These
tabs can be customizable because just about any HTML markup can exist in the Content-
Template or HeaderTemplate sections of the TabPanel control. Tables 8-17 and 8-18 list the
properties of the TabContainer and TabPanel controls, respectively.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 201

828-8 CH08.qxd 10/11/07 10:56 AM Page 201

Table 8-17. Main Properties of the TabContainer Control

Property Name Description

ActiveTabChanged The server-side event triggered when the user switches to another tab.

ActiveTabIndex Index of the selected tab.

CssClass CSS class used to decorate the Tab control with custom settings. You
can define the header, outer, inner, and body of the tab as well as other
behavior settings such as when a tab becomes active.

Height Height of the individual tab body.

OnClientActiveTabChanged The client-side event triggered when the user switches to another tab.

ScrollBars Display mode for scrollbars in the body of the tabs. The possible values
are None, Horizontal, Vertical, Both, and Auto.

Table 8-18. Main Properties of the TabPanel Control

Property Name Description

Enabled Boolean value indicating whether or not the tab is enabled

HeaderText Title text of the tab

OnClientClick The client-side event triggered when the tab is clicked

Let’s change our focus once more to the sample pages included with the ASP.NET
AJAX Toolkit under Tabs.aspx. Here we find a TabContainer control with three TabPanels.
For the sake of brevity, the details of the ContentTemplates with the TabPanel controls has
been removed in the following code snippet:

<ajaxToolkit:TabContainer runat="server" ID="Tabs" Height="138px"➥

OnClientActiveTabChanged="ActiveTabChanged" ActiveTabIndex="0"➥

Width="402px">

<ajaxToolkit:TabPanel runat="server" ID="Panel1" HeaderText="Signature and Bio">

<ContentTemplate>

<asp:UpdatePanel ID="updatePanel1" runat="server">

<ContentTemplate>

. . .

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)202

828-8 CH08.qxd 10/11/07 10:56 AM Page 202

</ContentTemplate>

</asp:UpdatePanel>

</ContentTemplate>

</ajaxToolkit:TabPanel>

<ajaxToolkit:TabPanel runat="server" ID="Panel3" HeaderText="Email" >

<ContentTemplate>

. . .

</ContentTemplate>

</ajaxToolkit:TabPanel>

<ajaxToolkit:TabPanel runat="server" ID="Panel2" OnClientClick=➥

"PanelClick" HeaderText="Controls">

<ContentTemplate>

. . .

</ContentTemplate>

</ajaxToolkit:TabPanel>

</ajaxToolkit:TabContainer>

But as you can imagine, the ContentTemplate tags can contain any desired HTML
markup as well as ASP.NET controls and functionality. Also, two event handlers are
defined here: the OnClientClick for the TabPanel (which fires when the tab is clicked) and
OnClientActiveTabChanged (which fires when the user switches to another tab). These
events are handled via JavaScript on the client and can be used to deliver further cus-
tomization to the behavior of the tabs such as UI changes. The following script snippet is
for the OnClientActiveTabChanged event handler, ActiveTabChanged:

function ActiveTabChanged(sender, e) {

var CurrentTab = $get('<%=CurrentTab.ClientID%>');

CurrentTab.innerHTML = sender.get_activeTab().get_headerText();

Highlight(CurrentTab);

}

In this script, the ClientID and the header text of the current tab are fetched, and the
selected tab is highlighted. Lastly, you can use the CssClass property to make vast UI
changes to the appearance of the tabs, including such things as having images as tab
headers. Figure 8-17 shows the Tabs Sample page for the aforementioned code snippet.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2) 203

828-8 CH08.qxd 10/11/07 10:56 AM Page 203

Figure 8-17. A sample page with a TabContainer control and three TabPanels

Summary
In this chapter as well as the previous one, you were introduced to most of the controls in
the ASP.NET AJAX Control Toolkit. And as you have seen, these controls can bring about
tremendous gains in development effort because they provide some advanced effects
and client UI functionality with very little code and near drag-and-drop ease. Also, this
toolkit is available with its source code and thus customizable.

Finally, due to a large number of script files that are often generated, the perform-
ance of your ASP.NET page may at times be somewhat sluggish. Therefore, it’s important
to use good judgment when deciding to use a number of the toolkit extenders on heavy
(containing lots of content and dynamic controls) pages with lots of traffic.

CHAPTER 8 ■ USING THE ASP.NET AJAX CONTROL TOOLKIT (PART 2)204

828-8 CH08.qxd 10/11/07 10:56 AM Page 204

AJAX-Style Mapping Using the
Virtual Earth SDK

One of the first mainstream uses of AJAX in web applications was mapping. AJAX-
enhanced maps are significantly more user friendly because they enable the user to have
a much richer, smoother, and interactive experience with the maps. Mapping functional-
ity based on Virtual Earth packaged in script files was shipped with some of the earlier
beta bits of ASP.NET AJAX (also known as Atlas) but was removed from the final release
of the product. Microsoft Virtual Earth, which is now part of the Windows Live family
of products, provides a comprehensive SDK (available at http://dev.live.com/
virtualearth/sdk/) for developers to integrate AJAX style maps right into their web appli-
cations. This includes support for all the cool features, including 3D maps and bird’s
eye view (where available). In this chapter, we will examine the Virtual Earth SDK along
with some of its basic functionality and discuss how you can leverage it in your own
applications.

Introduction to Microsoft Virtual Earth (VE)
Mapping is a major part of the new Windows Live Local web application, which is essen-
tially powered by Virtual Earth (VE), the core of Microsoft’s online mapping offering. On
top of support for traditional map views in road, aerial, or hybrid, VE also includes 3D
maps and bird’s eye views. 3D maps often contain textured 3D models of key buildings or
landmarks, whereas bird’s eye view images were harvested by flying an actual plane over
the area. This is why at the time of this writing, bird’s eye view is only available in major
cities, but coverage for more cities seems to be constantly growing.

You can use VE to look at what businesses and services are available at a particular
location and have them all mapped out for you in addition to the classical location and
direction search typically done when using an online mapping application. You can
access this online application by visiting http://local.live.com.

Figure 9-1 shows an example of this; you can search for a company name such as
Barnes and Noble in the context of a city such as Chicago, Illinois, and you get all the

205

C H A P T E R 9

828-8 CH09.qxd 10/8/07 10:02 PM Page 205

http://dev.live.com
http://local.live.com

206 CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK

Barnes and Noble locations in the Chicago area along with their addresses, phone num-
bers, and other information.

The search results appear in the left pane, and their numbered icons appear on the
map. These icons are called pushpins, and they simply enumerate the search results
while showing their location on the map. You’ll see how to implement them in the
“Using Pushpins” section a bit later in this chapter, as well as how to use the same map-
ping libraries for your own applications.

Figure 9-1. Using Microsoft Live Local

Programming the VEMap Control
VE is an entirely hosted online application and as such doesn’t require any extra compo-
nent on the client to function properly. External script inclusion on top of your page is all
that is needed to open the doors to the rich functionality of VE. One exception to this fact
is the use of 3D maps. 3D maps are implemented via an ActiveX plug-in that needs to be

828-8 CH09.qxd 10/8/07 10:02 PM Page 206

207CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK

installed on Internet Explorer before you can view any of the 3D maps/landscapes. If the
plug-in is not installed when the user attempts to switch the map mode to 3D, the user
will be prompted to download it. With that in mind, let’s take a look at what is involved in
incorporating a basic map in your page and explore some of the key API features of the
VE SDK.

Creating a Simple Map

As mentioned earlier, all that’s needed to include support for VE maps in your page is the
inclusion of an external script file that is hosted on Microsoft servers. VE maps are intrin-
sically AJAX enabled, meaning that no extra effort is required at your end. By simply
including the VEMap control in your page, users get the full AJAX experience and are able
to view and move the map around and change various viewing options without any page
refresh. At the time of this writing, the current version of the VE SDK is 5.0 and can be ref-
erenced in your page by adding the following line to the top of the page:

<script src="http://dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=5"></script>

With that, we can now use the VE API. One of the first things to do when adding a
map to your page is to create a host container for the map. For our purposes a simple
<div> tag will suffice as shown here:

<div id='MapPane' style="position:relative; width:800px; height:600px;"></div>

Here, the width and height of the <div> tag have been set to 800 by 600 pixels but can
certainly be any size you need. Now, the VE control itself should be instantiated with the
ID of the <div> tag, and the map should be initialized with the right parameters as shown
in this code snippet:

<script language=javascript type="text/javascript">

function DisplayMap()

{

var newMap;

newMap = new VEMap('MapPane');

newMap.LoadMap(new VELatLong(48, -122), 9 ,'r' ,false,VEMapMode.Mode2D,

true);

}

</script>

The VEMap control takes in the ID of the <div> tag as the host container in its construc-
tor. VEMap is at the heart of the VE API, and as the core component, it handles most of the
functionality. Take a moment to look at some of the methods in the VEMap control shown
in Table 9-1.

828-8 CH09.qxd 10/8/07 10:02 PM Page 207

http://dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=5
http://dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=5

Table 9-1. Methods of the VEMap Control

Method Name Description

AddControl Adds a custom control to the map.

AddPolygon Renders a Polygon object (VEPolygon) on the map.

AddPolyline Renders a Polyline object (VEPolyline) on the map.

AddPushpin Adds a pushpin to the map.

AddShape Adds a shape object (VEShape) object to the map.

AttachEvent Wires up an event of the map control with a client-side event
handler.

Clear Clears all added layers such as pushpins and other search results
from the map.

ClearInfoBoxStyles Clears out all default VE info box CSS styles.

DeleteRoute Clears the current route (VERoute object) from the map.

DeleteTileLayer Deletes a tile layer from the map.

DetachEvent Removes an event handler from an event of the VEMap control.

EndContinuousPan Stops continuous map panning on the VEMap control.

Find Returns an array of found search results.

GetAltitude Returns the altitude (in meters) above a specified location (only
available in 3D mode).

GetBirdseyeScene Returns the current VEBirdseyeScene object (only available in
bird’s eye view mode).

GetCenter/SetCenter Gets or sets the location of the center of the current map
(VELatLong object).

GetHeading/SetHeading Gets or sets the compass heading of the current map (only
available in 3D mode).

GetLeft Returns the pixel value of the left edge of the map.

GetMapMode/SetMapMode Gets or sets the current map mode (Mode2D, Mode3D).

GetMapStyle/SetMapStyle Gets or sets the current map style (Road, Aerial, Hybrid,
Birdseye).

GetMapView/SetMapView Gets or sets the current map view object as a VELatLongRectangle
object.

GetPitch/SetPitch Gets or sets the pitch of the current map view with values
ranging from 0 for level to -90 (only available in 3D mode).

GetRoute Returns the specified VERoute object and draws the route on the
map.

GetTop Returns the pixel value of the top edge of the map control.

GetVersion Returns the current version of the map control.

CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK208

828-8 CH09.qxd 10/8/07 10:02 PM Page 208

GetZoomLevel/SetZoomLevel Gets or sets the zoom level of the map.

HideAllShapeLayers Hides all of the shape layers on the map.

Hide3DNavigationControl Hides the default user interface for controlling the map in 3D
mode (only available in 3D mode).

HideDashboard Hides the compass and the zoom control from the current map.

HideFindControl Hides the find control from the map.

HideMiniMap Hides the mini map from view.

HideTileLayer Hides a tile layer from view.

ImportShapeLayerData Imports data from Live Search Maps or a GeoRSS feed collection.

IncludePointInView Changes the map view so that it includes both the specified
VELatLong point and the center point of the current map.

IsBirdseyeAvailable Boolean value indicating whether or not the bird’s eye map style
is available in the current map.

LatLongToPixel Converts a VELatLong object (latitude/longitude pair) to the
corresponding pixel on the map.

LoadMap Loads the specified map. All parameters are optional as
explained later in this chapter.

Pan Moves the map the specified amount (only available in 2D
mode).

PanToLatLong Pans the map to a specific latitude and longitude.

PixelToLatLong Converts a pixel to a VELatLong object (latitude/longitude) on
the map.

Resize Resizes the map based on the specified width and height.

SetAltitude Sets the altitude (in meters) above the current position on the
map (only available in 3D mode).

SetBirdseyeOrientation Sets the orientation of the existing bird’s eye image
(VEBirdseyeScene object) to the specified orientation.

SetBirdseyeScene Sets the bird’s eye image specified by the VEBirdseyeScene ID.

SetCenterAndZoom Centers the map to a specific latitude and longitude and sets the
zoom level.

SetDashboardSize Sets the dashboard size.

SetDefaultInfoBoxStyles Sets the info box CSS styles back to their default classes.

SetScaleBarDistanceUnit Sets the distance unit (kilometers or miles) for the map scale.

SetTileBuffer Sets the number of map tiles that are loaded outside of the
visible map view area.

Show3DNavigationControl In 3D mode, shows the default user interface for controlling the
map in 3D mode. By default, this control is shown.

CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK 209

Method Name Description

Continued

828-8 CH09.qxd 10/8/07 10:02 PM Page 209

ShowDashboard Shows the default user interface for controlling the map (the
compass-and-zoom control). By default, this control is shown.

ShowDisambiguationDialog Specifies whether the default disambiguation dialog box is
displayed when multiple results are returned from a location
query.

ShowFindControl Shows the find control, which enables users to enter search
queries.

ShowInfoBox Shows a shape’s custom or default info box.

ShowMessage Displays the specified message in a dialog box on the map.

ShowMiniMap Displays the mini map at the specified offset from the top-left
corner of the screen.

ShowTileLayer Shows a tile layer from view.

StartContinuousPan Moves the map in the specified direction until the
EndContinuousPan is called.

ZoomIn Increases the map zoom level by 1.

ZoomOut Decreases the map zoom level by 1.

The LoadMap method is responsible for actually initiating the rendering of the map
onto the page. Basically, the latitude and longitude (which will be discussed in greater
detail in the next section) of the Seattle, Washington area (used here as an arbitrary loca-
tion) is passed into the method along with a few other display properties such as zoom
level and map view mode. It has six optional parameters without which the default map
of the United States would be rendered. Therefore, the map is loaded with latitude of 48
and longitude of -122 with zoom level 9 in road view. To see a complete list of the LoadMap
method’s parameters with descriptions, refer to Table 9-2.

Table 9-2. Parameters of the LoadMap Method

Property Name Description

VELatLong The latitude/longitude value pair (VELatLong object) representing the
center of the map.

zoom Zoom level used to display the map (ranges from 1-19). The default
zoom level is 4.

style The map rendering style. Possible values are a for aerial, h for hybrid, o
for oblique (bird’s eye), and r for road. The default style is r.

fixed A boolean value indicating whether or not the map is fixed so that the
user cannot change the selected position of the map. By default, the
map is not fixed.

CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK210

Table 9-1. Continued

Method Name Description

828-8 CH09.qxd 10/8/07 10:02 PM Page 210

mode A VEMapMode enumeration value that indicates whether to load the map
in 2D or 3D mode. The default mode is 2D.

showSwitch (Optional) A boolean value indicating whether or not to show the map
mode switch on the dashboard control. By default, the map mode
switch is displayed.

The only thing left to do is to call the DisplayMap function somewhere on the page.
You could set this to an event handler for a button or some other control on the page. In
this case, you could simply set it to the onload event of the <body> tag:

<body onload='DisplayMap();'>

And when the page loads, the map is displayed as depicted in Figure 9-2.

Figure 9-2. Map of the Seattle, Washington area hosted in an ASP.NET page

CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK 211

Property Name Description

828-8 CH09.qxd 10/8/07 10:02 PM Page 211

The VEMap control contains all the code necessary to handle mouse interaction. If you
hold the mouse button down on the map, you can drag the map in any direction with the
map being updated in a completely AJAX manner. This is an excellent showcase of AJAX
and its importance in web applications, namely that asynchronous updates can signifi-
cantly improve the user experience. In this case, the map you are viewing consists of a
number of tiles. As you are viewing the map surface, the tiles for the surrounding areas
are downloaded and cached. If you drag the map around, another download for these
tiles isn’t necessary. However, if you drag really fast to see areas that are far away, you’ll
see that VE is working to catch up, caching the tiles as it goes. During this time, you often
notice blank tiles or sometimes tiles with an icon. See Figure 9-3 for an example of this.

Figure 9-3. Caching map tiles asynchronously

CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK212

828-8 CH09.qxd 10/8/07 10:02 PM Page 212

If you look at an HTTP trace (using any HTTP tracing utility) of what is happening as
you run this application, you’ll see the following. (Much of this has been removed for
brevity.) Take note that the VE service implements the mapping functionality, returning
the correct map tiles upon requests from this client library.

First the browser issues the initial request to a page:

#1 10:34:27.328 127.0.0.1:4611

GET /chapter9/Default.aspx HTTP/1.1

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

Then the server responds with this:

#2 10:34:27.390 127.0.0.1:4611

HTTP/1.1 200 OK

Server: ASP.NET Development Server/8.0.0.0

Date: Mon, 21 May 2007 18:34:27 GMT

X-AspNet-Version: 2.0.50727

Cache-Control: private

Content-Type: text/html; charset=utf-8

Content-Length: 1624

Connection: Close

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

...

After the initial download of the page, the map control kicks in and starts making the
asynchronous requests for the map tiles using XMLHttpRequest. You can see the request,
issued by the map control:

#11 10:34:28.656 65.55.241.30:80

GET /tiles/r021230000.png?g=15 HTTP/1.1

Accept: */*

Referer: http://localhost:4611/chapter9/Default.aspx

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; SV1; .

NET CLR 2.0.50727; WinFX RunTime 3.0.50727)

Host: r0.ortho.tiles.virtualearth.net

Connection: Keep-Alive

CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK 213

828-8 CH09.qxd 10/8/07 10:03 PM Page 213

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://localhost:4611/chapter9/Default.aspx
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

This is the response from the VE map server:

#12 10:34:28.859 65.55.241.30:80

HTTP/1.1 200 OK

Content-Length: 17055

Content-Type: image/png

Expires: Sat, 24 May 2008 01:39:58 GMT

Server: Microsoft-IIS/6.0

Srv: 31300

Date: Mon, 21 May 2007 18:34:28 GMT

As you pan around the map, you see the same functionality—the images being
requested, downloaded, and cached asynchronously.

In addition to panning around the map, you can zoom in and out because VE also
caches images when you zoom, providing what is effectively a smart multilevel cache of
the current map context. In other words, the VEMap control looks at the current context of
the map and caches the area outside the current view in the current zoom context as well
as a zoom-in context and a zoom-out context.

If you have a mouse with a wheel, you can roll the wheel to zoom in and out. You can
see this for the current application in Figure 9-4.

Now that you’ve gotten a feel for the functionality of the map, you’ll see some more
of the programmatic features for further controlling the map that are available to appli-
cation developers.

CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK214

828-8 CH09.qxd 10/8/07 10:03 PM Page 214

Figure 9-4. Zooming into the map

In the previous section, you saw how to create a simple page that hosts the VEMap
control, which probably whetted your appetite for some juicy APIs that you can use to
finely control the map. So, without further delay, let’s explore a few of them.

CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK 215

828-8 CH09.qxd 10/8/07 10:03 PM Page 215

Setting Longitude and Latitude

As you know, places on a map have a latitude and a longitude. Longitude values range
from –180 to +180,whereas latitude values range from –90 to +90. Using these values, you
can calculate and locate any position in the world. Longitude determines how far east or
west a location is, and latitude determines how far north or south a location is. To deter-
mine any location, you need only these two values. Locations at a latitude of 0 are on the
equator; locations with a latitude of 90 are at the North Pole; and locations with a latitude
of –90 are at the South Pole. Locations with a longitude of 0 are either directly north or
directly south of the Royal Observatory in Greenwich (a suburb of London, England),
with negative values being to the west, and positive values being to the east.

If you look at the map shown earlier in Figure 9-1, you will see that it is specified with
a latitude of 48 (48 degrees north of the equator) and a longitude of –122 (122 degrees
west of Greenwich, England), which brings you to the Seattle area:

LoadMap(new VELatLong(48, -122), 9 ,'r');

You don’t have to use whole numbers when specifying longitude and latitude; the lat-
itude/longitude numbers can be floating-point “style” values that provide some
fine-grained control over locations. So, you can quite happily control your location like
this:

LoadMap(new VELatLong(47.7512121212, -122.43234), 9 ,'r');

You can see this in Figure 9-5; notice that the map is now more centered around the
Seattle/Bellevue area.

CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK216

828-8 CH09.qxd 10/8/07 10:03 PM Page 216

Figure 9-5. Map using detailed latitude and longitude

CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK 217

828-8 CH09.qxd 10/8/07 10:03 PM Page 217

Setting the Zoom Level

You can set the zoom level of a map using the zoom parameter of the LoadMap method. This
parameter can take an integer value from 0, which corresponds to the map view from
5,000 miles altitude, to 19, which corresponds to the map view from 30 yards altitude.
Note that not all zoom levels are available for all locations in the world. However, the
maximum zoom level is available for all U.S. mainland locations. Lastly, you can also set
the zoom level of a map by using the SetZoomLevel accessor method of the VEMap control.

Using the following method call for the map, you will see the map of the world as
shown in Figure 9-6:

LoadMap(new VELatLong(47.7512121212, -122.43234), 0 ,'r');

Figure 9-6. Viewing the map at ZoomLevel 0

CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK218

828-8 CH09.qxd 10/8/07 10:03 PM Page 218

Choosing a Map Type

In addition to setting the location of the map, you can also specify the map type. At the
time of this writing, four types are available:

Road(r): This gives the typical road-type map. All the examples used so far in this
chapter use this type.

Aerial(a): This gives you a photograph of the location from above.

Hybrid(h): This gives you a combination of the previous two—an aerial photograph
of the location with roads, names, and locations superimposed on it.

Bird’s Eye(o): This gives you a much closer and clearer aerial shot of the location.
These images were acquired via an actual flying airplane.

You set the map style type using the style parameter of the LoadMap method. In all the
previous sections of this chapter, this attribute was set to r for Road, and as such, all the
maps so far in this chapter have been road maps. Hybrid and aerial maps can be a little
slower to load due to the extra processing required, but the load times are still quite rea-
sonable. Specifying a map as a hybrid is equally simple and straightforward. Here’s the
script:

LoadMap(new VELatLong(47.7512121212, -122.43234), 9 ,'h');

You can see the results in Figure 9-7.

CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK 219

828-8 CH09.qxd 10/8/07 10:03 PM Page 219

Figure 9-7. An aerial map of the location from Figure 9-2

Specific or Relative Panning

You can programmatically pan the map to a specific location as specified by longitude
and latitude or relative panning by using X and Y pixels. Let’s first look at how you can use
the VE API to map a specific location. You can use the PanToLatLong method of the VEMap
control to pan the map to a specified latitude and longitude. This information is passed
in via a VELatLong object as you saw in the earlier example in this chapter. You cannot set
the zoom level with this method, so you will be panning across the current zoom level.
Consider the following <script> block:

<script>

var newMap=null;

function DisplayMap()

CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK220

828-8 CH09.qxd 10/8/07 10:03 PM Page 220

{

newMap = new VEMap('MapPane');

newMap.LoadMap(new VELatLong(47.7512121212, -122.43234), 9 ,'r');

}

function PanLatLong()

{

newMap.PanToLatLong(new VELatLong(txtLat.value, txtLong.value));

}

function PanXY()

{

newMap.Pan(txtX.value, txtY.value);

}

</script>

In addition to the DisplayMap function you’ve seen already, there are two functions
here: PanLatLong and PanXY. PanLatLong pans the map to a specific latitude and longitude
(as provided in two text boxes) by creating a new VELatLong object. Now we have to create
a few HTML input fields in the page and be sure to call the DisplayMap method in the
onload event of the <body> tag as shown here:

<body onload="DisplayMap();">

<div id='MapPane' style="position:relative; width:600px; height:400px;"></div>

Pixels X:

<input id="txtX" style="width: 50px" value="100" /> |

; Pixels

Y:

<input id="txtY" style="width: 50px" value="100" />

<input id="btnPanPixels" type="button" value="Pan by X/Y pixels"

name="btnPanXY" onclick="PanXY()" />

Lat:

<input id="txtLat" value="47.757014822032184" /> | Long:

<input id="txtLong" value="-122.4300390625" />

<input id="btnPanLL" type="button" value="Pan to Lat/Long"

name="btnPanLatLong" onclick="PanLatLong()" />

</body>

CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK 221

828-8 CH09.qxd 10/8/07 10:03 PM Page 221

With this markup, when the PanLatLong button is clicked, the map will pan to the
specified coordinates as shown in Figure 9-8.

Figure 9-8. Example of panning by location (set by latitude/longitude to the Chicago area)

In addition to panning to a particular location, you can pan relative to the current
location by a number of pixels using the PanXY method. It takes two parameters, X and Y,
with which you specify the direction. For X, negative values pan to the left of the map, and
positive values pan to the right. For Y, negative values pan toward the bottom of the map,
and positive ones pan to the top. The PanXY JavaScript function you saw in the preceding
code segment reads the X and Y coordinates from the text boxes on the page and pans the
map accordingly using the Pan method of the VEMap control.

CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK222

828-8 CH09.qxd 10/8/07 10:03 PM Page 222

Using Pushpins

Maps are all very nice, but without any kind of attribution and labeling, they lose their
usefulness after a while. Fortunately, VE maps support graphical pushpins that allow you
to highlight specific locations on the map. You have already seen pushpins in Figure 9-1
when searching for Barnes and Noble bookstores in the Chicago area. In version 5.0 of
the VE SDK, pushpins are now specified as an enumeration of the VEShapeLayer class. This
class contains rich functionality around rendering various shapes and objects, including
images on the VEMap control. The VEShapeType enumeration includes Pushpin, Polyline,
and Polygon. For the purposes of this chapter, only pushpins are discussed. Let’s view a
simple example of using pushpins. Consider the following script and markup:

<script>

var newMap=null;

function DisplayMap()

{

newMap = new VEMap('MapPane');

newMap.LoadMap(new VELatLong(47.7512121212, -122.43234), 9 ,'r');

}

function AddPin()

{

var loc = new VELatLong(47.75, -122.43);

var pin = newMap.AddPushpin(loc);

pin.SetTitle(txtTitle.value);

pin.SetDescription(txtDescription.value);

}

</script>

<body onload="DisplayMap();">

<div id='MapPane' style="position:relative; width:600px; height:400px;"></div>

Title: <input id="txtTitle" value="" />

Description <input id="txtDescription" value="" />

<input id="btnAddPin" type="button" value="Add Pushpin" onclick="AddPin()" />

</body>

Here, the VEMap control is instantiated with the coordinates of the Seattle area. The
AddPin function uses the AddPushPin method of the VEMap control and passes in a VELatLong
object, which simply stores a latitude, longitude value pair. After that, the title and the
description of the pin are set using the SetTitle and SetDescription based on values from
the HTML input boxes on the page. So as you can see, all that is needed to create a push-
pin is basically values for latitude and longitude. You can also assign images to the
pushpin by adding the URL of an image. Then, at render time, the specified image will
be placed on the map at the specified location. You can see the preceding code segment
running on Figure 9-9.

CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK 223

828-8 CH09.qxd 10/8/07 10:03 PM Page 223

Figure 9-9. Creating custom pushpins on a map

Summary
In this chapter, you looked at the VE SDK and how you can use it to build your own map-
ping applications. You looked at how to create and invoke a map on a page and how you
can set its location using latitude and longitude. You learned how to zoom in and out of a
page programmatically and how to use the object model of the VE control to move the
map pane from place to place. Finally, you learned how to annotate the map using the
built-in pushpin technology. We just scratched the surface of the capabilities of the fea-
ture-rich VE SDK because more in-depth coverage of the entire API would have quickly
gone beyond the scope of this chapter.

CHAPTER 9 ■ AJAX-STYLE MAPPING USING THE VIRTUAL EARTH SDK224

828-8 CH09.qxd 10/8/07 10:03 PM Page 224

Building a Sample Application
Using ASP.NET AJAX

Throughout this book, you’ve been exploring some of the underpinning technologies of
ASP.NET AJAX, including the client-side JavaScript libraries, which are object-oriented
additions to JavaScript. You’ve also seen the power of ASP.NET AJAX server controls and
the ease with which they can be used to add asynchronous update functionality to an
ASP.NET page. In addition, we explored the rich set of UI controls and extenders offered
as part of the ASP.NET AJAX Control Toolkit. Lastly, we reviewed the Virtual Earth SDK,
and you saw how to add AJAX-style mapping functionality to your web applications.

In this chapter, you’ll go through, in detail, what it takes to build an application that
makes the most of these features to deliver a real-world application. The application you
will build is a very simple financial research tool that delivers stock quotes, extended
stock information, and some price history analytics. This sort of information is typically
used in technical analysis stock trading. Stock traders use a number of methodologies to
determine a good buying or selling price of a stock, including fundamental analysis,
where you look at company fundamentals such as dividends, profits, earnings per share,
gross sales, and more—usually a good methodology when investing in a company for
medium- to long-term investments. Day traders, who are looking for a quick in and out,
typically use technical analyses where they want to look at the momentum of the stock
based on how it has performed in similar situations recently. The closing price for a stock
over time is called the price history, and by applying various mathematical transforms to
it, a day trader can guess where it is going to go. It’s an inexact science, but when carefully
applied, it can be effective.

We will also use Bollinger band–based analysis of price history and see how to deliver
it in an ASP.NET AJAX application. You’ll see how technical traders use this to determine
potential times to get in and out of a stock. This should not be construed as investment
advice; it is provided for informational use only and as a demonstration of the ASP.NET
technology. You can see a snapshot of this application in Figure 10-1.

225

C H A P T E R 1 0

828-8 CH10.qxd 10/11/07 10:47 AM Page 225

226 CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX

Figure 10-1. An ASP.NET AJAX-based stock application

Understanding the Application Architecture
The application is built as a typical logical n-tier application comprising a resource tier
that contains the back-end resources. In this case, the resources are the Company Infor-
mation web service (courtesy of Flash-db.com, a provider of a number of useful and free
web services) and the Price History web service that provides comma-separated values
(CSV) over HTTP from Yahoo!. You can see the architecture in Figure 10-2.

828-8 CH10.qxd 10/11/07 10:47 AM Page 226

Figure 10-2. Application logical architecture

In a multitiered architecture like this, the information that drives your service comes
from the resource tier. In many applications, and this one is no exception, the informa-
tion is read-only—you are simply presenting the resources to the end user. However, the
raw resources are rarely presented. Some value has to be added to show how you visually
present them and also how you enhance them for presentation using business logic.
Many applications blur the distinction between business logic and presentation logic,
but it is important to distinguish these. When using ASP.NET AJAX, the ability to distin-
guish them becomes a lot easier.

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX 227

828-8 CH10.qxd 10/11/07 10:47 AM Page 227

This is because before AJAX, a developer would have to make a full-page refresh
whenever the user interacted with the page. Then, with the advent of DHTML, they could
make a decision—for a simple interaction and for a bit of business logic, it might be eas-
ier not to do it on the server but instead to do it using a script on the page. For example, if
the current price for the stock is on the page, the current earnings are known to the page,
and the user wants to display the profit/earnings (P/E) ratio (which divides the former by
the latter), why not just calculate it using an on-page JavaScript and then render it in a
<div> element instead of performing yet another round-trip to the server and producing
a “blink” as the page refreshes?

This can quickly lead to a maintenance nightmare and is a common problem that
has been solved by asynchronous updates. Now with AJAX (when implemented cor-
rectly), despite making a round-trip to the server, the overall size of the packets of data
getting passed will be a lot smaller because you are just going to update part of the page;
the entire page will not “flash” as it refreshes the user interface with the update.

Beneath the resource tier comes the data retrieval tier. In a clean architecture, this is
kept separate from the logic so that if data sources change, you don’t need to get into the
business logic plumbing and rip it out. It should provide a clean interface to the data
layer. Visual Studio 2005 offers you the facility to create a proxy to an existing web service,
which you can use to implement a data retrieval tier. In this application, the Price History
web service from Yahoo! provides CSV over HTTP, so you will implement a web service
that wraps this functionality and can easily be proxied.

The business logic tier is where you add value to your resources through aggregation,
integration, and calculation. For example, when calculating the P/E, discussed earlier,
with price information coming from one resource and earnings from another, instead of
integrating and calculating these on the page level, you aggregate the information in the
business logic tier where the function performing the calculation calls the data retrieval
tier to get the information from both resources and then performs the calculation. It then
provides the resultant information to the presentation tier as a response to the original
request for the P/E analytic.

The presentation tier is typically server-side logic that provides the markup and/or
graphics that will get rendered in the browser. This can be anything from a C-based CGI
service that generates raw HTML to an advanced control-based ASP.NET server applica-
tion. In this case, the example will use a variety of technologies, from ASP.NET controls
that will render HTML that is generated by server-side C# code to advanced graphics
functionality that renders the time series chart (you can see these charts in Figure 10-1).

Finally, what appears to the user is the output of this presentation tier, which is a
document that contains HTML, graphics, JavaScript, style sheets, and anything else the
browser needs to render.

As you see how to construct the application, you’ll see each of these tiers in a little
more detail.

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX228

828-8 CH10.qxd 10/11/07 10:47 AM Page 228

Creating the Application
As you saw in Figure 10-1, this application consists of a top header where the stock ticker
and company information is displayed, followed by three tabs in a TabContainer control
that host the extended quote information, price history, and Bollinger band analytic
charts. Let’s start by creating a new ASP.NET AJAX-enabled web site. Create the basic lay-
out of the application along with the corresponding TabContainer and TabPanel controls
from the ASP.NET AJAX Control Toolkit. After creating the basic UI shell, we’ll look into
the data tier and explore how data is obtained and consumed in this application.

This application requires a stock ticker as the only source of user input. As such,
upon creating the ScriptManager, UpdatePanel, and Timer control (all of which are fully
discussed later), an ASP.NET Label control and a TextBox control are necessary. Another
Label control is also needed to host the basic stock information such as company name,
current price, and price change on the top header. The top section of the page should
look similar to Figure 10-3.

Figure 10-3. Creating the top section of the application

As mentioned earlier, this application will have three tabs that contain much of its
functionality. The back-end processing and rendering for each tab should only occur
when the user clicks the tab. This way, additional overhead of recreating everything is
avoided, and also the user is presented with the most up-to-date information for the
selected stock ticker.

To create the tabs, from the ASP.NET AJAX Control Toolkit tab on the Toolbox in
Visual Studio, drag and drop a new TabContainer control onto the page with the
<ContentTemplate> tag of the main UpdatePanel. You can then use the designer window
to add three tabs (TabPanel controls) to the TabContainer control and name them “Basic
Quote”, “Price History”, and “Charts & Analytics”, respectively. Lastly, specify an event

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX 229

828-8 CH10.qxd 10/11/07 10:47 AM Page 229

handler for the ActiveTabChanged event. This, of course, can also be done in code as
shown in the following segment:

<cc1:TabContainer ID="TabContainer1" runat="server" ActiveTabIndex=0 ➥

AutoPostBack=true OnActiveTabChanged="TabContainer1_ActiveTabChanged">

<cc1:TabPanel ID="TabPanel1" runat="server" HeaderText="TabPanel1">

<HeaderTemplate>

Basic Quote

</HeaderTemplate>

<ContentTemplate>

<asp:Label ID="lblBasicQuote" Text ="Label" runat="server">

</asp:Label>

</ContentTemplate>

</cc1:TabPanel>

<cc1:TabPanel ID="TabPanel2" runat="server" HeaderText="TabPanel2">

<HeaderTemplate>

Price History

</HeaderTemplate>

<ContentTemplate>

. . .

</ContentTemplate>

</cc1:TabPanel>

<cc1:TabPanel ID="TabPanel3" runat="server" HeaderText="TabPanel3">

<HeaderTemplate>

Charts & Analytics

</HeaderTemplate>

<ContentTemplate>

. . .

</ContentTemplate>

</cc1:TabPanel>

</cc1:TabContainer>

You can see the created tabs in design view in Figure 10-4.

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX230

828-8 CH10.qxd 10/11/07 10:47 AM Page 230

Figure 10-4. Three TabPanel controls in a TabContainer control

That’s basically all there is to the outer shell of the UI. A bit later, we will add an
UpdateProgress control to notify the user when postbacks are occurring. As mentioned
earlier, we wanted to only execute code for each pane when it becomes active. In other
words, we do not want all panes rendered at all times. Therefore, in the ActiveTabChanged
event handler, the specific rendering code for each pane must be stated as shown here:

protected void TabContainer1_ActiveTabChanged(object sender, EventArgs e)

{

Update(TabContainer1.ActiveTabIndex);

}

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX 231

828-8 CH10.qxd 10/11/07 10:47 AM Page 231

To specify rendering code for each pane, let’s define a method named Update, which
takes in the index of the active tab as its only parameter. Inside the Update method, we
need to determine the active tab and execute the corresponding method:

private void Update(int selectedTabIndex)

{

switch (selectedTabIndex)

{

case 0: //Basic Quote

lblBasicQuote.Text = GetBasicQuote(txtTicker.Text.Trim());

break;

case 1: //Price History

GetPriceHistory(txtTicker.Text.Trim());

break;

case 2: //Analytics

GetAnalytics(txtTicker.Text.Trim());

break;

}

}

A simple switch statement does the job here. Based on the active tab index, the
appropriate method is called to render the tab. Three methods are called here, one for
each of three tabs that all have the same signature: one parameter that takes in the stock
ticker entered by the user in the TextBox control. The individual methods, GetBasicQuote,
GetPriceHistory, and GetAnalytics, are covered a little later in this chapter.

With that out of the way, let’s take a closer look at how to obtain the required data
and implement the individual sections of this application.

Creating Basic Company and Quote Information

Flash-db.com provides several hosted web services free of charge. One of these services
is the excellent Company Information web service, which provides basic and extended
stock price information, as well as the name of the company associated with a stock
ticker. Accessing this from a Visual Studio 2005 application is straightforward. The WSDL
(Web Services Description Language) for the web service is hosted at the following
location:

http://www.flash-db.com/services/ws/companyInfo.wsdl

To create a proxy to this WSDL, right-click your project in Solution Explorer, and
select Add Web Reference (see Figure 10-5).

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX232

828-8 CH10.qxd 10/11/07 10:47 AM Page 232

http://www.flash-db.com/services/ws/companyInfo.wsdl

Figure 10-5. Adding a web reference

A dialog box appears in which you specify the WSDL of the service you are referenc-
ing. In the URL text box, enter http://www.flash-db.com/services/ws/companyInfo.wsdl
(see Figure 10-6).

When you enter a valid WSDL here, the description pane updates with the supported
functions on the web service, as well as the services that are available to this WSDL (mul-
tiple services can be published to a single WSDL). In the Web Reference Name field, you
should enter a friendly name, such as companyInfo, because this is the name that will be
generated for the proxy that talks to the web service on your behalf. Click the Add Refer-
ence button to generate the proxy class for the web service.

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX 233

828-8 CH10.qxd 10/11/07 10:47 AM Page 233

http://www.flash-db.com/services/ws/companyInfo.wsdl

Figure 10-6. Specifying the WSDL

The Company Information web service is used in the application to present the
name of the company as well as the current price information. Now there needs to be a
method called GetCompanyInfo in which we write the code to use a few of the properties
to get the actual company data. After that, this information needs to be assigned to the
lblQuote control as shown in the following code snippet:

private void GetCompanyInfo(string strTicker)

{

companyInfo.CompanyInfoService service = new

companyInfo.CompanyInfoService();

companyInfo.CompanyInfoResult result = service.doCompanyInfo("anything",

"anything", strTicker);

lblQuote.Text = result.company + "
Current Price: " + result.lastPrice

+ "
Change: " +result.change;

}

This function updates the company information pane as well as the price history text
and graphs. Also, because this is the one piece of information that does not reside within
the tabs, it should be rendered and updated without the user clicking on the individual
tabs. Furthermore, the user should be able to enter a new stock ticker in the main

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX234

828-8 CH10.qxd 10/11/07 10:47 AM Page 234

TextBox and have the data updated. So to address these points, we need to first call the
GetCompanyInfo method during the Page_Load event and then create a Timer control. In the
control’s Tick event handler, we call the method shown here:

protected void Page_Load(object sender, EventArgs e)

{

if (!Page.IsPostBack)

{

GetCompanyInfo(txtTicker.Text.Trim());

//Default to first tab

Update(0);

}

}

This way, the ticker information is updated in regular intervals, and if the user enters
a new stock ticker, the changes are reflected as soon as the GetCompanyInfo method is
called again (in 5 seconds).

To create a timer for this page, drag and drop the ASP.NET AJAX Timer control from
the Toolbox onto the page, and set its Interval property to 5000ms, so that the page
updates every 5 seconds. Also, don’t forget to set the event handler for the Tick event as
shown here:

<asp:Timer ID="Timer1" runat="server" Interval="5000" OnTick=➥

"Timer1_Tick"></asp:Timer>

Lastly, for the timer functionality to work properly, you must call the GetCompanyInfo
method in the Timer1_Tick event handler as such:

protected void Timer1_Tick(object sender, EventArgs e)

{

GetCompanyInfo(txtTicker.Text.Trim());

}

You can view the company information and Quote section on the top of the page for
a specific stock ticker such as MSFT for Microsoft Corporation (see Figure 10-7).

Figure 10-7. The company name and current price information

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX 235

828-8 CH10.qxd 10/11/07 10:47 AM Page 235

With the brief quote information on top of the page, we need to create the more
extended quote information in the first tab. This extended price information includes the
bid and ask prices. These are, respectively, the current price that is being bid on the stock
by prospective buyers and the one that is being asked for by sellers. When you make a
purchase at the current market price, it is usually between these two values, provided you
are buying a large amount of shares in the stock. It also provides the opening price for the
day, as well as the year’s (52 weeks) high and low.

Now let’s take a look at the code that implements this. First, create a new TabPanel
control with one ASP.NET Label control in the <ContentTemplate> section. The following
code snippet shows the markup for that section:

<cc1:TabPanel ID="TabPanel1" runat="server" HeaderText="TabPanel1">

<HeaderTemplate>

Basic Quote

</HeaderTemplate>

<ContentTemplate>

<asp:Label ID="lblBasicQuote" runat="server"></asp:Label>

</ContentTemplate>

</cc1:TabPanel>

As you can imagine, much of the implementation logic is going to be in content
generation for the lblBasicQuote Label control because that is where all the quote infor-
mation will reside. To do this, we have a method with a similar signature to the
GetCompanyInfo method called GetBasicCode, which calls the CompanyInfoService web
service to provide data for this Label control. Here’s the code for that method:

private string GetBasicQuote(string strTicker)

{

companyInfo.CompanyInfoService service = new

companyInfo.CompanyInfoService();

companyInfo.CompanyInfoResult result =

service.doCompanyInfo("UID", "PWD", strTicker);

StringBuilder theHTML = new StringBuilder();

theHTML.Append("<table width='100%' cellspacing='0'

cellpadding='0' style='border-width: 0'>");

theHTML.Append("<tr><td width='40%'>");

theHTML.Append("Bid ");

theHTML.Append("</td><td width='40%'>");

theHTML.Append(result.bid);

theHTML.Append("</td></tr>");

theHTML.Append("<tr><td width='40%'>");

theHTML.Append("Ask ");

theHTML.Append("</td><td width='40%'>");

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX236

828-8 CH10.qxd 10/11/07 10:47 AM Page 236

theHTML.Append(result.ask);

theHTML.Append("</td></tr>");

theHTML.Append("<tr><td width='40%'>");

theHTML.Append("Open ");

theHTML.Append("</td><td width='40%'>");

theHTML.Append(result.open);

theHTML.Append("</td></tr>");

theHTML.Append("<tr><td width='40%'>");

theHTML.Append("Year High ");

theHTML.Append("</td><td width='40%'>");

theHTML.Append(result.yearHigh);

theHTML.Append("</td></tr>");

theHTML.Append("<tr><td width='40%'>");

theHTML.Append("Year Low ");

theHTML.Append("</td><td width='40%'>");

theHTML.Append(result.yearLow);

theHTML.Append("</td></tr>");

theHTML.Append("</table>");

return theHTML.ToString();

}

This function is similar to what you saw earlier in that it creates an instance of the
proxy to the Flash-db.com web service and an instance of the object type that contains the
results to the doCompanyInfo() web method call. It then generates HTML for a table using
a StringBuilder and places this HTML into the Text property of the Label control. Obvi-
ously, populating a Label control is not the most ideal way to represent some data on the
screen, but it suffices just fine for the purposes of this sample. In such scenarios, it’s best
to bind a typed data structure to one of the more sophisticated ASP.NET data-bound con-
trols, such as GridView or DataList.

The proxy to the Flash-db.com web service is called CompanyInfoService. An instance
of this proxy is first created, called svc. This exposes an object of type CompanyInfoResult,
which is used to store the returned information from the service. The second line creates
an instance of this type, called rslt, into which the results of a doCompanyInfo web method
call are loaded. This web method takes three parameters; the first two are username and
password. The web service is open, so you can put anything in for the username and
password parameters. The third parameter is the ticker for which you are seeking the
company information.

The company name (result.company) is then appended to a string containing text
(Current Price:), which in turn is appended to the last traded price for the stock
(result.lastPrice). You can see this in Figure 10-8.

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX 237

828-8 CH10.qxd 10/11/07 10:47 AM Page 237

Figure 10-8. Extended quote information in the first tab pane

Creating the Price History Pane

The price history pane renders the 20-day price history (the closing price for the stock over
the past 20 days) in a simple text table. Of course, the number 20 is completely an arbitrary
number. You could really configure it to be any number of days you want so long as histori-
cal data is available for that particular ticker. After we get the data for this period, a GridView
control is used to display the information. You can see this in Figure 10-9.

Figure 10-9. The price history pane

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX238

828-8 CH10.qxd 10/11/07 10:47 AM Page 238

This information is ultimately sourced from Yahoo! as CSV over HTTP. This CSV file is
returned from a call to the iFinance server at Yahoo! using a URL call similar this:

http://ichart.finance.yahoo.com/table.csv?s=MSFT&d=2

&e=4&f=2007&g=d&a=2&b=1&c=2006&ignore=.csv

This returns a CSV file with the following format:

Date,Open,High,Low,Close,Volume,Adj. Close*

3-Mar-06,26.81,27.16,26.74,26.93,45218800,26.93

2-Mar-06,27.02,27.10,26.90,26.97,41850300,26.97

1-Mar-06,26.98,27.20,26.95,27.14,53061200,27.14

Each data item is separated by a comma, and each line is separated by a carriage
return. To make this data easier to consume by the data retrieval and business logic tiers,
a web service consumes this HTTP service and exposes it as a structured DataTable. You’ll
see this in the next section.

Creating the Wrapper Web Service

This web service provides a web method that makes a call to the Yahoo! iFinance server
on your behalf, takes the CSV that is returned from it, and serializes it as a DataTable. It is
designed to be consumed by a .NET-based client, so using a DataTable object works
nicely. If you want to expose a web service that is easily interoperable with other plat-
forms, you should serialize the returned data using straight XML that can be parsed on
the client side. To do that, we have a web method called GetFullPriceHistory, which takes
in a stock ticker and an integer value representing the number of days. Here is the code
for this web method:

[WebMethod]

public DataTable GetFullPriceHistory(string strTicker, int nDays)

{

WebClient client = new WebClient();

StringBuilder strURI = new

StringBuilder("http://ichart.finance.yahoo.com/table.csv?s=");

strURI.Append(strTicker);

strURI.Append("&d=1&e=22&f=2007&g=d&a=8&b=28&c=1997&ignore=.csv");

Stream data = client.OpenRead(strURI.ToString());

StreamReader reader = new StreamReader(data);

string s = reader.ReadToEnd();

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX 239

828-8 CH10.qxd 10/11/07 10:47 AM Page 239

http://ichart.finance.yahoo.com/table.csv?s=MSFT&d=2
http://ichart.finance.yahoo.com/table.csv?s=

DataTable theTable = CsvParser.Parse(s);

if (nDays > 0)

{

int i = nDays + 1;

while (theTable.Rows.Count > i)

{

theTable.Rows.RemoveAt(i);

}

}

data.Close();

reader.Close();

return theTable;

}

This makes the connection to the Yahoo! server to fetch historical data of about 10
years by using an object derived from the WebClient class, which is defined in the
System.Net namespace. To use this, you use its OpenRead method, which is pointed at a
URI. This returns a stream, which can be read by a StreamReader. The contents of this can
be parsed into a string using a CsvParser abstract helper class.

This helper class provides the parsing functionality that reads the CSV information
and returns it as a DataTable. The Source Code/Download area of the Apress web site
(www.apress.com) includes a version of this class that was derived from one published in
the excellent blog from Andreas Knab at http://knab.ws/blog/.

The call to the Yahoo! iFinance server provides the entire price history for the stock,
which can be thousands of days’ worth of information. It provides an additional layer
that allows you to crop this data to the specified number of days by iterating through the
DataTable and removing rows beyond what you are interested in. So if you want to pull 10
days’ worth of data, you can modify the query to Yahoo! iFinance accordingly or simply
remove all rows beyond number 10.

That’s about it. This web method is present in a web service called DataTier.

Consuming the Web Service

As mentioned earlier, an ASP.NET GridView control will be used to display the historical
price data. So, in the <ContentTemplate> section of the second TabPanel, add a GridView
control named grdPriceHistory, and change a few properties as shown in the following
markup:

<asp:GridView ShowHeader=False ID="grdPriceHistory" runat="server" BackColor=➥

"White" BorderColor="#CCCCCC" BorderStyle="None" BorderWidth="1px" CellPadding="3"

Height="119px" Width="470px" Font-Size="9pt">

<RowStyle ForeColor="#000066" />

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX240

828-8 CH10.qxd 10/11/07 10:47 AM Page 240

http://www.apress.com
http://knab.ws/blog

<SelectedRowStyle BackColor="#669999" Font-Bold="True" ForeColor="White" />

<PagerStyle BackColor="White" ForeColor="#000066" HorizontalAlign="Left" />

</asp:GridView>

Figure 10-10 shows the design for the price history pane.

Figure 10-10. Designing the price history pane

With the GridView control in place, we need a helper method to populate the GridView
with the historical price information obtained from the web service. So similarly to previ-
ous methods on this page, create a method called GetPriceHistory as shown here:

private void GetPriceHistory(string strTicker)

{

DataTier data = new DataTier();

DataTable priceData = data.GetFullPriceHistory(strTicker, 20);

grdPriceHistory.DataSource = priceData;

grdPriceHistory.DataBind();

}

Here we just instantiate the data tier and invoke the GetFullPriceHistory web
method, passing the stock ticker and the number of days for which we would like price
history. After that, the DataSource and DataBind properties of the GridView are used to
display the data.

Creating the Charts & Analytics Pane

You are no doubt familiar with seeing price history graphs on business TV shows on CNN
or the Bloomberg channel. Figure 10-11 and Figure 10-12 show the price history charts
for companies such as Microsoft (MSFT) and Starbucks (SBUX) for the past 100 days.

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX 241

828-8 CH10.qxd 10/11/07 10:47 AM Page 241

Figure 10-11. The 100-day price history for MSFT

Figure 10-12. The 100-day price history for SBUX

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX242

828-8 CH10.qxd 10/11/07 10:47 AM Page 242

These charts are useful in determining where a stock is going, its recent trends, and
its long-time trends. Many stocks move between high values and low values in what
sometimes looks like a sine wave; this is typically called its trading envelope. This is
apparent in Figure 10-11, which shows a cycle from 26 to 28 indicating that March 2007
had been a good point to purchase the stock on a short-term basis because it is at the
lower end of the trading envelope. This is no guarantee that the stock will not break from
the trading envelope and fall far below 26. Also, typically when a stock breaks from its
trading envelope, it tends to move quickly outside the trading range, which can lead to
the stock rocketing either upward or downward. A more reliable methodology for using
price history analysis is to use the Bollinger band method, which you’ll see a bit later.

But, let’s get back to the technology—how is this implemented?
The resource and data retrieval tiers are the same as for the text-based price history

pane you saw previously. If you’ve skipped ahead, you should return to the “Creating the
Price History Pane” section, which describes the DataTier web service and how you can
use it to retrieve the price history of a stock.

To implement the charts, the example uses the ZedGraph open source library.

Using the ZedGraph Library Charting Engine

ZedGraph (http://zedgraph.org) is an open source set of classes, written in C#, that enable
the creation of various 2D graphs of arbitrary datasets. Because the set is class-based, it has
a high degree of programmatic flexibility, and you can modify almost every aspect of a
graph, including features such as scale ranges, scale types, step sizes, and so on, to be over-
ridden from their defaults. It also allows for multirange, multitype, multiaxis graphs to be
overlaid in a single chart. See Figure 10-13 for an example of a single chart that includes
stacked bars, transparent overlays, filled lines, legends, and annotations.

Figure 10-13. Sample ZedGraph chart

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX 243

828-8 CH10.qxd 10/11/07 10:47 AM Page 243

http://zedgraph.org

As such, ZedGraph makes an excellent choice for use in an ASP.NET AJAX-based proj-
ect and is easy to implement in your applications. You simply make a reference to the
ZedGraph.DLL in your solution and add the ZedGraph tools to your Toolbox in the stan-
dard way.

Drawing the Price History Graph with ZedGraph

To implement the price history graph, you can use a new web form. The Source
Code/Download area on the Apress web site (www.apress.com) contains the web form
in a file called PH.aspx. This web form contains a single ZedGraph control.

When you place a ZedGraph control from your Toolbox onto a web form, it draws the
default chart you saw in Figure 10-13. You can see the PH.aspx page in the web form
designer in Figure 10-14.

Figure 10-14. Placing the ZedGraph on a web form

The ZedGraph control fires an event upon rendering, which occurs when the page is
loaded or refreshed. This event is called RenderGraph.

In this case, the page is going to take two parameters, one for the ticker of the stock
to be rendered and the other for the number of days to render. These are used to make a
call to the DataTier web service to get the DataTable back. The DataTable then loads the
graph with the appropriate data.

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX244

828-8 CH10.qxd 10/11/07 10:47 AM Page 244

http://www.apress.com

The following code segment shows the full code for the ZedGraphWeb1_RenderGraph
event handler:

protected void ZedGraphWeb1_RenderGraph(

System.Drawing.Graphics g, ZedGraph.MasterPane mPane)

{

int nDays = 0;

int nRows = 0;

GraphPane pane = mPane[0];

PointPairList pt = new PointPairList();

double nx;

double ny;

string days = (string)Page.Request.Params["days"];

string ticker = (string)Page.Request.Params["ticker"];

if (ticker != null)

{

ticker = ticker.Trim();

DataTier theDataTier = new DataTier();

if (days == null)

nDays = 0;

else

nDays = Convert.ToInt32(days);

DataTable dtTable =

theDataTier.GetFullPriceHistory(ticker,nDays);

nRows = dtTable.Rows.Count;

for (int i = 1; i < nRows; i++)

{

ny = Convert.ToDouble(dtTable.Rows[i].ItemArray[1]);

XDate tmpDate = new XDate(

Convert.ToDateTime(dtTable.Rows[i].ItemArray[0]));

nx = (double)tmpDate;

pt.Add(nx, ny);

}

pane.XAxis.Type = AxisType.Date;

pane.XAxis.GridDashOff = 0;

LineItem priceCurve = pane.AddCurve(

"Closing Price", pt, Color.SlateBlue,

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX 245

828-8 CH10.qxd 10/11/07 10:47 AM Page 245

SymbolType.None);

priceCurve.Line.Width = 2.0F;

pane.AxisFill = new Fill(Color.White, Color.AntiqueWhite);

pane.XAxis.MinGrace = 0;

pane.XAxis.MaxGrace = 0;

pane.YAxis.MinGrace = 0;

pane.YAxis.MaxGrace = 0;

pane.AxisChange(g);

}

}

This event handler takes two parameters. The first is the base System.Drawing.
Graphics object. To render the graph, right at the bottom of the event handler, the
System.Drawing.Graphics object is passed to the AxisChange method of a ZedGraph pane
to refresh and redraw the graph. The second parameter is a reference to the ZedGraph
master pane, which is the collection of drawing surfaces that the ZedGraph exposes.
Check out the ZedGraph documentation for information about how to use the panes to
create different drawing surfaces. This graph is a simple line chart that uses only one
pane, which is the one at the zero index of this collection.

You refer to the pane with this line:

GraphPane pane = mPane[0];

The subsequent graphical operations are then performed on this pane object.
To draw a line curve, you should use the PointPairList collection that the ZedGraph

library provides. This allows you to create a single collection of data items that corre-
spond to the X and Y values of a chart. The PointPairList supports many data types,
including dates, so it’s perfect for the example’s needs.

After the input parameters (ticker and days) have been read in and sanitized, the
DataTier service is called to return a DataTable containing the results of the query for that
stock and the number of days of price history you want for it.

You then iterate through the DataTable and pull this information out like this:

for (int i = 1; i < nRows; i++)

{

ny = Convert.ToDouble(dtTable.Rows[i].ItemArray[1]);

XDate tmpDate = new XDate(

Convert.ToDateTime(dtTable.Rows[i].ItemArray[0]));

nx = (double)tmpDate;

pt.Add(nx, ny);

}

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX246

828-8 CH10.qxd 10/11/07 10:47 AM Page 246

The closing price for the stock should go on the y axis, so it comes from .ItemArray[1]
and is converted to a Double value. The original source from Yahoo! and the column on
the DataTable encode the value as a string. This is retrieved and loaded into the ny
variable.

The date for the closing price should go onto the x axis. This uses the XDate class (also
part of the ZedGraph library), which is the data type used by ZedGraph to store dates in
a chart and automatically generate axes from them. When using a PointPairList, you
encode the XDate into a Double. You can see this being encoded in the variable nx.

Finally, you add the values for nx and ny to the PointPairList (called pt).
To finalize drawing the chart, you load the PointPairList, set the visual configuration

of the chart, and call the AxisChange method, which refreshes it. First set the XAxis to be
date encoded so that it recognizes the Doubles as dates:

pane.XAxis.Type = AxisType.Date;

Then load the PointPairList onto the chart. You do this using the AddCurve method
of the pane. This method takes four parameters. The first is a string with the name of the
data range. In this case, it is Closing Price. If you were superimposing data ranges on the
chart (as shown later in Figure 10-15), you would give them their distinct names here.
The second parameter is the PointPairList. The third is the color for this range, which in
this case is Color.SlateBlue, and the final parameter is the SymbolType used to indicate a
point on the line. If you refer to Figure 10-14, you’ll see that some points are indicated
with triangles or diamonds. You specify these here. Because the graph has a lot of points
that would cause it to look cluttered, you won’t use a symbol type for this example.

LineItem priceCurve =

pane.AddCurve("Closing Price", pt,

Color.SlateBlue, SymbolType.None);

Next, set the line width to 2 pixels to make the chart stand out a little more clearly,
and fill the background for the pane with a graded fill between white and antique white:

priceCurve.Line.Width = 2.0F;

pane.AxisFill = new Fill(Color.White, Color.AntiqueWhite);

Finally, call the AxisChange event to render the graph:

pane.AxisChange(g);

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX 247

828-8 CH10.qxd 10/11/07 10:47 AM Page 247

Rendering the Charts within the TabPanel

For rendering the chart, we simply create a server side ASP.NET Image control,
imgPriceHistory within the <ContentTemplate> of the third TabPanel, and set the ImageUrl
property of the Image control to the corresponding PH.aspx page. This should all be done
in an asynchronous manner because all these controls reside within an UpdatePanel con-
trol (as discussed later). Here’s the markup:

<cc1:TabPanel ID="TabPanel3" runat="server" HeaderText="TabPanel3">

<HeaderTemplate>

Charts & Analytics

</HeaderTemplate>

<ContentTemplate>

<table width="400" cellspacing="0" cellpadding="0" style="border-

width: 0">

<tr>

<td style="background-color: #1077ad">

Price History Graph</td>

</tr>

<tr>

<td><asp:Image ID="imgPriceHistory" Width="800px" Height="400px"➥

runat="server" />

</td>

</tr>

</table>

...</ContentTemplate>

< /cc1:TabPanel >

The graph is then generated by the PH.aspx page and set as the source of the
imgPriceHistory Image control to be rendered within the body of the TabPanel. Also to
ensure a consistent image size, dimensions of 800 x 400 are specified for the image. As
expected, another helper method is needed to programmatically do just that; we can call
this one GetAnalytics and have the same signature as the previous helper methods used
here. Here’s the code for that method:

private void GetAnalytics(string strTicker)

{

imgPriceHistory.ImageUrl = "PH.aspx?ticker=" + strTicker + "&days=100";

}

Once again, this just sets the source of the Image control here to the image generated
from PH.aspx. This includes the ticker that had been entered in the text box, and the

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX248

828-8 CH10.qxd 10/11/07 10:47 AM Page 248

“days=100” are also passed onto the PH.aspx page, which results in the price history chart
you saw earlier in Figure 10-11 and Figure 10-12.

Generating an Analytics Graph

A methodology for determining good buy and sell prices for a stock comes from a techni-
cal analysis of the stock’s trading envelope through the use of Bollinger bands. These
bands are based on a calculation of the moving average of the stock—the moving average
being the average price of the stock over a number of periods preceding the current one.
For example, a 30-day moving average on any day is the average of closing prices for the
stock over the previous 30-day period. Thus, today’s average is slightly different from yes-
terday’s, which is slightly different from the day before; hence, it’s called a moving
average.

Bollinger bands are calculated from this value. The “upper” band is the average over
the preceding period plus two times the standard deviation. The “lower” band is the aver-
age over the preceding period minus two times the standard deviation. Figure 10-15 and
Figure 10-16 show the price history overlaid with Bollinger bands for MSFT and SBUX.

Figure 10-15. Bollinger bands for MSFT over 100 days

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX 249

828-8 CH10.qxd 10/11/07 10:47 AM Page 249

Figure 10-16. Bollinger bands for SBUX over 100 days

These bands are sometimes used to predict the value of a stock based on a projection
of its future value based on its past behavior. A typical rule is to buy the stock when it
penetrates the lower band moving upward or when it “bounces off” the lower band, and
to sell it when it penetrates the upper band moving downward or when it bounces off the
upper band.

Using Bollinger bands is considered a useful analytical methodology for assessing
the value of a stock, and as such this application includes a Bollinger band graph.

As for implementation, it’s identical to that used for the price history graph. A web
form called PHBB.aspx hosts a ZedGraph control. This form accepts the stock ticker and
number of days parameters in the same manner as earlier. Instead of adding a single
curve to the chart, you add three curves: the price history, the upper Bollinger band,
and the lower Bollinger band. Here’s the code that generates the Bollinger bands:

protected void ZedGraphWeb1_RenderGraph(System.Drawing.Graphics g,

ZedGraph.MasterPane mPane)

{

int nDays = 0;

int nRows = 0;

GraphPane pane = mPane[0];

string days = (string)Page.Request.Params["days"];

string ticker = (string)Page.Request.Params["ticker"];

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX250

828-8 CH10.qxd 10/11/07 10:47 AM Page 250

if (ticker != null)

{

ticker = ticker.Trim();

DataTier theDataTier = new DataTier();

if (days == null)

nDays = 0;

else

nDays = Convert.ToInt32(days);

DataTable dtTable = theDataTier.GetFullPriceHistory(ticker, nDays);

nRows = dtTable.Rows.Count;

double[] nx = new double[nRows-1];

double[] ny = new double[nRows-1];

double[] bbh = new double[nRows-1];

double[] bbl = new double[nRows-1];

double[] pht = new double[20];

int nIndex = 0;

for (int i = nRows-1; i > 0; i--)

{

ny[nIndex] = Convert.ToDouble(dtTable.Rows[i].ItemArray[1]);

XDate tmpDate = new

XDate(Convert.ToDateTime(dtTable.Rows[i].ItemArray[0]));

nx[nIndex] = (double)tmpDate;

if (nIndex > 20)

{

int x = 0;

for (int n = nIndex - 20; n < nIndex; n++)

{

pht[x] = ny[n];

x++;

}

bbh[nIndex] = GetAverage(pht)

+ (2 * GetStandardDeviation(pht));

bbl[nIndex] = GetAverage(pht)

- (2 * GetStandardDeviation(pht));

}

else

{

bbh[nIndex] = ny[nIndex];

bbl[nIndex] = ny[nIndex];

}

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX 251

828-8 CH10.qxd 10/11/07 10:47 AM Page 251

nIndex++;

}

pane.XAxis.Type = AxisType.Date;

pane.XAxis.GridDashOff = 0;

pane.AddCurve("Closing Price", nx,

ny, Color.SlateBlue, SymbolType.None);

pane.AddCurve("High BB", nx,

bbh, Color.Red, SymbolType.None);

pane.AddCurve("Low BB", nx,

bbl, Color.Red, SymbolType.None);

pane.AxisFill = new Fill(Color.White, Color.AntiqueWhite);

Axis.Default.MinGrace = 0;

Axis.Default.MaxGrace = 0;

pane.AxisChange(g);

}

The GetAverage and GetStandardDeviation helper functions that the application uses
are as follows:

public double GetAverage(double[] num)

{

double sum = 0.0;

for (int i = 0; i < num.Length; i++)

{

sum += num[i];

}

double avg = sum / System.Convert.ToDouble(num.Length);

return avg;

}

public double GetStandardDeviation(double[] num)

{

double Sum = 0.0, SumOfSqrs = 0.0;

for (int i = 0; i < num.Length; i++)

{

Sum += num[i];

SumOfSqrs += Math.Pow(num[i], 2);

}

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX252

828-8 CH10.qxd 10/11/07 10:47 AM Page 252

double topSum = (num.Length * SumOfSqrs) - (Math.Pow(Sum, 2));

double n = (double)num.Length;

return Math.Sqrt(topSum / (n * (n - 1)));

}

To display this in the Analytics pane directly below the price history chart, an exten-
sion is made to the <ContentTemplate> of the third TabPanel with the following markup:

<table width="400" cellspacing="0" cellpadding="0" style="border-width: 0">

<tr>

<td style="background-color: #1077AD; height: 5px;">➥

Bollinger Band Analytics➥

</td>

</tr>

<tr>

<td>

<asp:Image ID="imgAnalyticGraph" Width="800px" Height="400px"

runat="server" />

</td>

</tr>

</table>

Nothing new here, just like the previous chart, an ASP.NET Image control,
imgAnalyticGraph, is created to act as a placeholder for the Bollinger band chart generated
by the PHBB.aspx page. This Image control must be accompanied by an additional line of
C# code in the GetAnalytics method in the code behind:

imgAnalyticGraph.ImageUrl = "PHBB.aspx?ticker=" + strTicker + "&days=100";

And with that, the Bollinger band is integrated into the Analytics pane just like the
price history chart. Lastly, let’s looks at the most important and yet simple part of this
sample, AJAXifying the form so that all updates occur without doing any page refresh.

Applying ASP.NET AJAX

By now, you know that the easiest and fastest way to add AJAX functionality to an existing
ASP.NET application is to use the ASP.NET AJAX server controls, mainly the UpdatePanel.
For the purposes of this chapter, we assume that the project itself has already been
ASP.NET AJAX-enabled, and the appropriate changes have been made to the Web.Config
file as shown in the earlier chapters.

As you know all too well, if you have not created an AJAX-enabled ASP.NET web
site/project, the very first step before the addition of any ASP.NET AJAX server controls is

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX 253

828-8 CH10.qxd 10/11/07 10:47 AM Page 253

to add a ScriptManager component to the page, which you can do by either dragging and
dropping the component from the Toolbox or simply adding the markup to the page:

<asp:ScriptManager ID="ScriptManager1" runat="server"> </asp:ScriptManager>

Because most of the markup for this project resides in the TabContainer control,
we can easily encapsulate almost the entire application in the ContentTemplate of the
UpdatePanel control without even having to create manual triggers. To do so, create an
UpdatePanel control right before the markup for the Timer control. This would also be
before the stock ticker TextBox.

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

<ContentTemplate>

<asp:Timer ID="Timer1" runat="server" Interval="5000" OnTick=➥

"Timer1_Tick"></asp:Timer>

<table width="100%" cellpadding="2" style="border-width: 0">

<tr>

<td style="width: 117px" class="style1">Stock Ticker</td>

<td style="width: 133px">

<asp:TextBox ID="txtTicker" runat="server" MaxLength="4" >➥

MSFT</asp:TextBox>

...

</ContentTemplate>

</asp:UpdatePanel>

With that simple addition, we have added AJAX capabilities to this application, and
the page will not blink as it obtains data and renders the updates.

You can see that there is no explicit coding for a partial-page update for all content,
including price information and analytic charts. Everything is handled under the hood
by the ASP.NET AJAX runtime. You concentrate on building your application, and by
wrapping standard ASP.NET controls with an UpdatePanel, you can enable the asynchro-
nous functionality.

One last item to complete is a way of notifying the user when the page is being
updated. Because all updates are done asynchronously with no page refresh, the user
may be confused at times during page updates when nothing is happening. Just like an
UpdatePanel, you can create this either from the left Toolbox or by manually typing the
markup as shown here:

<asp:UpdateProgress runat="server" ID="prog1" DisplayAfter="300"➥

AssociatedUpdatePanelID="UpdatePanel1">

<ProgressTemplate>

Loading...

</ProgressTemplate>

</asp:UpdateProgress>

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX254

828-8 CH10.qxd 10/11/07 10:47 AM Page 254

This can be placed just about anywhere within the page, but in this case, we have it
as one of the first elements in the UpdatePanel. The DisplayAfter property is set to 300 so
that the UpdateProgress renders 300 milliseconds after a postback. Because we have only
one UpdatePanel on this page, setting the AssociatedUpdatePanelID property isn’t required
but is usually a good practice to do so anyway as done here. Also quite often, a circular
animating GIF image is used to show updates taking place as used in some of the earlier
chapters. In this case, however, we are simply specifying “Loading…” with bright yellow
colors and a blue background. Figure 10-17 shows UpdateProgress in action.

Figure 10-17. UpdateProgress used to notify users during asynchronous updates

Summary
This chapter covered a typical real-world ASP.NET application and showed how you
could drastically enhance it using the ASP.NET AJAX server and client libraries. It demon-
strated a logical n-tier architecture, with diverse resource tiers exposed via web services;
a data retrieval layer that abstracted the complexity of talking to the resources; a business
logic tier that applied business logic such as the calculation of financial analytics; and a
presentation tier that implemented the presentation logic. The code that was written to
implement this functionality was straight ASP.NET and C#.

You then enhanced this application using ASP.NET AJAX server-side controls. You
used UpdatePanel controls to wrap the various page panes that get updated to provide
partial asynchronous page updates. A button on the page provided a drill down into
some more advanced analytics of the historical stock ticker data, which demonstrated
how you could add an update to the page without triggering a full-page refresh and the
associated “blink.”

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX 255

828-8 CH10.qxd 10/11/07 10:47 AM Page 255

The example showed how to embed graphics—generated using a third-party control,
the open source ZedGraph—within the page by hosting them on external pages and gener-
ating the HTML markup that would reference them on the main page. This HTML was
embedded within an UpdatePanel, so again it didn’t cause a full-page refresh when the
graphic was downloaded and rendered on the page.

The example implemented two graphics: first, a basic line graph containing the price
history of the stock, and second, a compound line graph containing three lines (the price
history, the lower Bollinger band, and the upper Bollinger band).

With that, this book comes to an end. I hope you have enjoyed learning about the
Foundations of ASP.NET AJAX, including a tour of some of the basic principles in devel-
oping AJAX-style applications and the unique and powerful approach to this that
ASP.NET AJAX gives you. You looked through how JavaScript has become object oriented
when using ASP.NET AJAX client libraries; how to use server-side controls that empower
asynchronous functionality with as little intrusion on your existing code as possible; and
how to use the various value-added controls and extensions in the ASP.NET AJAX Control
Toolkit for a better UI. You also learned how to use the Virtual Earth SDK to add powerful
AJAX style mapping functionality to your web applications. Finally, in this chapter, you
looked at a real-world application and how you would implement it as an AJAX applica-
tion quickly, simply, and powerfully using ASP.NET AJAX.

CHAPTER 10 ■ BUILDING A SAMPLE APPLICATION USING ASP.NET AJAX256

828-8 CH10.qxd 10/11/07 10:47 AM Page 256

<%@ WebService %> attribute, 53
4WD property, 43

A
abstractMethod property, 46
AcceptAMPM property

MaskedEdit extender, 175
MaskedEditValidator control, 177

AcceptNegative property, 175
Accordion control, 133–135
AccordionPane control, 133–135
<AccordionPane> tag, 134
ActiveTabChanged event, 230, 231
ActiveTabChanged property, 202
ActiveTabIndex property, 202
add method, 56
Add Reference button, 233
addComponent method, 69
AddControl method, 208
addCssClass method, 72
AddCurve method, 247
addHandler method, 75, 77
$addHandler shortcut, 77
addHandlers method, 75
$addHandlers shortcut, 77
AddPin function, 223
AddPolygon method, 208
AddPolyline method, 208
AddPushpin method, 208
AddPushPin method, 223
addRange method, 56
AddShape method, 208
Aerial(a) type, 219
AJAX, 1, 16–17, 29

applications
coding, 40–41
creating, 32–34
running, 40–41

ASP.NET 2.0, 23
AJAX Extensions, 28–29
server controls, 17

JSON, 28
Microsoft AJAX Library

overview, 26–27
web services, 27

overview, 7–10
Script Manager server control, 37–38

synchronous versus asynchronous
web applications, 24

XMLHttpRequest object, 10–11
AJAX core classes, 41
AJAX Library. See Microsoft AJAX Library
AJAXBook namespace, 36, 41, 44
AJAXBook.Car object, 43
AJAXBook.Car.registerClass method, 43
AJAXBook.IStickShift.isImplementedBy()

method, 49
AJAXBook.js, 35
AJAXBook.SUV class, 44
AjaxControlToolkit.dll, 132
AjaxToolKit, 132
AllowPaging property, 120
AllowReorder property, 192
AllowSorting property, 120
altKey parameter, 76
AlwaysVisibleControlExtender control,

135–136
animation

discrete, 144
fade, 138–140
length, 140–142

Animation control, 137
AnimationExtender control, 137–144

discrete animation, 144
fade animation, 138–140
length animation, 140–142

AnimationTarget property, 141
App_Data folder, 32
append method, 79
appendLine method, 79
Application class, 67, 68
ApplicationLoadEventArgs class, 67
argument method, 60
argumentNull method, 60
argumentOutOfRange method, 60
argumentType method, 60
argumentUndefined method, 60
Array extension, 55–58
.asmx file, 53
<asp:AsyncPostBackTrigger> trigger, 111,

120
<asp:BoundField> tag, 120
<asp:Calendar> tag, 21

Index

257

828-8 Index.qxd 10/14/07 12:25 PM Page 257

<asp:CheckBoxField> tag, 120
<asp:CommandField> tag, 120
<asp:Image> control, 141
ASP.NET 2.0

AJAX Extension 1.0
downloading, 32
installing, 32

AJAX Extensions, 28–29
server controls, 17–23

ASP.NET AJAX. See also ASP.NET AJAX
client libraries

architecture, 25–29
Extensions, 28–29
JSON, 28
Microsoft AJAX Library, 26–27

financial research application, 225–256
application architecture, 226–228
applying ASP.NET AJAX, 253–255
charts & analytics pane, 241–253
company and quote information,
232–237

price history pane, 238–241
server controls, 81–109, 129

ScriptManager control, 83–89
ScriptManagerProxy control, 90–95
task list managers, 115–129
Timer control, 105–107, 109–115
UpdatePanel control, 95, 102,
109–115

UpdateProgress control, 102–105,
109–115

using in Visual Studio 2005, 81–82
ASP.NET AJAX client libraries, 55–80

global shortcuts, 77
JavaScript type extensions, 55–66

Array extension, 55–58
Boolean extension, 55–58
Date extensions, 58–59
Error extensions, 59–61
Number extension, 61–63
Object extension, 63–64
String extension, 64–66

overview, 55
Sys namespace, 66–71

Sys.Application class, 67–69
Sys.Component class, 70–71

System.ComponentModel.Compo
nent class, 70–71

Sys.UI namespace, 71–77
Sys.UI.DomElement class, 72–74
Sys.UI.DomEvent, 75–77

ASP.NET AJAX Control ToolKit, 131–163,
165–204

Accordion control, 133–135
AccordionPane control, 133–135
AlwaysVisibleControlExtender control,

135–136
AnimationExtender control, 137–144

discrete animation, 144
fade animation, 138–140
length animation, 140–142

AutoCompleteExtender control,
144–146

CalendarExtender control, 147–149
CascadingDropDown control, 149–153
CollapsiblePanelExtender control,

154–156
ConfirmButtonExtender control,

157–158
DragPanelExtender control, 159–161
DropDownExtender control, 161–163
DropShadow extender, 165–167
DynamicPopulate extender, 168–170
FilteredTextBox extender, 171–172
HoverMenu extender, 172–174
installing, 131–133
MaskedEdit extender, 174–177
MaskedEditValidator extender,

174–177
ModalPopup extender, 177–180
NoBot extender, 180–182
NumericUpDown extender, 182–185
PasswordStrength extender, 185–188
PopupControl extender, 188–190
Rating control, 190–191
ReorderList control, 192–194
ResizableConrol extender, 195–196
RoundedCorners extender, 167
Slider extender, 197–198
SlideShow extender, 198–201
TabContainer control, 201–203
TabPanel control, 201–203

<asp:ObjectDataSource> tag, 126
asp:ScriptManager tag, 52
<asp:ServiceReference> tag, 49, 52
<asp:UpdateProgress> tag, 119
.aspx page, 134
AssociatedUpdatePanelID property, 255
Asynchronous JavaScript, 7
asynchronous web applications, 24
AsyncPostBackError event, 89
AsyncPostBackErrorMessage property, 89
AsyncPostBackTrigger trigger, 101, 107
Atlas, 205
AttachEvent method, 208
AutoCollapse property, 154
AutoComplete property, 175

■INDEX258

828-8 Index.qxd 10/14/07 12:25 PM Page 258

AutoCompleteExtender control, 144–146,
149

AutoCompleteValue property, 175
AutoExpand property, 154
AutoPlay property, 199
AutoPostBack property, 190
AutoSize property, 133
AxisChange method, 246, 248

B
BackgroundCssClass property, 178
BarBorderCssClass property, 186
BarIndicatorCssClass property, 186
Base Class Library, 26
beginUpdate method, 70
Behavior class, 71
BehaviorID property, 166
Bin folder, 132
<body> tag, 211, 221
Bollinger bands, 249
Boolean extension, 55–58
BoundControlID property, 197
Bounds class, 71
button parameter, 76
Button1_onclick function, 40, 52

C
c format, 62
CacheDynamicResults property, 169
CalculationWeightings property, 186
Calendar control, 147, 189
Calendar server control class, 21
CalendarExtender control, 147–149
CancelControlID property, 178
CancelEventArgs class, 67
Car class, 36
CarService method, 53
CarService.asmx, 50
CarService.getCarValue method, 53
Cascading Style Sheets (CSS), 24
CascadingDropDown control, 149–153
CascadingDropDown.aspx, 150
catch clause, 61
Category property, 150
Century property, 175
CGI (Common Gateway Interface), 3
charCode parameter, 76
Chief Technical Office (CTO), 6
classes, in JavaScript, 41–43
clear method, 56, 79, 208
ClearContentsDuringUpdate property,

169
clearHandlers method, 75
$clearHandlers shortcut, 77
ClearInfoBoxStyles method, 208

ClearMaskOnLostFocus property, 175
ClearTextOnInvalid property, 175
click event, 75
Click event, 158
click-event method, 158
ClientValidationFunction property, 177
clientX parameter, 76
clientY parameter, 76
ClipboardEnabled property, 175
clone method, 56
CodePlex, 131
CollapseControlID property, 154, 156
Collapsed property, 154
CollapsedImage property, 154, 156
CollapsedSize property, 154
CollapsedText property, 154
CollapsiblePanel,aspx page, 154
CollapsiblePanelExtender control,

154–156
CollapsiblePanelExtender property, 156
COM (Component Object Model), 6
comma-separated values (CSV), 226
CommitProperty property, 188
CommitScript property, 188, 190
Common Gateway Interface (CGI), 3
Company Information web service, 226
CompanyInfoResult type, 237
CompanyInfoService proxy, 237
CompletionInterval property, 145
CompletionSetCount property, 145
Component class, 67
Component Object Model (COM), 6
ConfirmButtonExtender control, 157–158
ConfirmText property, 157, 158
connected applications, 1
contains method, 56
containsCssClass method, 72
ContentCssClass property, 133
ContentPlaceHolder control, 117
ContentTemplate control, 254
ContentTemplate tag, 99–100
<ContentTemplate> section, 119, 229, 236,

240, 248, 253
ContentTemplates control, 202
contextKey parameter, 169
ContextKey property

DynamicPopulate extender, 169
SlideShow extender, 199

Control class, 71, 84
control extenders, 131
ControlExtender property, 177
Controls, 24
ControlToValidate property, 177
Corners property, 167

■INDEX 259

Find it faster at http://superindex.apress.com
/

828-8 Index.qxd 10/14/07 12:25 PM Page 259

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

create method, 60, 70
$create shortcut, 77
createXMLHttpRequest function, 14
CSS (Cascading Style Sheets), 24
CssClass property

CalendarExtender control, 147
TabContainer control, 202

CSV (comma-separated values), 226
CsvParser abstract helper class, 240
ctrlKey parameter, 76
CultureInfo class, 62, 67
CultureName property, 175
CurrentRating property, 190
CustomChallengeResponse method, 182
CustomComponent control, 69
CustomScript property, 169
CutoffMaximumInstances property, 181
CutoffWindowSeconds property, 181

D
d format, 58, 62
DAC (Data Access Component) class, 127
Data controls, 19
DataBind property, 241
DataKeyField property, 192
DataMember property

Accordion control, 133
ReorderList control, 192

DataSource property, 241
Accordion control, 133
ReorderList control, 192

DataSourceID property
Accordion control, 133
ReorderList control, 193

DataTier service, 247
DataTier web service, 243
Date extensions, 58–59
Debug class, 67
Decimals property, 197
Default2.aspx, 14
Default.aspx, 32
DeleteRoute method, 208
DeleteTileLayer method, 208
dequeue method, 56
DetachEvent method, 208
DHTML (Dynamic HTML), 4, 7, 24
disconnected applications, 1
discrete animation, 144
DisplayAfter property, 255
DisplayArray function, 57
DisplayMap function, 211, 221
DisplayMoney property, 175
DisplayPosition property, 186
DisplayTypeInfo function, 64
dispose function, 43

dispose method, 44, 69, 70
<div> element, 73, 115, 207, 228
DNS (Domain Name System) server, 7
doCompanyInfo() web method, 237
Document Object Model (DOM), 4
DOM (Document Object Model), 4
Domain Name System (DNS) server, 7
DomElement class, 71
DomEvent class, 71
doUpdate function, 14
Download link, 32
downloading ASP.NET 2.0 AJAX Extension

1.0, 32
DragHandleAlignment property, 193
DragHandleTemplate property, 193
DragPanel control, 160
DragPanel.aspx, 159
DragPanelExtender control, 92, 159–161
DriveType property, 44
DropDownControlID control, 161
DropDownExtender control, 161–163
DropDownList control, 161
DropShadow extender, 165–167
DropShadow property, 178
Duration property, 141
Dynamic HTML (DHTML), 4, 7, 24
DynamicPopulate extender, 168–170

E
EditItemTemplate property, 193
EditTemplate property, 173
EmptyListTemplate property, 193
EmptyStarCssClass property, 190
EmptyValueMessage property, 177
EnableCaching property, 145
Enabled property, 202
EnableHandleAnimation property, 197
EnablePartialRendering property, 86
EnableScriptGlobalization property, 58, 63
EndContinuousPan method, 208
endsWith method, 64
endUpdate method, 70
EndValue property, 141
endValue property, 142
enqueue method, 56
Error extensions, 59–61
error handling, in ScriptManager control, 89
Error.argumentNull method, 60
ErrorTooltipCssClass property, 175
ErrorTooltipEnabled property, 175
errParms object, 61
EventArgs class, 67
EventHandlerList class, 67, 70
events property, 70
ExpandControlID property, 154, 156

■INDEX260

828-8 Index.qxd 10/14/07 12:25 PM Page 260

ExpandDirection property, 154
ExpandedImage property, 154, 156
ExpandedSize property, 154
ExpandedText property, 154
Extensible Markup Language (XML), 5, 28

F
F format, 59
fade animation, 138–140
FadeIn animation, 138
<FadeIn> tag, 140
FadeOut animation, 138
<FadeOut> tag, 140
FadeTransitions property, 133
FilledStarCssClass property, 190
Filtered property, 175
FilteredTextBox extender, 171–172
FilterMode property, 171
FilterType property, 171
financial research application, 225–256

application architecture, 226–228
applying ASP.NET AJAX, 253–255
charts and analytics pane, 241–253

analytics graph, 249–253
TabPanel, 248–249
ZedGraph library charting engine,
243–247

company and quote information,
232–237

price history pane, 238–241
consuming web service, 240–241
wrapper web service, 239–240

Find method, VEMap control, 208
$find shortcut, 77
findComponent method, 69
fixed property, LoadMap method, 210
forEach method, 56
format method, 58, 62, 64, 74
Format property, CalendarExtender

control, 147
Fps property, 141
FramesPerSecond property, 133, 134
fundamental analysis, 225

G
GAC (Microsoft .NET Global Assembly

Cache), 32
GenerateError function, 60
$get shortcut, 74, 77
get_CurrentGear() method, 49
get_DriveType method, 45
get_MakeandModel method, 45
get_message method, 53
getAllResponseHeaders method, 11
GetAltitude method, 208

GetAnalytics method, 232, 248, 253
GetAverage helper function, 252
GetBasicCode method, 236
GetBasicQuote method, 232
GetBirdseyeScene method, 208
getBounds method, 72
getCarValue method, 53
getCarValue web method, 53
GetCenter/SetCenter method, 208
GetCompanyInfo method, 234, 235, 236
getComponents method, 69
GetContentFillerText method, 156
GetDropDownContents web method, 153
getElementById method, 72
GetFullPriceHistory method, 239, 241
GetHeading/SetHeading method, 208
GetHtml method, 169
GetLeft method, 208
getLocation method, 72, 74
GetMapMode/SetMapMode method, 208
GetMapStyle/SetMapStyle method, 208
GetMapView/SetMapView method, 208
GetPitch/SetPitch method, 208
GetPriceHistory method, 232, 241
GetRoute method, 208
GetStandardDeviation helper function,

252
GetTasksByStatus method, 127
GetTop method, 208
getType method, 63
getTypeName method, 63
GetVersion method, 208
GetZoomLevel/SetZoomLevel method,

209
global shortcuts, 77
Go <communityname> command, 1
grdPriceHistory control, 240
GridView control, 119, 173, 238, 240

H
HandleCssClass property

ResizableConrol extender, 195
Slider extender, 197

HandleImageUrl property, 197
HandleOffsetX/HandleOffsetY property,

195
HeaderCssClass property, 133
HeaderText property, 202
Height property, 202
HelpHandleCssClass property, 186
HelpHandlePosition property, 186
Hide3DNavigationControl method, 209
HideAllShapeLayers method, 209
HideDashboard method, 209
HideFindControl method, 209

■INDEX 261

Find it faster at http://superindex.apress.com
/

828-8 Index.qxd 10/14/07 12:25 PM Page 261

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

HideMiniMap method, 209
HideTileLayer method, 209
HorizontalOffset property, 136
HorizontalSide property, 136
HoverCssClass property, 172
HoverMenu extender, 172–174
href attribute, 19
HTML (Hypertext Markup Language), 3
HTML server controls, 18
HtmlAnchor control, 18
HTTP trace, 213
Hybrid(h) type, 219
HyperLink web server control, 19
Hypertext Markup Language (HTML), 3

I
id property, 70
IDE (integrated development

environment), 21, 81
Image control, 248, 253
ImageControlID property, 154
ImageDescriptionLabelID property, 199
ImageTitleLabelID property, 199
ImageUrl property, 248
imgAnalyticGraph function, 253
imgPriceHistory Image control, 248
imgPriceHistory parameter, 248
ImportShapeLayerData method, 209
IncludePointInView method, 209
indexOf method, 56
inheritance, in JavaScript, 43–45
init event, 68
initialize() method, 68
initialize method, 69, 70
InitialValue property, 177
InlineScript attribute, 89
innerHTML property, 115
<input type="button"> HTML element, 40
InputDirection property, 175
insert method, 56
InsertItemTemplate property, 193
installing

ASP.NET 2.0 AJAX Extension 1.0, 32
ASP.NET AJAX Control ToolKit, 131–133

integrated development environment
(IDE), 21, 81

interfaces, in JavaScript, 45–49
Interval property, 235
InvalidChars property, 171
invalidOperation method, 60
InvalidValueMessage property, 177
IsBirdseyeAvailable method, 209
isEmpty method, 79
isInitialized property, 70
IStickShift interface, 48, 49

isUpdating property, 70
IsValidEmpty property, 177
ItemInsertLocation property, 193
ItemTemplate property, 193

J
Java applet, 3
Java Virtual Machine (JVM), 3
JavaScript

programming with Microsoft AJAX
Library, 31

accessing server resources, 49–53
AJAX applications, 32–34, 40–41
ASP.NET 2.0 AJAX Extension 1.0, 32
classes, 41–43
inheritance, 43–45
interfaces, 45–49
JavaScript class, 34–37
namespaces, 41–43
Script Manager server control,
37–38

JavaScript class, 34–37
JavaScript Object Notation (JSON), 28
JavaScript type extensions, 55–66

Array extension, 55–58
Boolean extension, 55–58
Date extensions, 58–59
Error extensions, 59–61
Number extension, 61–63
Object extension, 63–64
String extension, 64–66

JSON (JavaScript Object Notation), 28
JVM (Java Virtual Machine), 3

K
Key enumeration, 71

L
Label control, 187, 229, 236
latitude, VEMap control, 216
LatLongToPixel method, 209
lblBasicQuote Label control, 236
lblQuote control, 234
length animation, 140–142
Length property, 197
<Length> tag, 140, 141
LinkButton control, 158, 162, 163
ListBox control, 17
load event, 68
LoadingText property, 150
LoadMap method, 209, 210, 218, 219
localeFormat method, 58, 62, 65
localFormat method, 26
Login controls, 19
longitude, VEMap control, 216
Loop property, 199

■INDEX262

828-8 Index.qxd 10/14/07 12:25 PM Page 262

M
M format, 59
Macromedia Flash, 4
managed applications, 5
Mask property, 175, 176
MaskedEdit extender, 174–177
MaskedEditValidator control, 174, 176
MaskedEditValidator extender, 174–177
MaskType property, 175
Maximum property, 183, 184, 197
MaximumHeight property, 195
MaximumValue property, 177
MaximumValueMessage property, 177
MaximumWidth property, 195
MaxRating property, 191
MessageTextBox control, 190
MessageValidatorTip property, 175
<META> tag, 109
Microsoft AJAX Library, 31–54

overview, 26–27
programming JavaScript with, 31

accessing server resources, 49–53
AJAX applications, 32–34, 40–41
ASP.NET 2.0 AJAX Extension 1.0, 32
classes, 41–43
inheritance, 43–45
interfaces, 45–49
JavaScript class, 34–37
namespaces, 41–43
Script Manager server control,
37–38

web services, 27
Microsoft Developer Network, 12
Microsoft .NET Global Assembly Cache

(GAC), 32
Microsoft Virtual Earth (VE). See Virtual

Earth (VE) SDK
MicrosoftAjax.js, 34
MicrosoftAjaxTimer.js, 34
MicrosoftAjaxWebForms.js, 34
Microsoft.XMLHTTP ActiveX Object, 10
Minimum property

NumericUpDown extender, 183, 184
Slider extender, 197

MinimumHeight property, 195
MinimumNumericCharacters property,

186
MinimumPrefixLength property, 145
MinimumSymbolCharacters property, 186
MinimumValue property, 177
MinimumValueMessage property, 177
MinimumWidth property, 195
Mobile controls, 19
ModalPopup extender, 177–180
mode property, LoadMap method, 211

MouseButton enumeration, 71
moving average, 249

N
n format, 62
namespaces, in JavaScript, 41–43
NavigateUrl property, 19
Navigation controls, 19
New Web Site dialog box, 32
NextButtonID property, 199
NoBot extender, 180–182
notifyScriptLoaded method, 69
notImplemented method, 60
Number extension, 61–63
NumericUpDown extender, 182–185
NumericUpDownExtender, 184
ny variable, 247

O
Object extension, 63–64
ObjectDataSource control, 121, 126, 127
object-oriented (OO) scripting, 25
object-oriented programming (OOP), 34
offsetX parameter, 76
OffsetX/OffsetY property

HoverMenu extender, 172
PopupControl extender, 188

offsetY parameter, 76
OkControlID property, 178
OnBlurCssNegative property, 175
OnCancelScript property, 178
OnChanged event, 191
OnChanged property, 191
onclick attribute, 40, 75
onclick event handler, 48, 52
<OnClick> event, 141
OnClientActiveTabChanged property, 202
OnClientClick property, 202
OnClientResize property, 195
OnClientResizeBegin property, 195
OnClientResizing property, 195
onComplete function, 53
onError function, 53
OnFocusCssClass property, 175
OnFocusCssNegative property, 175
OnGenerateChallengeAndResponse

property, 181
OnInvalidCssClass property, 175
onload event, 211, 221
onload event handler, 14
<OnMouseOut> event, 140
<OnMouseOver> event, 140
OnOkScript property, 178
onreadystatechange property, 11
OOP (object-oriented programming), 34

■INDEX 263

Find it faster at http://superindex.apress.com
/

828-8 Index.qxd 10/14/07 12:25 PM Page 263

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

Opacity property, 166
open method, 10
OpenRead method, 240
Orcas, 26
Orientation property, 198

P
p format, 62
Page class, 68
Page_Load event, 235
Page_Load method, 15
pageLoad method, 68
pageUnload method, 68
Pan method, 209, 222
Panel1 property, 156
<Panes> tag, 134
PanLatLong function, 221
panning, VEMap control, 220–222
PanToLatLong method, 209, 220
PanXY method, 222
PanXY. PanLatLong function, 221
parameterCount method, 60
ParentControlID property, 150
parse method, 56
parseInvariant method, 58, 62, 74
parseLocale method, 58, 62
partial rendering, in ScriptManager

control, 86–87
PasswordStrength extender, 185–188
Path attribute, 52, 88
P/E (profit/earnings) ratio, 228
personal digital assistants (PDAs), 19
PH.aspx, 244
PHBB.aspx, 250
PixelToLatLong method, 209
PlayButtonID property, 199
PlayButtonText property, 199
PlayInterval property, 199
Point class, 71
PointPairList collection, 246
PointPairList parameter, 247
PopDelay property, 172
popStackFrame method, 60
PopulateTriggerControlID property, 169
PopupButtonID property, 147
PopupControl extender, 188–190
PopupControlID property, 172

ModalPopup extender, 178
PopupControl extender, 188

PopupDragHandleControlID property,
178

PopupPosition property, 173
Position property, 188
PostbackOnReorder property, 193
postbacks, 26

PostBackTrigger trigger, 101
PreferredPasswordLength property, 186,

187
PrefixText property, 186
preventDefault method, 75
PreviousButtonID property, 199
price history, 225
ProcessCar function, 48
profit/earnings (P/E) ratio, 228
programming

with ScriptManager control, 84–89
error handling in, 89
partial rendering, 86–87
ScriptReference tag, 87–88
specifying services, 88–89

with UpdatePanel control, 98–102
ContentTemplate tag, 99–100
triggers, 101–102

with UpdateProgress control, 103–105
<ProgressTemplate> tag, 102, 111
PromptChararacter property, 175
PromptText property, 150
Property property, 141
PropertyChangedEventArgs class, 67
PropertyKey property, 141, 142
property/propertyKey properties, 144
prototype, 43
pushpins, 206, 223

Q
queueScriptReference method, 69

R
RadioButtonList control, 189, 190
RadioButtonList1_SelectedIndexChanged

method, 190
Radius property, 166, 167
RailCssClass property, 197
raiseLoad method, 69
raisePropertyChanged method, 70
Rating control, 190–191
RatingAlign property, 191
RatingDirection property, 191
ReadOnly property, 191
readyState property, 11, 15
RefValues property, 182, 183, 184
registerClass method, 43, 44, 47
registerDisposableObject method, 69
relative panning, 220–222
remove method, 56
removeAt method, 56
removeComponent method, 69
removeCssClass method, 72
removeHandler method, 75
$removeHandler shortcut, 77
RenderGraph event, 244

■INDEX264

828-8 Index.qxd 10/14/07 12:25 PM Page 264

ReorderList control, 192–194
ReorderTemplate property, 193
repositionPanel method, 77
RequireOpenedPane property, 133
RequiresUpperAndLowerCaseCharacters

property, 186
ResizableConrol extender, 195–196
ResizableCssClass property, 195
Resize method, 209
ResponseMinimumDelaySeconds

property, 181
responseText property, 11
responseXML property, 11
return Button1_onclick() function, 40
Rich controls, 19
Road(r) type, 219
Rounded property, 166
RoundedCorners extender, 167
runat="server" attribute, 18

S
s format, 59
Scott's ToDo List application, 109, 115
screenX parameter, 76
screenY parameter, 76
Script Manager server control, 37–38
<script> element, 40, 220
Scripthandlerfactory HTTP handler, 29
ScriptManager control, 55, 58, 63, 83–89,

96, 98, 131, 134, 135, 229
control methods, 85
control properties, 85
programming with, 84–89

error handling in, 89
partial rendering, 86–87
ScriptReference tag, 87–88
specifying services, 88–89

<ScriptManager> element, 40, 49, 51
ScriptManagerProxy control, 90–95
ScriptReference tag, 87–88
ScriptResource.axd handler, 84, 91
ScriptResourceHandler handler, 34
<Scripts> tag, 87
[ScriptService] attribute, 51
ScrollBars property, 202
ScrollContents property, 154
ScrollEffectDuration property, 136
SelectedIndex property, 133
send method, 11
<Sequence> tag, 141
server controls, 17, 109–129

ASP.NET AJAX, 81–108
ScriptManager control, 83–89
ScriptManagerProxy control, 90–95
Timer control, 105–107

UpdatePanel control, 95–102
UpdateProgress control, 102–105
using in Visual Studio 2005, 81–82

task list managers, 115–129
Timer control, 109–115
UpdatePanel control, 109–115
UpdateProgress control, 109–115

server resources, accessing from
JavaScript, 49–53

ServiceDownMethod property, 183, 184
ServiceDownPath property, 183, 184
ServiceMethod property

AutoCompleteExtender control, 145
CascadingDropDown control, 150
DynamicPopulate extender, 169

ServicePath property
AutoCompleteExtender control, 145
CascadingDropDown control, 150
DynamicPopulate extender, 169

ServicePath ServiceMethod property, 152
<Services> tag, 49, 52, 88
ServiceUpMethod property, 183, 184
ServiceUpPath property, 183, 184
servlets, 3
set_CurrentGear() method, 49
SetAltitude method, 209
SetBirdseyeOrientation method, 209
SetBirdseyeScene method, 209
SetCenterAndZoom method, 209
SetDashboardSize method, 209
SetDefaultInfoBoxStyles method, 209
SetDescription, 223
setLocation method, 72, 74
setRequestHeader method, 11
SetScaleBarDistanceUnit method, 209
SetTileBuffer method, 209
SetTitle, 223
SetZoomLevel accessor method, 218
shiftKey parameter, 76
Show3DNavigationControl method, 209
ShowDashboard method, 210
ShowDisambiguationDialog method, 210
ShowFindControl method, 210
ShowInfoBox method, 210
ShowInsertItem property, 193
ShowMessage method, 210
ShowMiniMap method, 210
showSwitch property, 211
ShowTileLayer method, 210
Simple Object Access Protocol (SOAP), 28
Slider extender, 197–198
SlideShow extender, 198–201
SlideShowServiceMethod property, 199
SlideShowServicePath property, 199
SOAP (Simple Object Access Protocol), 28

■INDEX 265

Find it faster at http://superindex.apress.com
/

828-8 Index.qxd 10/14/07 12:25 PM Page 265

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

SortOrderField property, 193
 tag, 115
specific panning, VEMap control, 220–222
StarCssClass property, 191
StartContinuousPan method, 210
startsWith method, 65
StartValue property, 141
startValue property, 142
status property, 11
statusText property, 11
Step property, 183
Steps property, 197
StopButtonText property, 199
stopPropagation method, 75
StreamReader method, 240
StrengthIndicatorType property, 186
String extension, 64–66, 74
StringBuilder class, 66, 67
StringBuilder instance, 79
style parameter, 219
style property, 210
SuppressHeaderPostbacks property, 133
SUV constructor, 44
SymbolType parameter, 247
synchronous web applications, 24
Sys namespace, 66–71

Sys.Application class, 67–69
Sys.Component class, 70–71
System.ComponentModel.Component

class, 70–71
Sys.Application class, 67–69
Sys.Component class, 70–71
Sys.Component namespace, 71
Sys.CultureInfo class, 26
Sys.IDisposable class, 70
Sys.INotifyDisposing class, 70
Sys.INotifyPropertyChange class, 70
Sys.Net namespace, 27, 66
Sys.Serialization namespace, 66
Sys.Service.Authentication class, 29
Sys.Service.Profile class, 29
Sys.Services namespace, 66
Sys.StringBuilder class, 78, 79
System.ComponentModel.Component

class, 70–71
System.Drawing.Graphics object, 246
System.Net namespace, 240
System.Text.StringBuilder class, 79
System.Web.Extensions, 32, 34
Sys.UI namespace, 66, 71–77

Sys.UI.DomElement class, 72–74
Sys.UI.DomEvent class, 75–77

Sys.UI.DomElement class, 72–75
Sys.UI.DomEvent class, 71, 77
Sys.UI.DomEvent.clearHandler class, 77

Sys.UI.DomEvent.removeHandler class,
77

Sys.WebForms namespace, 66
Sys.WebForms.PageRequestManager, 115

T
t format, 58
T format, 59
TabContainer control, 201–203, 229, 254
TabPanel control, 201–203, 229, 236,

248–249, 253
Tag property

NumericUpDown extender, 183
Rating extender, 191

target parameter, 76
TargetButtonDownID property, 183, 185
TargetButtonUpID property, 183, 185
TargetControlID property

AlwaysVisibleControlExtender control,
136

AutoCompleteExtender control, 145
CalendarExtender control, 147
CascadingDropDown control, 150
CollapsiblePanelExtender control, 154
DropShadow extender, 166, 167
DynamicPopulate extender, 169
FilteredTextBox extender, 171
HoverMenu extender, 173
MessageTextBox control, 190
ModalPopup extender, 178
NumericUpDown extender, 183
PasswordStrength extender, 186
PopupControl extender, 188
ResizableConrol extender, 195
Slider extender, 197

TargetContronID property, 156
task list managers, 115–129
TaskId field, 123
TextBox control, 144, 161, 187, 229, 232
TextCssClass property, 186
TextLabelID property, 154
TextStrengthDescriptions property, 186
TextStrengthDescriptionStyles property,

186
ThaiRating_Changed method, 191
thin client applications, 6–7
Tick event handler, 235
Timer control, 105–107, 109–115, 229
Timer server control, 34
Timer1_Tick event handler, 235
Timer1_Tick method, 107
toggleCssClass method, 72
Toolbox tab, 82
TooltipMessage property, 177
TooltipText property, 197

■INDEX266

828-8 Index.qxd 10/14/07 12:25 PM Page 266

toString method, 79
TrackPosition property, 166
trading envelope, 243
TransitionDuration property, 133
triggers, with UpdatePanel control,

101–102
<Triggers> child tag, 101
trim method, 65
trimEnd method, 65
trimStart method, 65
try/catch blocks, 59
txtMake field, 52
type parameter, 76
Type.registerClass method, 41
Type.registerNamespace method, 41
Type.registerNamespace

method.registerNamespace
command, 43

U
UI (user interface), 19
Unit property, 141
unload event, 68
unregisterDisposableObject method, 69
Update method, 232
UpdateCssClass property, 170
updated method, 71
UpdatePanel control, 86, 95–102, 109–115,

188, 229, 248, 254
programming with, 98–102

ContentTemplate tag, 99–100
triggers, 101–102

properties, 99
UpdatePanel tag, 28
UpdateProgress control, 102–105,

109–115, 118, 231
programming with, 103–105
properties, 103

UpdateProgress property, 255
updateTotal function, 14
UpdatingCssClass property, 169
UseContextKey property, 199
user interface (UI), 19
UserDateFormat property, 175
UserTimeFormat property, 175

V
Validation controls, 19
ValidationExpression property, 177
ValidChars property, 171
ValuesScript parameter, 144
ValuesScript property, 144
VE (Microsoft Virtual Earth). See Virtual

Earth (VE) SDK
VELatLong object, 220

VELatLong property, 210
VEMap control, 206–223

creating maps, 207–215
map types, 219
pushpins, 223
relative panning, 220–222
setting longitude/latitude, 216
specific panning, 220–222
zoom level, 218

version property, 78
VerticalOffset property, 136
VerticalSide property, 136
VEShapeLayer class, 223
VEShapeType enumeration, 223
Virtual Earth (VE) SDK, 205–224

overview, 205–206
programming VEMap control, 206–223

creating maps, 207–215
map types, 219
pushpins, 223
relative panning, 220–222
setting longitude/latitude, 216
specific panning, 220–222
zoom level, 218

VisibilityMode enumeration, 71
Visual Studio 2005, 12–15

example, 12–15
using ASP.NET AJAX server controls in,

81–82

W
WaitingStarCssClass property, 191
web application technology

AJAX, 7–10
history of, 1–6
synchronous versus asynchronous, 24
thin client applications, 6–7

Web Part controls, 19
Web Reference Name field, 233
WebClient class, 240
Web.config file, 32
Web.Config file, 253
WebControl class, 133
WebResource.axd handler, 84, 91
Width property

DropShadow extender, 166
NumericUpDown extender, 183

window object, 68
window.ActiveXObject property, 10
World Wide Web Consortium (W3C), 8
wrapper web service, 239–241

X
X property, ModalPopup extender, 178
XDate class, 247

■INDEX 267

Find it faster at http://superindex.apress.com
/

828-8 Index.qxd 10/14/07 12:25 PM Page 267

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

XML (Extensible Markup Language), 5, 28
XmlDocument object, 153
xmlHttp variable, 10
XMLHttpRequest control, 213
XMLHttpRequest object, 8, 10–11, 12, 24, 27

Y
Y format, 59
Y property, 178

Z
ZedGraph control, 244
ZedGraph library charting engine,

243–244, 247
ZedGraphWeb1_RenderGraph event

handler, 245
zooming, 210, 218

■INDEX268

828-8 Index.qxd 10/14/07 12:25 PM Page 268

	Foundations of ASP.NET AJAX
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Who This Book Is For
	Prerequisites

	Introducing AJAX
	Delving into the History of Web Application Technology
	Thin Client Applications Save the Day
	AJAX Enters the Picture
	Using the
	Object
	Using Visual Studio 2005
	Seeing a Simple Example in Action

	Summary

	Taking AJAX to the Next Level
	Introducing ASP.NET 2.0 Server Controls
	Synchronous vs. Asynchronous Web Applications
	Introducing the ASP.NET AJAX Architecture
	An Overview of the AJAX Library
	The Microsoft AJAX Library and Web Services
	JavaScript Object Notation (JSON)
	An Overview of the ASP.NET 2.0 AJAX Extensions

	Summary

	The Microsoft AJAX Library: Making Client-Side JavaScript Easier
	JavaScript with the Microsoft AJAX Library
	Downloading and Installing ASP.NET 2.0 AJAX Extension 1.0
	Creating Your First AJAX Application
	Adding a Custom JavaScript Class
	Using the AJAX Script Manager to Deliver Your Custom Class
	Coding and Running the Application

	Using Namespaces and Classes in JavaScript
	Using Inheritance in JavaScript
	Implementing Interfaces in JavaScript
	Accessing Server Resources from JavaScript
	Summary

	ASP.NET AJAX Client Libraries
	JavaScript Type Extensions
	and
	Extensions
	Extension

	The
	Namespace
	and Client Component Model
	Global Shortcuts
	Other Commonly Used Classes in the
	Namespace
	Summary

	Introducing Server Controls in ASP.NET AJAX
	Using ASP.NET AJAX Server Controls in Visual Studio 2005
	Introducing the
	Control
	Using the
	Programming with the
	Performing Partial Rendering
	Specifying Additional Script Components Using the
	Tag
	Specifying Services
	Error Handling in the
	Control

	Introducing the
	Control
	Introducing the
	Control
	Using the
	Control
	Programming with
	Using the
	Tag
	Using Triggers

	Introducing the
	Control
	Using the
	Control
	Programming with the
	Control

	Introducing the
	Control
	Using the
	Control

	Summary

	Using Server Controls in ASP.NET AJAX
	Using the UpdatePanel, UpdateProgress, and Timer Controls
	Using a Task List Manager
	Summary

	Using the ASP.NET AJAX Control Toolkit (Part 1)
	Installing the ASP.NET AJAX Control Toolkit
	The
	and
	Controls
	Control
	The
	Control
	Using Fade Animation
	Using Length Animation
	Using Discrete Animation

	Control
	Summary

	Using the ASP.NET AJAX Control Toolkit (Part 2)
	and
	Extenders
	Extender

	Extender
	and
	Extenders
	Extender
	Control
	Extender
	and
	Control
	Summary

	AJAX-Style Mapping Using the Virtual Earth SDK
	Introduction to Microsoft Virtual Earth (VE)
	Programming the
	Control
	Creating a Simple Map
	Setting Longitude and Latitude
	Setting the Zoom Level
	Choosing a Map Type
	Specific or Relative Panning
	Using Pushpins

	Summary

	Building a Sample Application Using ASP.NET AJAX
	Understanding the Application Architecture
	Creating the Application
	Creating Basic Company and Quote Information
	Creating the Price History Pane
	Creating the Wrapper Web Service
	Consuming the Web Service

	Creating the Charts & Analytics Pane
	Using the ZedGraph Library Charting Engine
	Drawing the Price History Graph with ZedGraph
	Rendering the Charts within the
	Generating an Analytics Graph

	Applying ASP.NET AJAX

	Summary

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /None
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Malloy CTPv7)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /None
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Malloy CTPv7)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /None
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Malloy CTPv7)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /None
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Malloy CTPv7)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /None
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Malloy CTPv7)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /None
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Malloy CTPv7)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /None
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Malloy CTPv7)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /None
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Malloy CTPv7)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /None
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Malloy CTPv7)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /None
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Malloy CTPv7)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

