
XML Developer’s Guide

V E R SI O N  8

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249
www.borland.com

Borland®

JBuilder®



Refer to the file deploy.html located in the redist directory of your JBuilder product for a complete list of files that 
you can distribute in accordance with the JBuilder License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this 
document. Please refer to the product CD or the About dialog box for the list of applicable patents. The furnishing of 
this document does not give you any license to these patents.

COPYRIGHT © 1997–2002 Borland Software Corporation. All rights reserved. All Borland brand and product names 
are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries. 
All other marks are the property of their respective owners.

For third-party conditions and disclaimers, see the Release Notes on your JBuilder product CD.

Printed in the U.S.A.

JBE0080WW21002xml 5E5R1002
0203040506-9 8 7 6 5 4 3 2 1
PDF



i

Chapter 1
Introduction 1-1
Documentation conventions  .  .  .  .  .  .  .  .  .  .  .  1-3
Developer support and resources  .  .  .  .  .  .  .  .  1-4

Contacting Borland Technical Support.  .  .  .  1-4
Online resources  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1-5
World Wide Web  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1-5
Borland newsgroups .  .  .  .  .  .  .  .  .  .  .  .  .  .  1-5
Usenet newsgroups   .  .  .  .  .  .  .  .  .  .  .  .  .  .  1-6
Reporting bugs .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1-6

Chapter 2
Using JBuilder’s XML features 2-1
XML features in the Java 2 Platform .  .  .  .  .  .  .  2-2
Creating XML-related documents  .  .  .  .  .  .  .  .  2-2

Creating XML documents manually .  .  .  .  .  2-2
Creating XML documents with wizards .  .  .  2-3

Creating an XML document from 
a DTD   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  2-4

Creating a DTD from an XML 
document   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  2-5

Viewing XML documents .  .  .  .  .  .  .  .  .  .  .  .  .  2-6
Using the XML viewer .  .  .  .  .  .  .  .  .  .  .  .  .  2-7
Setting XML options .  .  .  .  .  .  .  .  .  .  .  .  .  .  2-9

General options .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-10
Transform Trace options .  .  .  .  .  .  .  .  .  . 2-10

Validating XML documents.  .  .  .  .  .  .  .  .  .  .  . 2-10
Presenting XML documents   .  .  .  .  .  .  .  .  .  .  . 2-13

Presenting XML with Cocoon.  .  .  .  .  .  .  .  . 2-13
Creating a Cocoon web application.  .  .  . 2-14
Running Cocoon  .  .  .  .  .  .  .  .  .  .  .  .  .  .2-17

Transforming XML documents .  .  .  .  .  .  .  . 2-18
Applying internal stylesheets .  .  .  .  .  .  .2-19
Applying external stylesheets .  .  .  .  .  .  . 2-20
Setting transform trace options  .  .  .  .  .  . 2-21

Manipulating XML programmatically.  .  .  .  .  .2-22
Creating a SAX handler  .  .  .  .  .  .  .  .  .  .  .  . 2-23
Manipulating XML through data 

binding.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-27
The marshalling framework .  .  .  .  .  .  .  . 2-27
BorlandXML.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .2-28
Castor   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .2-29

Interfacing with business data in databases   .  . 2-31

Chapter 3
Using JBuilder’s XML database 
components 3-1

Using the model-based components  .  .  .  .  .  .  . 3-2
XML-DBMS   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-2
JBuilder and XML-DBMS.  .  .  .  .  .  .  .  .  .  .  . 3-3
Creating a map document and a SQL 

script file  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-4
Setting properties for the model-based 

components   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-8
Setting properties with the 

customizer   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-8
Setting properties with the Inspector  .  .  3-11

Using the template-based components .  .  .  .  .  3-11
Setting properties for the template 

beans  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-12
Setting properties with the 

customizer   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-12
Setting properties with the Inspector  .  . 3-19
Setting properties with an XML query 

document .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-19

Chapter 4
Tutorial: Creating and validating 
XML documents 4-1

Step 1: Creating an XML document.  .  .  .  .  .  .  . 4-2
Creating an XML document manually  .  .  .  . 4-2
Creating an XML document with the 

DTD To XML wizard  .  .  .  .  .  .  .  .  .  .  .  .  . 4-3
Step 2: Validating the XML document  .  .  .  .  .  . 4-6
Step 3: Viewing the XML document   .  .  .  .  .  .  . 4-7

Chapter 5
Tutorial: Transforming XML 
documents 5-1

Step 1: Enabling the XML viewer .  .  .  .  .  .  .  .  . 5-2
Step 2: Associating stylesheets with 

the document  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-3
Step 3: Transforming the document using 

stylesheets  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-3
Step 4: Setting transform trace options .  .  .  .  .  . 5-4

Contents



ii

Chapter 6
Tutorial: Creating a SAX Handler 
for parsing XML documents 6-1

Step 1: Using the SAX Handler wizard  .  .  .  .  .  6-2
Step 2: Editing the SAX parser  .  .  .  .  .  .  .  .  .  .  6-4
Step 3: Running the program .  .  .  .  .  .  .  .  .  .  .  6-7
Step 4: Adding attributes  .  .  .  .  .  .  .  .  .  .  .  .  .  6-8
MySaxParser.java source code  .  .  .  .  .  .  .  .  .  . 6-10

Chapter 7
Tutorial: DTD data binding with 
BorlandXML 7-1

Step 1: Generating Java classes from a DTD   .  .  7-2
Step 2: Unmarshalling the data.  .  .  .  .  .  .  .  .  .  7-5
Step 3: Adding an employee record  .  .  .  .  .  .  .  7-6
Step 4: Modifying an employee record   .  .  .  .  .  7-7
Step 5: Running the completed application .  .  .  7-8

Chapter 8
Tutorial: Schema data binding 
with Castor 8-1

Step 1: Generating Java classes from a 
schema.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  8-2

Step 2: Unmarshalling the data.  .  .  .  .  .  .  .  .  .  8-5
Step 3: Adding an employee record  .  .  .  .  .  .  .  8-6
Step 4: Modifying the new employee data  .  .  .  8-6
Step 5: Running the completed application .  .  .  8-7

Chapter 9
Tutorial: Transferring data with 
the model-based XML database 
components 9-1

Step 1: Getting started .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  9-2
Step 2: Creating the map and SQL script files   .  9-4

Entering JDBC connection information  .  .  .  9-4
Testing the connection  .  .  .  .  .  .  .  .  .  .  .  9-5

Specifying the file names  .  .  .  .  .  .  .  .  .  .  .  9-6

Step 3: Creating the database tables.  .  .  .  .  .  .  . 9-7
Step 4: Working with the sample test 

application .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-8
Using XMLDBMSTable’s customizer  .  .  .  .  . 9-9

Selecting and testing a JDBC 
connection   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-9

Transferring data from XML to 
the database.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-10

Transferring data from the database 
to XML   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  9-11

Using XMLDBMSQuery’s customizer   .  .  . 9-14
Selecting and testing a JDBC 

connection   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-14
Transferring data with a SQL 

statement  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9-14
Understanding the map file   .  .  .  .  .  .  . 9-16

Chapter 10
Tutorial: Transferring data with the 
template-based XML database 
components 10-1

Step 1: Getting started  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10-2
Step 2: Working with the sample test 

application .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10-2
Step 3: Using XTable’s customizer   .  .  .  .  .  .  . 10-3

Entering JDBC connection information .  .  . 10-3
Transferring data from the database 

to XML  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 10-4
Step 4: Using XQuery’s customizer .  .  .  .  .  .  . 10-6

Selecting a JDBC connection .  .  .  .  .  .  .  .  . 10-7
Transferring data with a SQL statement  .  . 10-7

Index I-1



iii

2.1 DTD with ATTLIST definitions   .  .  .  .  .  .  2-5
2.2 XML created by the wizard.  .  .  .  .  .  .  .  .  2-5
2.3 XML view with default stylesheet .  .  .  .  .  2-7
2.4 XML view without a stylesheet   .  .  .  .  .  .  2-7
2.5 Cascading stylesheet source  .  .  .  .  .  .  .  .  2-8
2.6 XML document with stylesheet 

instruction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  2-8
2.7 XML document with cascading 

stylesheet applied  .  .  .  .  .  .  .  .  .  .  .  .  .  .  2-9
2.8 Errors folder in structure pane .  .  .  .  .  .  . 2-11
2.9 XML validation errors using a DTD .  .  .  . 2-12
2.10 XML validation errors using schema  .  .  .2-13

2.11 XML source code for index.xml .  .  .  .  .  . 2-17
2.12 Stylesheet source code for index.xsl   .  .  . 2-17
2.13 Web view of index.xml .  .  .  .  .  .  .  .  .  .  . 2-18
2.14 Web view source of index.xml.  .  .  .  .  .  . 2-18
2.15 Transform view toolbar   .  .  .  .  .  .  .  .  .  . 2-19
2.16 Transform view with external 

stylesheet applied.  .  .  .  .  .  .  .  .  .  .  .  .  . 2-20
2.17 Transform view without a stylesheet .  .  . 2-21
2.18 Transform view with default 

stylesheet tree view.  .  .  .  .  .  .  .  .  .  .  .  . 2-21
2.19 Marshalling framework  .  .  .  .  .  .  .  .  .  . 2-27

Figures



iv

Creating and validating XML documents.  .  .  .  4-1
Transforming XML documents .  .  .  .  .  .  .  .  .  .  5-1
Creating a SAX Handler for parsing XML 

documents   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-1
DTD data binding with BorlandXML  .  .  .  .  .  .  7-1

Schema data binding with Castor .  .  .  .  .  .  .  .  . 8-1
Transferring data with the model-based 

XML database components   .  .  .  .  .  .  .  .  .  .  . 9-1
Transferring data with the template-based 

XML database components   .  .  .  .  .  .  .  .  .  . 10-1

Tutorials



I n t r o d u c t i o n 1-1

C h a p t e r

1
Chapter1Introduction

XML support is a feature
of JBuilder SE and

Enterprise

The XML Developer’s Guide explains how to use JBuilder’s XML features 
and contains the following chapters:

• Chapter 2, “Using JBuilder’s XML features”

Explains how to use JBuilder’s XML features. This chapter contains the 
following topics:

• “Creating XML-related documents”

• “Viewing XML documents”

• “Validating XML documents”

• “Presenting XML documents” This is a feature of JBuilder 
Enterprise.

• “Manipulating XML programmatically” This is a feature of JBuilder 
Enterprise.

• Chapter 3, “Using JBuilder’s XML database components” 

Explains how to use the XML model and template bean components for 
database queries and transfer of data between XML documents and 
databases. This is a feature of JBuilder Enterprise.

• Tutorials: 

Available in JBuilder SE and Enterprise:

• Chapter 4, “Tutorial: Creating and validating XML documents” 

Explains how to use JBuilder’s XML features to create and validate 
an XML document. 



1-2 X M L  D e v e l o p e r ’ s  G u i d e

I n t r o d u c t i o n

Available in JBuilder Enterprise:

• Chapter 5, “Tutorial: Transforming XML documents” 

Explains how to use JBuilder’s XML features to transform XML 
documents using stylesheets.

• Chapter 6, “Tutorial: Creating a SAX Handler for parsing XML 
documents” 

Create a SAX parser for parsing your XML documents using 
JBuilder’s SAX Handler wizard.

• Chapter 7, “Tutorial: DTD data binding with BorlandXML” 

Explains how to use JBuilder’s XML data binding features using 
DTDs and BorlandXML.

• Chapter 8, “Tutorial: Schema data binding with Castor” 

Explains how to use JBuilder’s XML data binding features using 
schema and Castor.

• Chapter 9, “Tutorial: Transferring data with the model-based XML 
database components” 

Explains how to use JBuilder’s model-based XML database 
components to transfer data from an XML document to a database 
and retrieve that data back again from the database to an XML 
document. It also explains how to use the XML-DBMS wizard to 
create the required map file used in the transferring of data and how 
to create a SQL script file you can use to create the database.

• Chapter 10, “Tutorial: Transferring data with the template-based 
XML database components” 

Explains how to use JBuilder’s template-based XML database 
components to retrieve data from a database to an XML file.

For an explanation of documentation conventions, see “Documentation 
conventions” on page 1-3.



I n t r o d u c t i o n 1-3

D o c u m e n t a t i o n  c o n v e n t i o n s

Documentation conventions
The Borland documentation for JBuilder uses the typefaces and symbols 
described in the following table to indicate special text.

Table 1.1 Typeface and symbol conventions

Typeface Meaning

Monospaced type Monospaced type represents the following:
• text as it appears onscreen
• anything you must type, such as “Type Hello World in the 

Title field of the Application wizard.”
• file names
• path names
• directory and folder names
• commands, such as SET PATH
• Java code
• Java data types, such as boolean, int, and long.
• Java identifiers, such as names of variables, classes, package 

names, interfaces, components, properties, methods, and 
events

• argument names
• field names
• Java keywords, such as void and static

Bold Bold is used for java tools, bmj (Borland Make for Java), bcj 
(Borland Compiler for Java), and compiler options. For example: 
javac, bmj, -classpath.

Italics Italicized words are used for new terms being defined, for book 
titles, and occasionally for emphasis.

Keycaps This typeface indicates a key on your keyboard, such as “Press 
Esc to exit a menu.”

[ ] Square brackets in text or syntax listings enclose optional items. 
Do not type the brackets.

< > Angle brackets are used to indicate variables in directory paths, 
command options, and code samples.
For example, <filename> may be used to indicate where you need 
to supply a file name (including file extension), and <username> 
typically indicates that you must provide your user name.
When replacing variables in directory paths, command options, 
and code samples, replace the entire variable, including the 
angle brackets (< >). For example, you would replace <filename> 
with the name of a file, such as employee.jds, and omit the angle 
brackets.
Note: Angle brackets are used in HTML, XML, JSP, and other 
tag-based files to demarcate document elements, such as <font 
color=red> and <ejb-jar>. The following convention describes 
how variable strings are specified within code samples that are 
already using angle brackets for delimiters.



1-4 X M L  D e v e l o p e r ’ s  G u i d e

D e v e l o p e r  s u p p o r t  a n d  r e s o u r c e s

JBuilder is available on multiple platforms. See the following table for a 
description of platform conventions used in the documentation.

Developer support and resources
Borland provides a variety of support options and information resources 
to help developers get the most out of their Borland products. These 
options include a range of Borland Technical Support programs, as well as 
free services on the Internet, where you can search our extensive 
information base and connect with other users of Borland products.

Contacting Borland Technical Support

Borland offers several support programs for customers and prospective 
customers. You can choose from several categories of support, ranging 
from free support on installation of the Borland product to fee-based 
consultant-level support and extensive assistance.

Italics, serif This formatting is used to indicate variable strings within code 
samples that are already using angle brackets as delimiters. For 
example, <url="jdbc:borland:jbuilder\\samples\\guestbook.jds">

... In code examples, an ellipsis (...) indicates code that has been 
omitted from the example to save space and improve clarity. On 
a button, an ellipsis indicates that the button links to a selection 
dialog box.

Table 1.2 Platform conventions

Item Meaning

Paths Directory paths in the documentation are indicated with a 
forward slash (/).
For Windows platforms, use a backslash (\).

Home directory The location of the standard home directory varies by platform 
and is indicated with a variable, <home>.
• For UNIX and Linux, the home directory can vary. For 

example, it could be /user/<username> or /home/<username>
• For Windows NT, the home directory is C:\Winnt\Profiles\

<username>

• For Windows 2000 and XP, the home directory is 
C:\Documents and Settings\<username>

Screen shots Screen shots reflect the Metal Look & Feel on various 
platforms.

Table 1.1 Typeface and symbol conventions (continued)

Typeface Meaning



I n t r o d u c t i o n 1-5

D e v e l o p e r  s u p p o r t  a n d  r e s o u r c e s

For more information about Borland’s developer support services, see our 
web site at http://www.borland.com/devsupport/, call Borland Assist at (800) 
523-7070, or contact our Sales Department at (831) 431-1064.

When contacting support, be prepared to provide complete information 
about your environment, the version of the product you are using, and a 
detailed description of the problem.

For support on third-party tools or documentation, contact the vendor of 
the tool.

Online resources

You can get information from any of these online sources:

World Wide Web

Check www.borland.com/jbuilder regularly. This is where the Java Products 
Development Team posts white papers, competitive analyses, answers to 
frequently asked questions, sample applications, updated software, 
updated documentation, and information about new and existing 
products.

You may want to check these URLs in particular:

• http://www.borland.com/jbuilder/ (updated software and other files)

• http://www.borland.com/techpubs/jbuilder/ (updated documentation and 
other files)

• http://community.borland.com/ (contains our web-based news magazine 
for developers)

Borland newsgroups

You can register JBuilder and participate in many threaded discussion 
groups devoted to JBuilder. The Borland newsgroups provide a means for 
the global community of Borland customers to exchange tips and 
techniques about Borland products and related tools and technologies.

World Wide Web http://www.borland.com/

FTP ftp://ftp.borland.com/

Technical documents available by anonymous ftp.

Listserv To subscribe to electronic newsletters, use the 
online form at: 
http://info.borland.com/contact/listserv.html

or, for Borland’s international listserver, 
http://info.borland.com/contact/intlist.html



1-6 X M L  D e v e l o p e r ’ s  G u i d e

D e v e l o p e r  s u p p o r t  a n d  r e s o u r c e s

You can find user-supported newsgroups for JBuilder and other Borland 
products at http://www.borland.com/newsgroups/.

Usenet newsgroups

The following Usenet groups are devoted to Java and related 
programming issues:

• news:comp.lang.java.advocacy 
• news:comp.lang.java.announce 
• news:comp.lang.java.beans 
• news:comp.lang.java.databases 
• news:comp.lang.java.gui 
• news:comp.lang.java.help 
• news:comp.lang.java.machine 
• news:comp.lang.java.programmer 
• news:comp.lang.java.security 
• news:comp.lang.java.softwaretools 

Note These newsgroups are maintained by users and are not official Borland 
sites.

Reporting bugs

If you find what you think may be a bug in the software, please report it in 
the Support Programs page at http://www.borland.com/devsupport/namerica/. 
Click the “Reporting Defects” link to bring up the Entry Form.

When you report a bug, please include all the steps needed to reproduce 
the bug, including any special environmental settings you used and other 
programs you were using with JBuilder. Please be specific about the 
expected behavior versus what actually happened.

If you have comments (compliments, suggestions, or issues) for the 
JBuilder documentation team, you may email jpgpubs@borland.com. This is 
for documentation issues only. Please note that you must address support 
issues to developer support.

JBuilder is made by developers for developers. We really value your 
input.



U s i n g  J B u i l d e r ’ s  X M L  f e a t u r e s 2-1

C h a p t e r

2
Chapter2Using JBuilder’s XML features

XML support is a feature
of JBuilder SE and

Enterprise

JBuilder provides several features and incorporates various tools to 
provide support for the Extensible Markup Language (XML). XML is a 
platform-independent method of structuring information. Because XML 
separates the content of a document from the structure, it can be a useful 
means of exchanging data. For example, XML can be used to transfer data 
between databases and Java programs. Also, because content and 
structure are separate, stylesheets can be applied to display the same 
content in different formats, such as Portable Document Format (PDF), 
HTML for display in a web browser, and so on.

XML features vary by JBuilder edition. JBuilder SE provides these 
features: manually creating XML documents, viewing XML documents in 
the XML browser, and validating XML documents. All XML features are 
included in JBuilder Enterprise.

In working with XML, JBuilder separates functionality into several layers:

• Creation and validation of XML documents

These are features of JBuilder Enterprise:

• Presentation of XML documents

• Programmatic manipulation of XML documents

• Interface to business data in databases

See also

• World Wide Web Consortium (W3C) at http://www.w3.org/

• The XML Cover Pages at http://www.oasis-open.org/cover/sgml-xml.html 
or http://xml.coverpages.org/

• XML.org at http://xml.org/



2-2 X M L  D e v e l o p e r ’ s  G u i d e

X M L  f e a t u r e s  i n  t h e  J a v a  2  P l a t f o r m

Additional XML resources are also included in the full JBuilder 
installation in the extras directory: Xerces, Xalan, Castor, Borland XML. 
and Cocoon. Documentation, Javadoc, and samples are also included.

XML features in the Java 2 Platform
JDK 1.4 includes the Java API for XML Processing (JAXP). JAXP includes 
the basic facilities for working with XML documents: Document Object 
Model (DOM), Simple API for XML Parsing (SAX), XSL Transformations 
(XSLT), and a pluggability layer for parsers. The JDK includes Crimson as 
the default parsing implementation and Xalan-J as the XSLT processor.

For more information on these features, see http://java.sun.com/j2se/1.4/
docs/guide/xml/jaxp/index.html and http://java.sun.com/xml/jaxp/index.html.

Creating XML-related documents
JBuilder provides a variety of features that allow you to create, edit, view, 
and validate your XML documents without ever leaving the development 
environment. You can manually create your XML-related documents, use 
wizards to create them for you in JBuilder Enterprise, view them in the 
XML viewer, edit the text in JBuilder’s editor, find errors, and finally, 
validate documents. Although DTD documents aren’t XML documents, 
they are included in this discussion, because they are related to XML 
documents.

To see a tutorial on creating XML documents, see Chapter 4, “Tutorial: 
Creating and validating XML documents.”

Creating XML documents manually

This is a feature of
JBuilder SE and

Enterprise

The JBuilder editor provides full support for creating XML-related 
documents. If you name a file with an XML-related extension, such as 
DTD, XSD, XSL, and XML, the editor automatically recognizes it as an 
XML-related document.

To create a new XML document in your project,

1 Open a project.

2 Choose Project|Add Files/Packages.

3 Choose the Explorer tab, browse to the project directory, and enter a file 
name with the appropriate file extension in the File Name field, such as 
.dtd, xml, or xsd.

4 Click OK.



U s i n g  J B u i l d e r ’ s  X M L  f e a t u r e s 2-3

C r e a t i n g  X M L - r e l a t e d  d o c u m e n t s

5 Click OK again when prompted to create the new file. The new file is 
added to the project and appears in the project pane with the 
appropriate XML icon.

6 Open the file in the editor and enter the appropriate text. Notice that 
the editor uses syntax highlighting to differentiate elements and 
attributes. By default, elements are blue and attributes are red.

7 Save the project.

Two editor features assist you in working with XML documents:

• Syntax highlighting
• Error messages

The editor uses syntax highlighting to display XML elements and 
attributes in different colors to visually differentiate them. XML elements 
are blue and attributes are red. To customize the colors in the editor, 
choose Tools|Editor Options|Color. To change the element color, select 
HTML Tag in the Screen Element list and choose the desired color. To 
change the attribute color, select HTML Attribute in the Screen Element 
list and choose the desired color.

The editor also dynamically displays error messages in an Errors folder in 
the structure pane as you type. Click an error message in the structure 
pane to highlight it in the editor. Double-click the error message to change 
the focus to the line of code in the editor. Note that the line of code 
indicated by the error message may not be the origin of the error.

Creating XML documents with wizards
These are features of

JBuilder Enterprise
JBuilder provides wizards for creating XML-related documents within the 
IDE:

• Creating an XML document from a DTD
• Creating a DTD from XML documents

These wizards are available from the context menu in the project pane and 
from the XML page of the object gallery (File|New).



2-4 X M L  D e v e l o p e r ’ s  G u i d e

C r e a t i n g  X M L - r e l a t e d  d o c u m e n t s

Tip You can also create empty XML-related documents, and the editor 
recognizes the file type and provides syntax highlighting. See “Creating 
XML documents manually” on page 2-2.

Creating an XML document from a DTD
The DTD To XML wizard is a quick way to create an XML document from 
an existing Document Type Definition (DTD). The DTD is a set of rules that 
describes the structure of the XML document. Validating parsers use the 
DTD to validate the XML markup. The DTD To XML wizard creates an 
XML template from the DTD with pcdata placeholders. Replace the pcdata 
placeholders with your own content.

To create an XML document from a DTD,

1 Right-click the DTD file in the project pane and choose Generate XML. 
This will automatically enter the DTD file name in the Input DTD File 
field of the wizard. You can also access this wizard on the XML page of 
the object gallery (File|New).

2 Select the root element from the Root Element drop-down list. The root 
element, the first element in the document, contains all the other 
elements in the document.

3 Accept the default file name in the Output XML File field or click the 
ellipsis (...) button to enter a file name for the XML document.

4 Optional: Enter any identifiers for the DOCTYPE declaration.

• Public: enter the URI for the specified standards library.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML3.2 Final//EN">

• System: enter the name of the DTD file.

<!DOCTYPE root SYSTEM "Employees.dtd">



U s i n g  J B u i l d e r ’ s  X M L  f e a t u r e s 2-5

C r e a t i n g  X M L - r e l a t e d  d o c u m e n t s

5 Click OK to close the wizard. The XML document is added to the 
project and appears in the project pane.

The wizard also handles attributes, which are used to further define 
elements, and converts the ATTLIST definitions in the DTD into attributes in 
the XML document. The ATTLIST keyword in the DTD is used to list the 
elements’ attributes. This attribute list includes the attribute name, values, 
and defaults.

Figure 2.1 DTD with ATTLIST definitions

Figure 2.2 XML created by the wizard

Creating a DTD from an XML document
The XML To DTD wizard is a quick way to create a Document Type 
Definition (DTD) from an existing XML document. The DTD, although 
not an XML document itself, describes the XML document and is used by 
the validating parser to validate the XML markup.



2-6 X M L  D e v e l o p e r ’ s  G u i d e

V i e w i n g  X M L  d o c u m e n t s

To create a DTD from an XML document,

1 Right-click the XML file in the project pane and choose Generate DTD 
to open the XML To DTD wizard. This automatically enters the XML 
file name in the Input XML File field of the wizard. You can also access 
this wizard on the XML page of the object gallery (File|New). Another 
way to open this wizard, is to open the XML file in the editor, right-
click the file name tab, and choose Generate DTD.

2 Accept the default file name in the Output DTD File field or click the 
ellipsis (...) button to enter a different file name for the XML document.

3 Click OK to close the wizard. The DTD is added to the project and 
appears in the project pane.

Important Before you can validate the XML document against the DTD, you must 
update the XML document with the DTD declaration which includes 
the name of the DTD. For example, <!DOCTYPE XmlEmployees SYSTEM 
"Employees.dtd">.

Important If attributes are included in the XML document, the XML To DTD wizard 
generates ATTLIST definitions for them in the DTD. See the DTD To XML 
wizard described in “Creating an XML document from a DTD” on 
page 2-4 for examples of attributes.

Viewing XML documents
This is a feature of

JBuilder SE and
Enterprise

JBuilder provides an XML viewer to view your XML documents so you never 
need to leave the development environment. You can view XML with a user-
defined stylesheet, JBuilder’s default stylesheet, or without a stylesheet. 
JBuilder’s XML viewer, which has JavaScript support, displays JBuilder’s 
default stylesheet as a collapsible tree view. For information on setting the 
XML options for the JBuilder IDE, see “Setting XML options” on page 2-9.



U s i n g  J B u i l d e r ’ s  X M L  f e a t u r e s 2-7

V i e w i n g  X M L  d o c u m e n t s

Using the XML viewer

You can view an XML document in JBuilder by opening the XML 
document and selecting the View tab in the content pane. If the View tab is 
not available, you need to enable it on the XML page of the IDE Options 
dialog box (Tools|IDE Options).

If a CSS stylesheet is not available, JBuilder applies a default XSLT 
stylesheet that displays the document in a collapsible tree view. Note that 
the View tab ignores XSL stylesheets. For information on applying 
stylesheets, see “Transforming XML documents” on page 2-18.

Figure 2.3 XML view with default stylesheet

Note To expand or collapse the tree view, click the plus (+) or the minus (-) 
symbols.

When the Apply Default Stylesheet option is turned off, you can view 
your XML document without any styles applied. You can disable it on the 
XML page of the IDE Options dialog box.

Figure 2.4 XML view without a stylesheet

If your XML document references a Cascading Style Sheet (CSS), the XML 
viewer renders the document using that stylesheet.



2-8 X M L  D e v e l o p e r ’ s  G u i d e

V i e w i n g  X M L  d o c u m e n t s

For example, if you want to render an XML document with CSS directly, 
you can create a CSS file as shown and reference it in the XML document 
as follows:

 <?xml-stylesheet type="text/css" href="cd_catalog.css"?>

Figure 2.5 Cascading stylesheet source 

Figure 2.6 XML document with stylesheet instruction



U s i n g  J B u i l d e r ’ s  X M L  f e a t u r e s 2-9

V i e w i n g  X M L  d o c u m e n t s

The result of the stylesheet applied to the XML document is shown in the 
following image:

Figure 2.7 XML document with cascading stylesheet applied

Setting XML options

This is a feature of
JBuilder SE and

Enterprise

You can set XML options for the JBuilder IDE in the IDE Options dialog 
box. In JBuilder SE and Enterprise, you can enable and disable the XML 
viewer, as well as apply a default stylesheet. In JBuilder Enterprise, you can 
also set transform trace options when transforming an XML document.

To open the IDE Options dialog box, choose Tools|IDE Options and click 
the XML tab to set general and transform trace options.



2-10 X M L  D e v e l o p e r ’ s  G u i d e

V a l i d a t i n g  X M L  d o c u m e n t s

General options
The General options include the following:

• Enable Browser View: enables JBuilder’s XML viewer. When this 
option is enabled, a View tab is available in the content pane.

• Apply Default Stylesheet: applies a default stylesheet (XSL), which is a 
tree view, to the XML document displayed in the XML viewer (View 
tab of the content pane).

Note This is different from the Default Stylesheet button on the transform 
view toolbar, which applies a tree view to the transformation displayed 
in the transform view of the content pane.

• Ignore DTD:  ignore DTDs when parsing XML files.  When this option 
ischecked, JBuilder doesn’t resolve the DTD and doesn’t report any 
errors in the structure pane. This makes it possible to work offline and 
also results in faster response time if you’re working online. If this 
option is checked, the editor must resolve the DTD each time  and  also 
reports any errors in the structure pane.

Transform Trace options
Transform Trace options
are features of JBuilder

Enterprise

Set transform trace options so that after a transformation occurs, you can 
follow the sequence in which the various stylesheet elements were 
applied. The Transform Trace options include the following:

• Generation: outputs information after each result tree generation event, 
such as start document, start element, characters, and so on.

• Templates: outputs an event when a template is invoked. For example, 
xsl:template match='stocks'.

• Elements: outputs events that occur as each node is executed in the 
stylesheet. For example, xsl:value-of select='borland'.

• Selections: outputs information after each selection event. For example 
xsl:value-of, select='borland@StockQuote':StockQuote.

For more information on XML transformation, see “Transforming XML 
documents” on page 2-18.

Validating XML documents
This is a feature of

JBuilder SE and
Enterprise

In XML, there are two types of validation: well-formedness and grammatical 
validity. Well-formed documents must follow the XML rules for the 
physical document structure and syntax. For example, all elements 
require end tags and an XML declaration is required at the top of the 
document. Also, all XML documents must have a single root element, the 
first element in the document which contains all the other elements.



U s i n g  J B u i l d e r ’ s  X M L  f e a t u r e s 2-11

V a l i d a t i n g  X M L  d o c u m e n t s

In contrast, a valid XML document is a well-formed document that also 
conforms to the stricter rules specified in the Document Type Definition 
(DTD) or in the schema (XSD). The DTD describes a document’s structure, 
specifies which element types are allowed, and defines the properties for 
each element. A well-formed document is not checked against an external 
DTD.

Schemas, like DTDs, describe the structure of the document. But schemas 
are more powerful than DTDs, because they can also describe the 
structure of other information, such as databases. They also provide 
additional information about inheritance and data types in the XML 
document.

JBuilder integrates the Xerces parser to provide XML parsing for 
validating XML documents. For information about Xerces, see the Xerces 
documentation and samples available in the extras directory of the 
JBuilder full installation or visit the Apache web site at http://
xml.apache.org/.

When an XML document is open in JBuilder, the structure pane displays 
the structure of the document. If the document isn’t well formed, the 
structure pane displays an Errors folder that contains error messages. Use 
these messages to correct the errors in a document’s structure. Click an 
error message in the structure pane to highlight it in the source code. 
Double-click the error message to change the focus to the line of code in 
the editor. The line of code indicated by the error message may not be the 
origin of the error.

Figure 2.8 Errors folder in structure pane

JBuilder can also validate the grammar of the XML in your document 
against the definitions in the DTD. Right-click the XML file in the project 
pane and choose Validate. You can also open the XML file in the editor, 
right-click the file name tab, and choose Validate. If the document is valid, 
a dialog box displays with a message that the document is valid. If the 



2-12 X M L  D e v e l o p e r ’ s  G u i d e

V a l i d a t i n g  X M L  d o c u m e n t s

document has errors, the results are reported on an XML Validation Trace 
page in the message pane. Click an error message to highlight the error in 
the source code. Double-click a message to move the cursor focus to the 
source code.

Figure 2.9 XML validation errors using a DTD

The message pane displays both types of error messages: well-formedness 
and validity. If the DTD is missing, the document is considered invalid 
and a message displays in the message pane. After fixing the errors, re-
validate the document to verify that it is valid.

To see a tutorial on validating an XML document against a DTD, see 
Chapter 4, “Tutorial: Creating and validating XML documents.”

JBuilder also supports validation of schema (XSD) files. As with DTDs, 
right-click the XML file in the project pane and choose Validate. If a 
schema file is not available, a message displays in the message pane. 
Errors appear in the structure pane and/or the message pane. If the 
schema is valid, a dialog box appears declaring it valid.

Important XML schema validation requires 2001 schema support: <xsd:schema 
xmlns:xsd="http://www.w3.org/2001/XMLSchema">. If an older version is used, 
an exception displays in the message pane. You can find the latest Xerces 
schema samples with 2001 schema support in <jbuilder>/extras/xerces/
data/.



U s i n g  J B u i l d e r ’ s  X M L  f e a t u r e s 2-13

P r e s e n t i n g  X M L  d o c u m e n t s

Figure 2.10 XML validation errors using schema

Presenting XML documents
This is a feature of

JBuilder Enterprise
Because XML allows you to separate the content of the document from the 
presentation, documents can be presented in various formats by applying 
stylesheets. For example, an XML document could be displayed as HTML, 
PDF, or WML according to the stylesheet applied without rewriting any of 
the XML content. JBuilder provides additional tools for performing the 
tasks of presentation of XML documents:

• Cocoon as the presentation layer
• Transformation of XML documents

Presenting XML with Cocoon
Cocoon, part of the Apache XML project, is a servlet-based, Java publishing 
framework for XML that is integrated into JBuilder. Cocoon allows separation 
of content, style, and logic and uses XSL transformation to merge them. 
Cocoon can also use logic sheets, Extensible Server Pages (XSP), to deliver 
dynamic content embedded with program logic written in Java.

The Cocoon model divides web content into:

• XML creation: XML files are created by content owners who need to 
understand DTDs but don’t need to know about processing.

• XML processing: the XML file is processed according to logic sheets. 
Logic is separate from the content.

• XSL rendering: the XML document is rendered by applying a stylesheet 
to it and formatting it according to the resource type (PDF, HTML, 
WML, XHTML).



2-14 X M L  D e v e l o p e r ’ s  G u i d e

P r e s e n t i n g  X M L  d o c u m e n t s

For complete information about using Cocoon, see the Cocoon 
documentation and samples in the extras/cocoon directory of your JBuilder 
installation or visit the Apache web site at http://xml.apache.org/cocoon/
index.html.

For more information on web applications, see the Web Application 
Developer’s Guide.

Creating a Cocoon web application
There are two ways to create a Cocoon web application:

• Cocoon Web Application wizard

• Web Application wizard

When you create a Cocoon web application with either of these wizards, 
Cocoon is configured to use the version of Cocoon that’s bundled with 
JBuilder.

To create a Cocoon web application with the Cocoon Web Application 
wizard,

1 Create a project with the Project wizard (File|New Project).

2 Choose File|New and choose the XML tab of the object gallery.

3 Double-click the Cocoon Web Application icon to open the Cocoon 
Web Application wizard. Notice that this wizard is the Web 
Application wizard with Cocoon selected as the framework.

4 Accept the defaults and click OK to close the wizard and generate the 
Cocoon files.

5 Select the project file in the project pane, right-click, and choose Make 
to generate the WAR file.



U s i n g  J B u i l d e r ’ s  X M L  f e a t u r e s 2-15

P r e s e n t i n g  X M L  d o c u m e n t s

6 Add any of your XML and XSL files to the project using the Add To 
Project button on the project pane toolbar.

7 Save the project.

To create a Cocoon web application with the Web Application wizard,

1 Create a project with the Project wizard (File|New Project).

2 Choose File|New and choose the Web tab of the object gallery.

3 Double-click the Web Application icon to open the Web Application 
wizard.

4 Select Cocoon as the framework. The Name and the Directory fields, 
which are editable, are filled out automatically as cocoon. The Launch 
URI defaults to index.xml, which is the default JBuilder Cocoon page 
that displays when you run the cocoon node.

5 Accept the defaults and click OK to close the wizard and generate the 
Cocoon files.

6 Select the project file in the project pane, right-click, and choose Make 
to generate the WAR file.

7 Add any of your XML and XSL files to the project using the Add To 
Project button on the project pane toolbar.

8 Save the project.

To see the Cocoon files generated by the wizard, expand the cocoon node 
and the <Project Source> node in the project pane:

• CatalogManager.properties

This Cocoon default properties file, located in the project’s source 
directory, contains catalog settings and preferences. To override or add 
to these settings, you can use cocoon.xconf. For more information see 
“Using CatalogManager.properties” in the Cocoon documentation in 
<jbuilder>/extras/cocoon/docs/userdocs/concepts/catalog.html.



2-16 X M L  D e v e l o p e r ’ s  G u i d e

P r e s e n t i n g  X M L  d o c u m e n t s

• cocoon.war

A web archive file.

• cocoon.xconf

A configuration file containing logic sheet registrations. This file 
describes each core component and any optional components. It also 
specifies the location of sitemap.xmap and other parameters. For 
example, this file might specify a parser, a JSP engine, and so on.

• logkit.xconf

A configuration file to control log files. Logging provides debugging, 
deployment, and operational information. Logging files can be created 
with the LogKit toolkit. For information on the LogKit toolkit, see 
http://jakarta.apache.org/avalon/logkit/index.html.

• web.xml

A servlet deployment descriptor that specifies the location of 
cocoon.xconf, log file location, and other parameters.

• index.xml

A sample XML document that is specified as the launch URI by default. 
This document displays automatically when you run Cocoon.

• index.xsl

A sample stylesheet that’s used to apply HTML formatting to index.xml.

• sitemap.xmap

This file maps the Uniform Resource Identifier (URI) space to 
resources. It consists of two parts: components and pipelines, which 
consist of components. The Cocoon Web Application wizard adds a 
mapping to this file to point to the stylesheet for the JBuilder Cocoon 
sample page, index.xml.

You can edit most of these files directly in the editor if you want to make 
changes later without running the wizard again. You can also edit the 
original files used by the wizard located in <jbuilder>/defaults/cocoon. For 
more information on configuring Cocoon, see the Cocoon documentation 
in the JBuilder extras/cocoon/docs directory.

For more information on web.xml and the editor for the deployment 
descriptor, see the “Deployment descriptors” topics in “Working with 
WebApps and WAR files” and “Deploying your web application” in the 
Web Application Developer’s Guide.



U s i n g  J B u i l d e r ’ s  X M L  f e a t u r e s 2-17

P r e s e n t i n g  X M L  d o c u m e n t s

Figure 2.11 XML source code for index.xml

The stylesheet for index.xml, index.xsl, contains HTML formatting. 
Therefore, when this stylesheet is applied to index.xml, the XML document 
is rendered as an HTML document.

Figure 2.12 Stylesheet source code for index.xsl

Running Cocoon
To run Cocoon, a web server that supports JSP/servlets must be 
configured for the project. The Cocoon Web Application wizard 
automatically configures Tomcat for you and uses it to run Cocoon. 
Cocoon also works with other web application servers. For more 
information on configuring servers, see “Configuring your web server” in 
the Web Application Developer’s Guide.

To run Cocoon, execute the following steps:

1 Right-click the cocoon node in the project pane.

2 Choose Web Run Using Defaults on the context menu.



2-18 X M L  D e v e l o p e r ’ s  G u i d e

P r e s e n t i n g  X M L  d o c u m e n t s

Cocoon launches the currently configured servlet engine, inserts itself in 
the servlet environment, and loads index.xml in the web view of the 
content pane, using information in the web.xml and cocoon.properties files 
that the Cocoon Web Application wizard generated. You can modify 
cocoon.properties to add XSP (Extensible Server Pages) libraries and 
individual resources to each logic sheet.

Figure 2.13 Web view of index.xml

To see the source code for the web view, choose the Web View Source tab.

Figure 2.14 Web view source of index.xml

Transforming XML documents
This is a feature of

JBuilder Enterprise
The process of converting an XML document to any other kind of document 
is called XML transformation. JBuilder incorporates Xalan as the stylesheet 
processor for transformation of XML documents and uses stylesheets 
written in Extensible Style Language Transformations (XSLT) for 
transformation. An Extensible Style Language (XSL) stylesheet contains 
instructions for transforming XML documents from one document type into 
another document type (XML, HTML, PDF, WML, or other).

Important If transformation of your XML document fails, check to see if you’re using 
the correct version of the stylesheet specification, http://www.w3.org/1999/
XSL/Transform.



U s i n g  J B u i l d e r ’ s  X M L  f e a t u r e s 2-19

P r e s e n t i n g  X M L  d o c u m e n t s

To see a tutorial on transforming XML documents, see Chapter 5, 
“Tutorial: Transforming XML documents.”

For information about Xalan, see the Xalan documentation and samples 
available in the extras directory of the full JBuilder installation or visit the 
Apache web site at http://xml.apache.org/xalan-j/index.html.

Applying internal stylesheets
You can apply stylesheets that are referenced internally in the XML 
document as follows:

1 Open the XML document in JBuilder.

2 Choose the XML document’s Transform View tab at the bottom of the 
content pane.

Note If the document contains an XSLT processing instruction and just a 
single stylesheet, the stylesheet is applied to the XML document. If a 
tree view displays instead, press the Default Stylesheet button on the 
transform view toolbar to turn off the tree view.

The transformed document, which is held in a temporary buffer, displays 
on the Transform View tab of the content pane with the stylesheet applied. 
A Transform View Source tab also displays, so you can view the source 
code for that transformation.

If you want to apply another internal stylesheet listed in the stylesheet 
instruction in the document, choose it from the stylesheet drop-down list 
on the transform view’s toolbar.

Figure 2.15 Transform view toolbar

Table 2.1 Transform view toolbar buttons

Button Description

Default Stylesheet Applies the default JBuilder stylesheet, a collapsible tree 
view, to the transform view in the content pane. This option 
affects the result of the transformation.
Note: This is different from the Apply Default Stylesheet option 
on the XML page of the IDE Options dialog box (Tools|IDE 
Options|XML), which applies a tree view to the XML document 
displayed in the XML viewer (View tab of the content pane).

Refresh Refreshes the view.

Set Trace Options Opens the Set Transform Trace Options dialog box where you 
set traces for the application process.

Add Stylesheets Opens the Configure Node Stylesheets dialog box where you 
can associate stylesheets with a document.



2-20 X M L  D e v e l o p e r ’ s  G u i d e

P r e s e n t i n g  X M L  d o c u m e n t s

Applying external stylesheets
You can also apply external stylesheets to a document. First, you need to 
associate them with the XML document.

1 Choose one of these methods to open the dialog box:

• Right-click the XML document in the project pane and choose 
Properties.

• Click the Add Stylesheets button on the transform view toolbar.

2 Use the Add and Remove buttons to add and remove stylesheets. Click 
OK to close the dialog box. After the stylesheets are associated with the 
document, they appear in the stylesheet drop-down list with the 
internal stylesheets on the transform view toolbar.

3 Choose the Transform View tab and select an external stylesheet from the 
drop-down list to apply it. If the document displays in a tree view, choose 
the Default Stylesheet button on the transform view toolbar to disable it.

Figure 2.16 Transform view with external stylesheet applied



U s i n g  J B u i l d e r ’ s  X M L  f e a t u r e s 2-21

P r e s e n t i n g  X M L  d o c u m e n t s

Note If a stylesheet is not available, a message displays in the transform view 
indicating that a stylesheet is not associated with the document.

Figure 2.17 Transform view without a stylesheet

4 Choose the Default Stylesheet button on the transform view’s toolbar if 
you want to display the results of the transformation in a tree view 
using JBuilder’s default stylesheet. This is useful if the output of a 
transformation is another XML document without a stylesheet.

Note If the results of the transformation isn’t a well-formed XML document, 
you may not be able to display it in the tree view. This often happens if 
the results are in HTML, which isn’t usually well-formed.

Figure 2.18 Transform view with default stylesheet tree view

Setting transform trace options
You can set transform trace options so that when a transformation occurs, 
you can see a trace of the process. These options include Generation, 
Templates, Elements, and Selections.

To enable tracing,

1 Choose Tools|IDE Options.

2 Choose the XML tab.

3 Check the trace options you want.



2-22 X M L  D e v e l o p e r ’ s  G u i d e

M a n i p u l a t i n g  X M L  p r o g r a m m a t i c a l l y

See also

• Transform Trace options, described in “Setting XML options” on 
page 2-9

You can also set these options by choosing the Set Trace Options button on 
the transform view’s toolbar. The traces appear in the message pane. 
Select a trace to highlight the corresponding source code in the editor. 
Double-click a trace to change the focus to the source code in the editor so 
you can begin editing.

Manipulating XML programmatically
Programmatic

manipulation is a feature
of JBuilder Enterprise

XML is typically manipulated programmatically, either through parsers 
or through a more specific data binding solution. JBuilder supports both 
approaches and provides tools for both:

• A SAX Handler wizard

• Data binding solutions:

• BorlandXML for generating Java sources from DTD

• Castor for generating Java sources from Schema

SAX, the Simple API for XML, can be used to process XML data, which is 
treated much like a text stream. Although SAX is relatively fast in 
processing data, it has several disadvantages. SAX is read-only, validates 
only the structure of a document, and doesn’t store an in-memory copy of 



U s i n g  J B u i l d e r ’ s  X M L  f e a t u r e s 2-23

M a n i p u l a t i n g  X M L  p r o g r a m m a t i c a l l y

the data. Data binding solutions, such as BorlandXML and Castor, can 
read and write XML data, validate the content of the data as well as the 
structure, process the data much faster than SAX, and are low 
maintenance. Each solution, however, has its appropriate uses. For 
example, SAX is appropriate when working with simple applications that 
don’t require content validation. A data binding solution is best used 
when working with more complex applications that require writing XML 
and data content validation.

JBuilder bundles many pre-defined libraries that you can add to your 
project: JDOM, Xerces, BorlandXML, Castor, and so on. If you’re using 
JBuilder wizards, the appropriate libraries are added for you 
automatically. You can add these to your project in the Project Properties 
dialog box. Choose Project|Project Properties and choose the Paths page. 
Choose the Required Libraries tab and add the libraries. Once the libraries 
are added, JBuilder’s CodeInsight has access to them and can display 
context-sensitive pop-up windows within the editor that show accessible 
data members, methods, classes, and parameters expected for the method 
being coded, as well as drilling down into source code. If you’re using 
JBuilder wizards, the appropriate libraries are added for you 
automatically.

Creating a SAX handler

This is a feature of
JBuilder Enterprise

There are two types of XML APIs: tree-based APIs and event-based APIs. 
A tree-based API, which compiles an XML document into an internal tree 
structure, allows an application to navigate the tree. The tree-based API is 
currently being standardized as a Document Object Model (DOM).

SAX, the Simple API for XML, is a standard interface for event-based XML 
parsing. SAX reports parsing events directly to the application through 
callbacks. The application implements handlers to deal with the different 
events, similar to event handling in a graphical user interface.

For example, an event-based API looks at this document:

<?xml version="1.0"?>

<page>
   <title>Event-based example</title>
   <content>Hello, world!</content>
</page>

and breaks it into these events:

start document
start element: page
start element: title
characters: Event-based example
end element: title
start element: content



2-24 X M L  D e v e l o p e r ’ s  G u i d e

M a n i p u l a t i n g  X M L  p r o g r a m m a t i c a l l y

characters: Hello, world!
end element: content
end element: page
end document

JBuilder makes it easier to use SAX to manipulate your XML 
programmatically. The SAX Handler wizard uses JAXP (Java API for XML 
Processing), included in JDK 1.4, to create a SAX parser implementation 
template that includes just the methods you want to implement to parse 
your XML. JAXP provides support for processing XML documents using 
SAX, DOM, and XSLT.

1 Choose File|New to open the object gallery, click the XML tab, and 
double-click the SAX Handler icon to open the wizard.

2 Specify the name of the class and package names or accept the default 
names.

3 Select the interfaces and methods you want to override and click Next. 
For more information about these methods and interfaces, see the SAX 
API documentation.

4 Select the SAX parser and any options you want. The options vary 
according to the SAX parser selected.

The General parser is a JAXP-compatible parser, which only supports 
JAXP required features. JDK 1.4 uses Crimson as the default parser. For 
more information, see the SAXParserFactory class.

The Xerces parser supports all Xerces 2 features. For more information 
on Xerces and the options it supports, see the documentation in 
<jbuilder>\extras\xerces\docs\features.html or visit the Apache web site 
at http://xml.apache.org/xerces2-j/features.html.



U s i n g  J B u i l d e r ’ s  X M L  f e a t u r e s 2-25

M a n i p u l a t i n g  X M L  p r o g r a m m a t i c a l l y

Important If you’re using JDK 1.3 for your project, use Xerces as the parser, since 
JDK 1.3 doesn’t include a JAXP parser. When you choose Xerces as the 
parser, JBuilder automatically adds the Xerces library to the project.

5 Click Next to continue to the last page of the wizard. Here you see that 
the wizard automatically creates a runtime configuration for the SAX 
application.



2-26 X M L  D e v e l o p e r ’ s  G u i d e

M a n i p u l a t i n g  X M L  p r o g r a m m a t i c a l l y

6 Click Finish to create a class that implements a SAX parser.

7 Edit the source code and add the logic to implement the selected 
methods.

8 Edit the run configuration created by the wizard on the Run page of 
Project Properties and specify the XML file to parse in the Application 
Parameters field.

a Choose Run|Configurations to open the Run page of the Project 
Properties dialog box.

b Select the runtime configuration created by the wizard and click Edit 
to modify the application parameter.

c Enter the path to the XML document in the Application Parameters 
field. For example, 

file:///C:\<jbuilder>\samples\Tutorials\XML\saxparser\Employees.xml

d Click OK twice to close the dialog boxes. For more information on 
run configurations, see “Setting runtime configurations” in Building 
Applications with JBuilder.

9 Save the project and choose Run|Run Project to build and run the 
project.

See also

• The SAX packages: org.xml.sax, org.xml.sax.ext, and org.xml.sax.helpers 
in the Java API Specification (Help|Java Reference)

• Chapter 6, “Tutorial: Creating a SAX Handler for parsing XML 
documents”



U s i n g  J B u i l d e r ’ s  X M L  f e a t u r e s 2-27

M a n i p u l a t i n g  X M L  p r o g r a m m a t i c a l l y

Manipulating XML through data binding

This is a feature of
JBuilder Enterprise

Data binding is a means of accessing data and manipulating it, then 
sending the revised data back to the database or displaying it with an 
XML document. The XML document can be used as the transfer 
mechanism between the database and the application. This transfer is 
done by binding a Java object to an XML document. The data binding is 
implemented by generating Java classes to represent the constraints 
contained in a grammar, such as in a DTD or an XML schema. You can 
then use these classes to create XML documents that comply with the 
grammar, read XML documents that comply with the grammar, and 
validate XML documents against the grammar as changes are made to the 
documents.

JBuilder offers several data binding solutions: BorlandXML and open 
source Castor. BorlandXML generates Java classes from DTD files, while 
Castor generates Java classes from schema files (XSD).

The marshalling framework
BorlandXML and Castor use a marshalling framework for data 
conversions between Java and XML. The marshalling framework has two 
parts: marshalling and unmarshalling. Marshalling writes to an XML 
document from JavaBean objects (Java to XML). Unmarshalling reads an 
XML document into JavaBean objects (XML to Java).

Figure 2.19 Marshalling framework

See also

• “The XML Data binding Specification” at http://www.oasis-open.org/
cover/xmlDataBinding.html

XML

Employees

Java class

unmarshal()

marshal()

<Employees>
  <Employee>
     <ID>
     </ID>
     <Name>
     </Name>
  </Employee>
  <Employee>
      …….
  </Employee>
</Employees>

Java objects

Employee

NameID

Employee

NameID



2-28 X M L  D e v e l o p e r ’ s  G u i d e

M a n i p u l a t i n g  X M L  p r o g r a m m a t i c a l l y

BorlandXML
BorlandXML provides a data binding mechanism that hides the details of 
XML and reduces code complexity with ease of maintenance. 
BorlandXML is a template-based programmable class generator used to 
generate JavaBean classes from a Document Type Definition (DTD). You 
then use the simple JavaBean programming convention to manipulate 
XML data without worrying about the XML details.

BorlandXML uses DTDs in a two-step process to generate Java classes. In 
the first step, BorlandXML generates a class model file from a DTD. The 
class model file is an XML file with .bom extension. This file describes a 
high-level structure of the target classes and provides a way to customize 
these classes. In the second step, BorlandXML generates Java classes from 
the .bom file (class model XML file).

BorlandXML supports several features:

• JavaBean manipulation: manipulates a bean to construct an XML 
document or access data in the document.

• A marshalling framework for conversion between Java and XML.

• Document validation: validates JavaBean objects before marshalling 
objects to XML or after unmarshalling an XML document back to 
JavaBean objects.

• PCDATA customization: allows PCDATA to be customized to support 
different primitive data types, such as integer and long, and to support 
customized property names.

• Variable names: allows generated variable names for elements and 
attributes to have customized prefixes and suffixes.

To generate Java classes from a DTD, use the Databinding wizard as 
follows:

1 Right-click the DTD file in the project pane and choose Generate Java to 
open the Databinding wizard. The DTD File field in the wizard is 
automatically filled in with the file name. The Databinding wizard is 
also available on the XML tab of the object gallery (File|New).

2 Select BorlandXML, which is DTD-based only, as the Databinding Type 
and click Next.

3 Fill in the required fields, such as the name and location of the DTD 
being used, the root element, and the package name. The root element, 
the first element in the document, contains all the other elements in the 
document.



U s i n g  J B u i l d e r ’ s  X M L  f e a t u r e s 2-29

M a n i p u l a t i n g  X M L  p r o g r a m m a t i c a l l y

4 Enter a PUBLIC or SYSTEM identifier which is inserted into the DOCTYPE 
declaration.

5 Click Finish.

6 Expand the generated package node in the project pane to see the .java 
files generated by the wizard.

7 Write the code to interact with these classes and unmarshal (read) and 
marshal (write) the data. For example,

Foo foo = Foo.unmarshal("D:\Temp\foo.xml");    \\Read from foo.xml
foo.setBar("This is an element");              \\Modify element bar
foo.marshal("D:\Temp\foo-modified.xml");       \\Write to foo-modified.xml

To see a tutorial on data binding with BorlandXML, see Chapter 7, 
“Tutorial: DTD data binding with BorlandXML.”

BorlandXML samples and documentation are provided in the extras 
directory of the JBuilder full installation.

Castor
Castor is an XML data binding framework that maps an instance of an 
XML schema to an object model that represents the data. This object 
model includes a set of classes and types, as well as descriptors, which are 
used to obtain information about a class and its fields.

Castor uses a marshalling framework that includes a set of 
ClassDescriptors and FieldDescriptors to describe how an Object should be 
marshalled and unmarshalled from XML.

Castor uses schema to create Java classes instead of using DTDs. Schemas 
(XSD), more robust and flexible, have several advantages over DTDs. 
Schemas are XML documents, whereas DTDs contain non-XML syntax. 
Schemas also support namespaces, which are required to avoid naming 
conflicts, and offer more extensive data type and inheritance support.



2-30 X M L  D e v e l o p e r ’ s  G u i d e

M a n i p u l a t i n g  X M L  p r o g r a m m a t i c a l l y

Important Castor requires 2001 schema support: <xsd:schema xmlns:xsd="http://
www.w3.org/2001/XMLSchema">. If an older schema version is used, an 
exception displays in the message pane. The same is true for XML schema 
validation. You can find the latest Xerces schema samples with 2001 
schema support in <jbuilder>/extras/xerces/data/.

To generate Java classes from an XML schema, use the Databinding 
wizard as follows:

1 Right-click the schema file (XSD) in the project pane and choose 
Generate Java to open the Databinding wizard. The XML Schema File 
field in the wizard is automatically filled in with the file name. The 
Databinding wizard is also available on the XML tab of the object 
gallery (File|New).

2 Select Castor, which supports XML schemas, as the Databinding Type 
and click Next.

3 Fill in the required fields, such as the package name, and specify the 
options you want.

4 Click Finish.

5 Expand the generated package node in the project pane to see the .java 
files generated by the wizard.

6 Write the code to interact with these classes and unmarshal (read) and 
marshal (write) the data. For example,

\\Read file
Foo foo = Foo.unmarshal(new FileReader("D:\Temp\foo.xml"));     
\\Modify element bar
foo.setBar("This is an element");  
\\Write to file           
foo.marshal(new java.io.FileWriter("D:\Temp\foo-modified.xml"));



U s i n g  J B u i l d e r ’ s  X M L  f e a t u r e s 2-31

I n t e r f a c i n g  w i t h  b u s i n e s s  d a t a  i n  d a t a b a s e s

Important You’ll see compiler deprecation warnings, because Castor generates code 
that uses Sax 1.0.

Note By default, Castor’s marshaller writes XML documents without 
indentation, because indentation inflates the size of the generated XML 
documents. To turn indentation on, modify the castor.properties file with 
the following content: org.exolab.castor.indent=true. There are also other 
properties in this file that you may want to modify. The castor.properties 
file is created automatically by the Databinding wizard in the source 
directory of the project.

To see a tutorial on data binding with Castor, see Chapter 8, “Tutorial: 
Schema data binding with Castor.”

Castor samples and documentation are provided in the extras directory of 
the JBuilder full installation or visit the Castor web site at http://
castor.exolab.org.

Interfacing with business data in databases
This is a feature of

JBuilder Enterprise
XML database support in JBuilder falls into two categories: model-based 
and template-based. The model-based solution uses a map document that 
determines how the data transfers between an XML structure and the 
database metadata. The model-based components, XMLDBMSTable and 
XMLDBMSQuery, are implemented using XML-DBMS, an open source XML 
middleware that is bundled with JBuilder.

The template-based solution works with a template, a set of rules. The 
template-based components, XTable and XQuery, are very flexible as there is 
no predefined relationship between the XML document and the set of 
database metadata you are querying.

For more information on XML database components, see Chapter 3, 
“Using JBuilder’s XML database components.”

See also

• XML-DBMS at http://www.rpbourret.com/xmldbms/



2-32 X M L  D e v e l o p e r ’ s  G u i d e



U s i n g  J B u i l d e r ’ s  X M L  d a t a b a s e  c o m p o n e n t s 3-1

C h a p t e r

3
Chapter3Using JBuilder’s XML database

components
This is a feature of

JBuilder Enterprise
JBuilder’s XML database support is available through a set of components 
on the XML page of the component palette in the UI designer. The 
runtime code for the beans is provided as part of a redistributable library 
in xmlbeans.jar.

The XML database components in the XmlBeans library consist of two 
types of components:

• Model-based components

• Template-based components

Model-based components use a map document that determines how the 
data transfers between an XML structure and the database metadata. 
Because the user specifies a map between an element in the XML 
document to a particular table or column in a database, deeply nested 
XML documents can be transferred to and from a set of database tables. 
The model-based components are implemented using XML-DBMS, an 
open source XML middleware that is bundled with JBuilder.

To use template-based components, you supply a SQL statement, and the 
component generates an appropriate XML document. The SQL you 
provide serves as the template that is replaced in the XML document as 
the result of applying the template. The template-based solution is very 
flexible as there is no predefined relationship between the XML document 
and the set of database metadata you are querying. Although template-
based components are flexible in getting data out of a database and into an 
XML document, the format of the XML document is flat and relatively 
simple. In addition, the template-based components can generate HTML 



3-2 X M L  D e v e l o p e r ’ s  G u i d e

U s i n g  t h e  m o d e l - b a s e d  c o m p o n e n t s

documents based on default stylesheets or on a custom stylesheet 
provided by the user.

See also

• com.borland.jbuilder.xml.database.template package in the XML Database 
Components Reference of the DataExpress Component Library Reference

• com.borland.jbuilder.xml.database.xmldbms package in the XML Database 
Components Reference of the DataExpress Component Library Reference

• com.borland.jbuilder.xml.database.common package in the XML Database 
Components Reference of the DataExpress Component Library Reference

Using the model-based components
JBuilder uses XML-DBMS in the model-based components. XML-DBMS, 
which is middleware for transferring data between XML documents and 
relational databases, uses object-relational mapping to map objects to the 
database. XML-DBMS is redistributed with JBuilder. XML-DBMS source, 
samples, and documentation are located in the <jbuilder>/extras/xmldbms 
directory.

JBuilder provides two beans to actually transfer XML-DBMS data: 
XMLDBMSTable and XMLDBMSQuery, which are the third and fourth beans on the 
XML page of the component palette in JBuilder’s UI designer. The 
XMLDBMSTable uses a specified table and keys to serve as the select criteria 
for the transfer, while the XMLDBMSQuery works on results of a SQL query.

To see a tutorial about using the model-based XML components, see 
Chapter 9, “Tutorial: Transferring data with the model-based XML 
database components.”

To drop a bean in your application, choose the Design tab and click the 
XML tab on the component palette. Choose a bean and drop it in the 
designer.

XML-DBMS

The XML-DBMS solution consists of the following:

• A relational database with a JDBC driver

• An XML document for input/output of data

• An XML map document which defines the mapping between the 
database and the XML document

• A library with a set of API methods to transfer data between the 
database and the XML document



U s i n g  J B u i l d e r ’ s  X M L  d a t a b a s e  c o m p o n e n t s 3-3

U s i n g  t h e  m o d e l - b a s e d  c o m p o n e n t s

At the core of XML-DBMS is the mapping document specified in XML. 
This is defined by a mapping language and is documented as part of the 
XML-DBMS distribution. See the XML-DBMS documentation and the 
sources in the JBuilder extras directory for more information.

The main elements of the mapping language include:

• ClassMap

The ClassMap is the root of the mapping. A ClassMap maps a database 
table to XML elements which contain other elements (element content 
model). In addition, a ClassMap nests PropertyMaps and 
RelatedClassMap.

• PropertyMap

The PropertyMap maps PCDATA-only elements and single-value 
attributes to specific columns in a database table.

• RelatedClassMap

RelatedClassMap maps interclass relationships. This is done by 
referring to another ElementType (for example, ClassMap) declared 
elsewhere and specifying the basis for the relationship. The map 
specifies the primary key and foreign key used in the relationship as 
well as which of the two tables hold the primary key. Note that the 
identifier CandidateKey is used to represent a primary key.

In addition, key generation is supported. There are scenarios in which 
the keys are actual business data such as CustNo or EmpNo. In others, 
keys must be created just for the purpose of linking. This is possible by 
using a generate attribute as part of the respective key definition.

An optional orderColumn with auto key generation, if necessary, is 
also supported as part of the mapping.

• MiscMaps and Options

In addition to the above mappings, there are a few others to handle 
nulls, to ignore a root element which does not have any corresponding 
data in the database but just serves as a grouping element, and date and 
time formats.

JBuilder and XML-DBMS
JBuilder provides the following XML-DBMS support:

• XML-DBMS wizard

• XModelBean: base class for XMLDBMSTable and XMLDBMSQuery

• XMLDBMSTable: transfers data based on a table and key

• XMLDBMSQuery: transfers data based on a result set as defined by a SQL 
query



3-4 X M L  D e v e l o p e r ’ s  G u i d e

U s i n g  t h e  m o d e l - b a s e d  c o m p o n e n t s

Creating a map document and a SQL script file

JBuilder’s XML-DBMS wizard is part of the model/map-based solution 
that uses the Map_Factory_DTD API in XML-DBMS. Given a DTD, the 
wizard generates a template map document and SQL script file for 
creating the metadata. In all but the simplest cases, the map document 
merely serves as a starting point to create the required mapping. The SQL 
script, a set of Create Table statements, also must be modified because 
XML-DBMS doesn’t regenerate the SQL scripts from the modified map 
document.

Currently, XML-DBMS doesn’t support creating a map file from a 
database schema. If you are starting with an existing database, you must 
create the map file manually. If you have the XML document, you can 
open it, right-click it and generate the DTD. Then you can use the 
generated DTD to generate the map file and edit it to match the database 
schema.

To create map and SQL script files,

1 Select File|New and click the object gallery’s XML tab.

2 Double-click the XML-DBMS icon to display the XML-DBMS wizard.



U s i n g  J B u i l d e r ’ s  X M L  d a t a b a s e  c o m p o n e n t s 3-5

U s i n g  t h e  m o d e l - b a s e d  c o m p o n e n t s

The first page of the XML-DBMS wizard lets you specify the JDBC 
connection to the database that contains the data you want to use to 
create an XML document. It contains these fields:

If you already have one or more connections defined within JBuilder to 
data sources, click the Choose Existing Connection button and select 
the connection you want. Most of the connection parameters are then 
filled in automatically for you.

To test to see if your JDBC connection is correct, click the Test 
Connection button. The customizer reports if the connection succeeds 
or fails. After you’ve tested the JDBC connection, you can choose Save 
Connection Info to save a new connection for future use.

3 Click Next once you’ve verified the connection.

• Driver Specify the JDBC driver to use from the drop-down 
list. Those drivers displayed in black are drivers you 
have installed. Drivers shown in red are not available 
on your system.

• URL Specify the URL to the data source that contains the 
information you want to use to create an XML 
document. When you click in the field, it displays the 
pattern you must use to specify the URL depending 
on your choice of JDBC driver.

• User Name Enter the user name for the data source, if one is 
required.

• Password Enter the data source password, if one is required.

• Extended 
Properties

Add any extended properties you need. Click the 
ellipsis (...) button to display the Extended Properties 
dialog box you use to add new properties.



3-6 X M L  D e v e l o p e r ’ s  G u i d e

U s i n g  t h e  m o d e l - b a s e d  c o m p o n e n t s

You use this page to specify the DTD you are using to generate the Map 
file and the SQL script to create the database table. Fill in these fields:

4 Click OK to close the wizard. The wizard generates the map and SQL 
files and adds them to your project.

For example, suppose you have a DTD, request.dtd:

<!ELEMENT request (req_name, parameter*)>
<!ELEMENT parameter (para_name, type, value)>
<!ELEMENT req_name (#PCDATA)>
<!ELEMENT para_name (#PCDATA)>
<!ELEMENT type (#PCDATA)>
<!ELEMENT value (#PCDATA)>

The XML-DBMS wizard would generate this request.map file:

<?xml version='1.0' ?>
<!DOCTYPE XMLToDBMS SYSTEM "xmldbms.dtd" >

<XMLToDBMS Version="1.0">
   <Options>
   </Options>
   <Maps>
      <ClassMap>
         <ElementType Name="request"/>
         <ToRootTable>
            <Table Name="request"/>
            <CandidateKey Generate="Yes">
               <Column Name="requestPK"/>
            </CandidateKey>
         </ToRootTable>
         <PropertyMap>
            <ElementType Name="req_name"/>
            <ToColumn>
               <Column Name="req_name"/>
            </ToColumn>
         </PropertyMap>
         <RelatedClass KeyInParentTable="Candidate">
            <ElementType Name="parameter"/>
            <CandidateKey Generate="Yes">
               <Column Name="requestPK"/>
            </CandidateKey>
            <ForeignKey>
               <Column Name="requestFK"/>
            </ForeignKey>

• DTD File Specify an existing DTD file.

• Output directory Accept the default name or change it as you like.

• MAP File Specify the name of the Map file you want 
generated.

• SQL Script File Specify the name of the SQL script file you want 
generated.



U s i n g  J B u i l d e r ’ s  X M L  d a t a b a s e  c o m p o n e n t s 3-7

U s i n g  t h e  m o d e l - b a s e d  c o m p o n e n t s

         </RelatedClass>
      </ClassMap>
      <ClassMap>
         <ElementType Name="parameter"/>
         <ToClassTable>
            <Table Name="parameter"/>
         </ToClassTable>
         <PropertyMap>
            <ElementType Name="para_name"/>
            <ToColumn>
               <Column Name="para_name"/>
            </ToColumn>
         </PropertyMap>
         <PropertyMap>
            <ElementType Name="type"/>
            <ToColumn>
               <Column Name="type"/>
            </ToColumn>
         </PropertyMap>
         <PropertyMap>
            <ElementType Name="value"/>
            <ToColumn>
               <Column Name="value"/>
            </ToColumn>
         </PropertyMap>
      </ClassMap>
   </Maps>
</XMLToDBMS>

The XML-DBMS wizard would create the following request.sql file:

CREATE TABLE "request" ("req_name" VARCHAR(255), "requestPK" INTEGER);
CREATE TABLE "parameter" ("para_name" VARCHAR(255), "type" VARCHAR(255),
    "requestFK" INTEGER, "value" VARCHAR(255));
CREATE TABLE XMLDBMSKey (HighKey Integer);
INSERT INTO XMLDBMSKey VALUES (0);

Once you have a map file and a SQL script file, you can modify them as 
you wish. For example, while an element name might be “HireDate”, you 
know the column name is actually “Date_Hired”. You can make that 
change by editing the map file directly. Usually the SQL script file is just a 
starting point for creating the type of table you want, so you often need to 
edit it also.

When you have your SQL script file to your liking, execute it to create the 
database tables. A simple way to do this is to copy the SQL statements to 
the Database Pilot and click the Execute button. For information about 
using Database Pilot, see “Database Pilot” in the Database Application 
Developer’s Guide. For specific information about executing SQL 
statements, see “Executing SQL statements” topic in the “Database 
administration tasks” chapter in the Database Application Developer’s Guide.



3-8 X M L  D e v e l o p e r ’ s  G u i d e

U s i n g  t h e  m o d e l - b a s e d  c o m p o n e n t s

Setting properties for the model-based components

When you have the XML file, the map file, and the database tables, you 
are ready to use the model beans to transfer data back and forth between 
the XML file and the table.

There are two ways to set the properties for a model bean:

• Setting properties with the customizer

• Setting properties with the Inspector

Setting properties with the customizer
To display a component’s customizer, right-click the component in the 
structure pane and choose Customizer on the context menu.

This is the customizer for XMLDBMSTable:

Establishing a JDBC Connection
The JDBC Connection page lets you specify the JDBC connection to the 
database that contains the data you want to use to create an XML 
document. It contains these fields:

• Driver Specify the JDBC driver to use from the drop-down list. 
Those drivers displayed in black are drivers you have 
installed. Drivers shown in red are not available on your 
system.

• URL Specify the URL to the data source that contains the 
information you want to use to create an XML 
document. When you click in the field, it displays the 
pattern you must use to specify the URL depending on 
your choice of JDBC driver.



U s i n g  J B u i l d e r ’ s  X M L  d a t a b a s e  c o m p o n e n t s 3-9

U s i n g  t h e  m o d e l - b a s e d  c o m p o n e n t s

If you already have one or more connections defined within JBuilder to 
data sources, click the Choose Existing Connection button and select the 
connection you want. Most of the connection parameters are then filled in 
automatically for you.

To test to see if your JDBC connection is correct, click the Test Connection 
button. The customizer reports whether the connection was successful or 
failed. After you’ve tested the JDBC connection, you can choose Save 
Connection Info to save a new connection for future use.

Once you have a successful connection, click the Transfer tab.

Transferring data
Use the Transfer page of the wizard to specify whether you are 
transferring data from an XML document to the database or from the 
database to an XML document, and to fill in the required information to 
make the transfer possible.

To transfer data from an XML file to the database file, follow these steps:

1 Edit the XML file so that it contains the values you want transferred to 
the database table.

2 Fill in the Input XML File field with the name of the XML file that 
contains the information you are transferring to the database on the 
Transfer page of the XMLDBMSTable customizer.

• User Name Enter the user name for the data source, if one is 
required.

• Password Enter the data source password, if one is required.

• Extended 
Properties

Add any extended properties you need. Click the 
ellipsis (...) button to display the Extended Properties 
dialog box where you can add new properties.



3-10 X M L  D e v e l o p e r ’ s  G u i d e

U s i n g  t h e  m o d e l - b a s e d  c o m p o n e n t s

3 Specify the map file you created as the value of the Map File field.

The remaining two fields are disabled for this type of transfer.

4 Click the Transfer button.

To view the results of the Transfer, use Tools|Database Pilot to open the 
table and view the contents.

To transfer data from the database to the XML file, follow these steps:

1 Click the DB To XML radio button.

2 Fill in the Output XML File field with the name of the XML file that will 
receive the transferred data from the database.

3 Specify the map file you created as the value of the MAP File field.

4 Specify the name of the table you are transferring from as the value of 
the Table Name field.

5 Specify the value(s) of the primary key to identify the record(s) to be 
transferred. For example, if the primary key is EMP_NO and you want 
to transfer the data from the row where the EMP_NO equals 5, specify 
the Key Value as 5. To determine the key, look in your map file. You’ll 
see it defined as the “CandidateKey” under the <RootTable> node for 
the given table.

6 Choose Transfer.

To view the results of the transfer, choose View DOM to see the structure 
of the XML file after the transfer:



U s i n g  J B u i l d e r ’ s  X M L  d a t a b a s e  c o m p o n e n t s 3-11

U s i n g  t h e  t e m p l a t e - b a s e d  c o m p o n e n t s

The Transfer page differs for an XMLDBMSQuery:

The XMLDBMSQuery allows you to specify a SQL query to transfer data from 
the database to the XML document.

To transfer data from the database to the XML file:

1 Specify the name of the Output XML File.

2 Specify the name of the Map File.

3 Enter your SQL statement in the SQL field.

4 Choose Transfer.

View the results of the transfer by choosing View DOM.

Setting properties with the Inspector
You can also set the properties of the model-based beans in the designer’s 
Inspector. To open the Inspector,

1 Choose the Design tab in the content pane. The Inspector displays to 
the right of the designer.

2 Click the field to the right of a property and enter the appropriate 
information.

To see a tutorial that shows you how to use the XMLDBMSTable and 
XMLDBMSQuery components, see Chapter 9, “Tutorial: Transferring data with 
the model-based XML database components.”

Using the template-based components
The two template-based components are XTable and XQuery, the first and 
second XML components on the XML page of the JBuilder component 
palette.



3-12 X M L  D e v e l o p e r ’ s  G u i d e

U s i n g  t h e  t e m p l a t e - b a s e d  c o m p o n e n t s

To see a tutorial about using the template-based XML components, see 
Chapter 10, “Tutorial: Transferring data with the template-based XML 
database components.”

To begin working with these components, select either of them on the 
XML page of the component palette and drop it in the UI designer or in 
the structure pane to add the component to your application.

Setting properties for the template beans

There are three ways to set the properties of the two template-based 
components:

• Setting properties with the customizer

• Setting properties with the Inspector

• Setting properties with an XML query document

Setting properties with the customizer
Each XML database component has its own customizer. Using a 
component’s customizer is the easiest way to set the component’s 
properties. You can even test your JDBC connection, perform the transfer 
to view the generated document, and see the Document Object Model 
(DOM).

To display a component’s customizer, right-click the component in the 
structure pane and choose Customizer on the context menu.

For example, this is the customizer for XTable:



U s i n g  J B u i l d e r ’ s  X M L  d a t a b a s e  c o m p o n e n t s 3-13

U s i n g  t h e  t e m p l a t e - b a s e d  c o m p o n e n t s

Establishing a JDBC Connection
The JDBC Connection page lets you specify the JDBC connection to the 
database that contains the data you want to use to create an XML 
document. It contains these fields:

If you already have one or more connections defined within JBuilder to 
data sources, click the Choose Existing Connection button and select the 
connection you want. Most of the connection parameters are then filled in 
automatically for you.

To test to see if your JDBC connection is correct, click the Test Connection 
button. The customizer reports whether the connection was successful or 
failed. After you’ve tested the JDBC connection, you can choose Save 
Connection Info to save a new connection for future use.

Once you have a successful connection, click the Transfer tab.

• Driver Specify the JDBC driver to use from the drop-down list. 
Those drivers displayed in black are drivers you have 
installed. Drivers shown in red are not available on your 
system.

• URL Specify the URL to the data source that contains the 
information you want to use to create an XML document. 
When you click in the field, it displays the pattern you 
must use to specify the URL depending on your choice of 
JDBC driver.

• User Name Enter the user name for the data source, if any.

• Password Enter the data source password, if one is required.

• Extended 
Properties

Add any extended properties you need. Click the ellipsis 
(...) button to display the Extended Properties dialog box 
where you can add new properties.



3-14 X M L  D e v e l o p e r ’ s  G u i d e

U s i n g  t h e  t e m p l a t e - b a s e d  c o m p o n e n t s

Transferring data
The Transfer page contains the following fields:

• Query File Specify an XML query document (optional). If you use 
an XML query document, you won’t be filling in any 
of the other fields in the customizer except the Output 
File name and optionally the XSL File’s name as the 
query document will specify your property settings. 
For more information about creating and using an 
XML query document, see “Setting properties with an 
XML query document” on page 3-19.

• Output File Specify the name of the XML or HTML file you want 
to generate.

• XSL File Specify the name of the XSL stylesheet file you want 
used to transform the output file, if any. If no file is 
specified, a default stylesheet is generated and placed 
in the same directory as the output file. The name of 
the XSL file generated is JBuilderDefault.xsl. The XSL 
file can be copied and then modified to create a more 
custom presentation. If you want to edit the XSL file, 
make sure the XSL File name property is set to point 
to the modified file. Note that JBuilder won’t override 
a previously existing default stylesheet.

• Column Format Specify whether you want the columns of the data 
source to appear as elements or as attributes in the 
generated XML file.

• Output Format Specify whether you want the generated file to be in 
XML or HTML format.

• Element Names Specify a name for the Document element and another 
for the Row element.

• Ignore Nulls Check this check box if you want nulls to be ignored 
in your XML output. If this check box remains 
unchecked, “null” will be used as a placeholder.



U s i n g  J B u i l d e r ’ s  X M L  d a t a b a s e  c o m p o n e n t s 3-15

U s i n g  t h e  t e m p l a t e - b a s e d  c o m p o n e n t s

• Table Name Specify the name of the table that contains the data 
you are interested in. Place double quotation marks 
around the name; for example, “XmlEmployee”.

• Keys Specify the key(s) that identifies the row(s) in the table 
you want to become part of the generated XML 
document. To specify a key, click the ellipsis (...) 
button next to the Keys field to open the Keys Editor. 
Click the Add button to add an item to the array. 
Change the name of the added item to a column in the 
table, placing double quotation marks around the 
name. Continue adding keys until you’ve added all 
the keys you want. If you specify a table name but 
don’t specify any keys, all the rows of the table will be 
returned.

• DefaultParams Use this field to specify name/value pairs for the 
names entered in the Keys field. If you specified a 
value for the Keys field, you must specify a default 
parameter for the column or columns specified as 
keys. Click the ellipsis (...) button next to the 
DefaultParams field to add any default parameters to 
your query. In the Default Params dialog box, click 
the Add button to add a default parameter. In the new 
blank line that is added, specify the name of the 
parameter in the Param Name field, and the value of 
the parameter in the Param Value field. For example, 
if you want to see the record of employee number 5, 
you would specify “EMP_NO” as the Param Name 
and specify the value ‘5’ in the EMP_NO column. 
Remember to put single quotes around any string 
values. For more information about adding default 
parameters, see “Specifying parameters” on 
page 3-17.



3-16 X M L  D e v e l o p e r ’ s  G u i d e

U s i n g  t h e  t e m p l a t e - b a s e d  c o m p o n e n t s

The customizer for the XQuery looks very similar. Like XTable, it has a JDBC 
Connection page:

Fill in this page as you would for XTable and test your connection. Choose 
Save Connection Info to save the connection.

The Transfer page of the customizer for XQuery differs from that of XTable in 
that it has a SQL field that replaces the Table Name and Keys fields:

In the SQL field, you can specify any SQL statement. If your SQL 
statement is a parameterized query, you must specify a default parameter 
for each parameterized variable.



U s i n g  J B u i l d e r ’ s  X M L  d a t a b a s e  c o m p o n e n t s 3-17

U s i n g  t h e  t e m p l a t e - b a s e d  c o m p o n e n t s

Specifying parameters
If the query you are using is a parameterized query, you must specify a 
value for the default parameter before generating the XML or HTML file. 
Default parameters are passed using the setDefaultParams() method. You 
can override the default parameter value with another parameter value if 
you add the setParams() method to your code.

To see how to use parameters and default parameters, look at a sample 
query:

Select emp_name from employee where emp_no = :emp_no

Let’s say the table Employee contains the following entries:

There are two ways to provide the parameter :emp_no:

• Use a default parameter specified at design time in the customizer. 
Default parameters are passed in the setDefaultParams() method.

• Override the default parameter at runtime by adding the setParams() 
method to your code and passing a different parameter.

Here are the possibilities:

• No parameters of any kind are specified. The result: the query returns 
an error.

• defaultParams set to :emp_no = 1. The result: the query returns Tom.

• defaultParams set to :emp_no = 1 and a setParams() method used at 
runtime passing the argument, 

:emp_no = 2. The result: the query returns Dick.

For example, your code at runtime might look like this:

xTable.setParams(XData.convertToHashMap (new String [][] {
    {"\"EmpNo\"","\'2\'"},}));

In other words, if a parameter is specified using the setParams() method at 
runtime, it overrides the default parameter value set at design time. The 
parameter names are case-sensitive.

Table 3.1 Employee table

emp_no emp_name

1 Tom

2 Dick



3-18 X M L  D e v e l o p e r ’ s  G u i d e

U s i n g  t h e  t e m p l a t e - b a s e d  c o m p o n e n t s

Transferring to XML or HTML
To see what the results of your property settings will be, click the Transfer 
button. If you choose to create an XML file, you can click the View button 
to see the Document Object Model (DOM):

If you choose to generate an HTML file, you can click the View button to 
view the resulting HTML:



U s i n g  J B u i l d e r ’ s  X M L  d a t a b a s e  c o m p o n e n t s 3-19

U s i n g  t h e  t e m p l a t e - b a s e d  c o m p o n e n t s

Setting properties with the Inspector
You can also set these properties in the designer’s Inspector. To open the 
Inspector,

1 Choose the Design tab in the content pane. The Inspector displays to 
the right of the designer.

2 Click the field to the right of a property and enter the appropriate 
information.

Setting properties with an XML query document
Another way to set the connection and transfer options is through an XML 
query document. You create an XML query document and specify it as the 
value of the Query File field in the component’s customizer or in the 
Inspector.

Note XML element names are case-sensitive.

Here is a sample query document for an XTable:

<Query>
  <Options 
    OutputType=XML" 
    ColumnFormat="AsElements" 
    IgnoreNulls="True" 
    DocumentElement="MyDoc" 
    RowElement="YourRow">

  <Connection 
    Url="jdbc:odbc:foodb" 
    Driver="sun.jdbc.odbc.JdbcOdbcDriver" 
    User="me" 
    Password="ok"
    ExtendedProperties="name=value;name=value...">

  <Params>    
    <Param Name=":Part" Default="'ab-c'">
    <Param Name=":Number" Default="2">
  </Params>

  <table name="LINES">
    <Key Name="Number">
    <Key Name="Part">
  </table>  
</Query>



3-20 X M L  D e v e l o p e r ’ s  G u i d e

U s i n g  t h e  t e m p l a t e - b a s e d  c o m p o n e n t s

The above query should return the following XML document:

<MyDoc>
  <YourRow>
    <col1>some data</col1>
    <col2>some data</col2>
    <Number>2</Number>
    <Part>ab-c</Part>
  </YourRow>
  <YourRow>
    <col1>some other data</col1>
    <col2>some other data</col2>
    <Number>2</Number>
    <Part>ab-c</Part>
  </YourRow>
</MyDoc>

Note If the column format of the query document is “AsAttributes”, then col1, 
col2, Number and Part would be attributes of YourRow.

Here is a sample query document for an XQuery:

<Query>
  <Options 
    OutputType="XML" 
    ColumnFormat="AsElements" 
    IgnoreNulls="True" 
    DocumentElement="MyDoc" 
    RowElement="YourRow">

  <Connection 
    Url="jdbc:odbc:foodb" 
    Driver="sun.jdbc.odbc.JdbcOdbcDriver" 
    User="me" 
    Password="ok"
    ExtendedProperties="name=value;name=value...">

  <Params>    
    <Param Name=":Part" Default="'ab-c'">
    <Param Name=":Number" Default="2">
  </Params>
  
<Sql Value="SELECT * FROM  LINES where Number >= :Number AND Number 
    <= :Number"/> 
 <!--The above should use CDATA section or escape with lt/gt entity 
     references -->
</Query>

To see a tutorial about using the XTable and XQuery components, see 
Chapter 10, “Tutorial: Transferring data with the template-based XML 
database components.”



T u t o r i a l :  C r e a t i n g  a n d  v a l i d a t i n g  X M L  d o c u m e n t s 4-1

C h a p t e r

4
Chapter4Tutorial: Creating and validating

XML documents
This tutorial uses features

in JBuilder SE and
Enterprise

This step-by-step tutorial explains how to use JBuilder’s XML features for 
creating and validating XML documents. A sample is provided in the 
JBuilder samples/tutorials/XML/presentation/ directory. For users with 
read-only access to JBuilder samples, copy the samples directory into a 
directory with read/write permissions. A DTD and stylesheets (XSLs) are 
provided as samples.

This tutorial contains specific examples that show you how to do the 
following:

• Create an XML document manually in the JBuilder editor.

• Create an XML document from an existing DTD using a wizard in 
JBuilder Enterprise.

• Add data to the XML document, such as employee ID, name, office 
location, and so on.

• Validate the XML document against the DTD.

• Locate errors in the XML document.

• View the XML document using the XML viewer and JBuilder’s default 
stylesheet tree view.

This tutorial assumes you have a working knowledge of JBuilder and 
XML. If you are new to JBuilder, see “The JBuilder environment” (Help|
JBuilder Environment). For more information on JBuilder’s XML features, 
see Chapter 1, “Introduction.”

JBuilder Enterprise has additional transformation features for XML 
documents. If you’re a JBuilder Enterprise user, once you’ve completed 



4-2 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  1 :  C r e a t i n g  a n  X M L  d o c u m e n t

this tutorial, you can continue on to Chapter 5, “Tutorial: Transforming 
XML documents” to learn how to transform XML documents in JBuilder.

The Accessibility options section in the JBuilder Quick Tips contains tips 
on using JBuilder features to improve JBuilder’s ease of use for people 
with disabilities.

For information on documentation conventions used in this tutorial and 
other JBuilder documentation, see “Documentation conventions” on 
page 1-3.

Step 1: Creating an XML document
There are several ways to create XML documents in JBuilder. In JBuilder 
SE and Enterprise, you can create XML documents manually in the editor. 
JBuilder Enterprise provides the DTD To XML wizard for quickly creating 
an XML document from an existing Document Type Definition (DTD).

Create the XML document according to your edition of JBuilder:

• JBuilder SE: See “Creating an XML document manually” on page 4-2

• JBuilder Enterprise: See “Creating an XML document with the DTD To 
XML wizard” on page 4-3

Creating an XML document manually
This step is for JBuilder

SE users.
The JBuilder editor provides full support for creating XML-related 
documents. If you name a file with an XML-related extension, such as 
DTD, XSD, XSL, and XML, the editor automatically recognizes it as an 
XML-related document. Several editor features assist you as you work on 
your XML documents: syntax highlighting and error messages.

To create a new XML document in your project,

1 Open Presentation.jpx in the JBuilder samples directory: samples/
Tutorials/XML/presentation/.

2 Choose Project|Add Files/Packages.

3 Choose the Explorer tab, browse to the project directory, samples/
Tutorials/XML/presentation/, and enter MyEmployees.xml in the File Name 
field.

4 Click OK.

5 Click OK again when prompted to create the new file. MyEmployees.xml is 
added to the project and appears in the project pane with the 
appropriate XML icon.

6 Open MyEmployees.xml in the editor.



T u t o r i a l :  C r e a t i n g  a n d  v a l i d a t i n g  X M L  d o c u m e n t s 4-3

S t e p  1 :  C r e a t i n g  a n  X M L  d o c u m e n t

7 Enter the following text manually or copy and paste it into 
MyEmployees.xml:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE XmlEmployees SYSTEM "Employees.dtd">
<XmlEmployees>
    <XmlEmployee>
        <EmpNo>2</EmpNo>
        <FirstName>Robert</FirstName>
        <LastName>Nelson</LastName>
        <PhoneExt>250</PhoneExt>
        <HireDate>1988-12-28</HireDate>
        <DeptNo>600</DeptNo>
        <JobCode>VP</JobCode>
        <JobGrade>2</JobGrade>
        <JobCountry>USA</JobCountry>
        <Salary>105900.000000</Salary> 
        <FullName>Nelson, Robert</FullName>
    </XmlEmployee>
    <XmlEmployee>
        <EmpNo>4</EmpNo>
        <FirstName>Bruce</FirstName>
        <LastName>Young</LastName>
        <PhoneExt>233</PhoneExt>
        <HireDate>1988-12-28</HireDate>
        <DeptNo>621</DeptNo>
        <JobCode>CEO</JobCode>
        <JobGrade>2</JobGrade>
        <JobCountry>Eng</JobCountry>
        <Salary>97500.000000</Salary>
        <FullName>Young, Bruce</FullName>
    </XmlEmployee>
</XmlEmployees>

Notice that the editor uses syntax highlighting to differentiate elements 
and attributes. By default, elements are blue and attributes are red. Also 
note that the DOCTYPE element refers to Employees.dtd. MyEmployees.xml is 
based on this DTD and can be validated against it. Open the DTD to see 
what elements the XML document must contain to be valid.

8 Save the project.

In the next step, you’ll validate the document against the DTD. Continue 
to the next step, “Step 2: Validating the XML document” on page 4-6.

Creating an XML document with the DTD To XML wizard
This step is for JBuilder

Enterprise users.
JBuilder Enterprise provides the DTD To XML wizard for generating XML 
documents from an existing DTD. You’ll use Employees.dtd to create a 
document called MyEmployees.xml. Then you’ll edit the generated code with 
actual data.



4-4 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  1 :  C r e a t i n g  a n  X M L  d o c u m e n t

1 Open Presentation.jpx in the JBuilder samples directory: samples/
Tutorials/XML/presentation/.

2 Select Employees.dtd in the project pane, right-click, and choose Generate 
XML to open the DTD To XML wizard. Selecting the DTD file 
automatically fills out the Input DTD File field in the wizard. You can 
also open the wizard from the object gallery (File|New|XML).

3 Click the drop-down arrow next to the Root Element field to display 
the list of elements and choose XmlEmployees. Be careful not to choose 
XmlEmployee as it is not the root element. The root element, the first 
element in the document, contains all the other elements. If you open 
the DTD, you’ll see that the root element is defined as containing all the 
other elements:

<!ELEMENT XmlEmployees (XmlEmployee+)>
<!ELEMENT XmlEmployee (EmpNo, FirstName, LastName, PhoneExt, HireDate, 
DeptNo, JobCode, JobGrade, JobCountry, Salary, FullName)>

4 Press the ellipsis (...) button next to the Output XML File field and 
rename the default XML file name to MyEmployees.xml in the File Name 
field.

5 Choose OK to close the dialog box.

6 Enter the name of the DTD file in the System field: Employees.dtd. This 
generates the DOCTYPE declaration, which tells the XML document that a 
DTD is being used:

<!DOCTYPE XmlEmployees SYSTEM "Employees.dtd">

The DTD To XML wizard should look like this:

7 Click OK to close the wizard.

8 Save the project.



T u t o r i a l :  C r e a t i n g  a n d  v a l i d a t i n g  X M L  d o c u m e n t s 4-5

S t e p  1 :  C r e a t i n g  a n  X M L  d o c u m e n t

The DTD To XML wizard generates an XML document called 
MyEmployees.xml from the DTD. The XML document is open in the editor 
and is added to the project. Notice that the editor uses syntax highlighting 
to differentiate elements and attributes. By default, elements are blue and 
attributes are red.

The DTD To XML wizard generates placeholder text, pcdata, for each 
element in the DTD. For example, <EmpNo>pcdata</EmpNo>. This text needs to 
be replaced with actual data. Also, note that Employees.dtd, which you 
entered in the SYSTEM identifier field in the DTD To XML wizard, has 
been entered in the DOCTYPE declaration.

Next, you’ll replace the pcdata with actual data.

1 Create a second employee record by copying the <XmlEmployee> </
XmlEmployee> tags and their contents.

2 Paste the copy below the first record.

3 Replace each pcdata placeholder with the data shown here:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE XmlEmployees SYSTEM "Employees.dtd">
<XmlEmployees>
    <XmlEmployee>
        <EmpNo>2</EmpNo>
        <FirstName>Robert</FirstName>
        <LastName>Nelson</LastName>
        <PhoneExt>250</PhoneExt>
        <HireDate>1988-12-28</HireDate>
        <DeptNo>600</DeptNo>
        <JobCode>VP</JobCode>
        <JobGrade>2</JobGrade>
        <JobCountry>USA</JobCountry>
        <Salary>105900.000000</Salary> 
        <FullName>Nelson, Robert</FullName>
    </XmlEmployee>
    <XmlEmployee>
        <EmpNo>4</EmpNo>
        <FirstName>Bruce</FirstName>
        <LastName>Young</LastName>
        <PhoneExt>233</PhoneExt>
        <HireDate>1988-12-28</HireDate>
        <DeptNo>621</DeptNo>
        <JobCode>CEO</JobCode>
        <JobGrade>2</JobGrade>
        <JobCountry>Eng</JobCountry>
        <Salary>97500.000000</Salary>
        <FullName>Young, Bruce</FullName>
    </XmlEmployee>
</XmlEmployees>

4 Save the project.

In the next step, you’ll validate the document against the DTD. 



4-6 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  2 :  V a l i d a t i n g  t h e  X M L  d o c u m e n t

Step 2: Validating the XML document
In XML, there are two types of validation: well-formedness and grammatical 
validity. A well-formed document must follow the XML rules for the 
physical document structure and syntax. For example, all XML 
documents must have a single root element, the first element in the 
document that contains all the other elements. A well-formed document is 
not checked against an external DTD.

A valid XML document is a well-formed document that also conforms to 
the stricter rules specified in the Document Type Definition (DTD). The 
DTD describes a document’s structure, specifies which element types are 
allowed, and defines the properties for each element. If a DTD is not 
present, an XML document is not valid.

JBuilder performs both types of validation. If a document is not well-
formed, errors are displayed in an Errors folder in the structure pane. If a 
document isn’t grammatically valid, errors are displayed in the message 
pane.

The document you created in the previous step is well-formed because the 
Errors folder does not appear in the structure pane. If you remove the root 
element, which is required for a well-formed XML document, the Errors 
folder appears in the structure pane.

Now, introduce an error in this well-formed document to see how 
JBuilder displays errors.

1 Select the root element, <XmlEmployees>, in the editor and cut it from the 
document. In a well-formed document, all elements must have start 
and end tags, so this should display as an error. Note that an Errors 
folder displays in the structure pane.

2 Open the Errors folder and select the error to highlight it in the code. 
Double-click the error to change the focus to the line of code in the 
editor. The line of code indicated by the error message may not be the 
origin of the error. In this example, the error occurs because the start 
tag for the root element is missing.

3 Re-enter the root element in the XML document. Notice that the Errors 
folder disappears. The document is now well-formed again.

Next, check if your document is grammatically valid compared to the 
DTD.

1 Right-click MyEmployees.xml in the project pane and choose Validate. A 
message displays in a Success dialog box indicating that the document 
is valid.



T u t o r i a l :  C r e a t i n g  a n d  v a l i d a t i n g  X M L  d o c u m e n t s 4-7

S t e p  3 :  V i e w i n g  t h e  X M L  d o c u m e n t

2 Introduce a validation error by selecting the DOCTYPE declaration and 
cutting it from the document:

<!DOCTYPE XmlEmployees SYSTEM "Employees.dtd">

3 Validate the document again. The XML Validation Trace page displays 
in the message pane with an ERROR node.

4 Expand the ERROR node in the message pane to display the error:

MYEMPLOYEES.XML is invalid
   ERROR
      There is no DTD or Schema present in this document

5 Re-enter or paste the DOCTYPE declaration into the document.

6 Introduce another error by changing the casing of ‘N’ in <FirstName> to 
‘n’: <Firstname>.

7 Right-click the XML file and choose Validate. Notice the error 
messages:

MYEMPLOYEES.XML is invalid
   ERROR
      Element type "Firstname" must be declared.
   FATAL_ERROR
      The element type "Firstname" must be terminated by the matching 
          end-tag "</Firstname>".

There are two errors here: the element Firstname is not declared in the 
DTD and it doesn’t have a closing tag.

8 Change <Firstname> back to <FirstName>.

9 Right-click the XML file and choose Validate. Now your document is 
valid again.

Step 3: Viewing the XML document
You can view XML documents with JBuilder’s default stylesheet in the 
XML viewer. This stylesheet is written in Extensible Style Language 
Transformations (XSLT) and displays documents in a collapsible tree view 
on the View tab of the content pane. To view an XML document in the 
XML viewer, you must first enable the XML viewer. Once you’ve done 
this, a View tab displays at the bottom of the content pane.

In this step, you’ll enable the XML viewer and then view the XML 
document without the default JBuilder stylesheet and then with the 
stylesheet. First, you need to enable the XML viewer.

1 Choose Tools|IDE Options, choose the XML page, and set the Enable 
Browser View option. This enables the XML viewer on the View tab. 
Note that the Apply Default Stylesheet option is set by default. The 
default stylesheet displays XML documents in a collapsible tree view.



4-8 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  3 :  V i e w i n g  t h e  X M L  d o c u m e n t

2 Click OK to close the IDE Options dialog box. The View tab displays 
MyEmployees.xml in the XML viewer with the default stylesheet applied. 
Click the plus (+) and minus (-) symbols to expand and collapse the 
tree.

Next, view the XML document without a stylesheet as follows:

1 Uncheck the Apply Default Stylesheet option on the XML page of the 
IDE Options dialog box (Tools|IDE Options) to disable the stylesheet.

2 Click OK to close the dialog box. If you don’t see any change, choose 
the Source tab and then the View tab to refresh the view. Note that the 
document now displays without any style, in one continuous line.

Congratulations, you’ve completed the tutorial. You’ve created an XML 
document, edited the XML document, validated the document, and 
enabled the XML viewer to view it in JBuilder.

JBuilder Enterprise also provides additional transformation features. To 
learn more about these features, see Chapter 5, “Tutorial: Transforming 
XML documents.” For more XML tutorials, see “Tutorials” on page iv.



T u t o r i a l :  T r a n s f o r m i n g  X M L  d o c u m e n t s 5-1

C h a p t e r

5
Chapter5Tutorial: Transforming XML

documents
This tutorial uses features

in JBuilder Enterprise
This step-by-step tutorial explains how to use JBuilder’s XML features for 
transforming an XML document. A sample is provided in the JBuilder 
samples/tutorials/XML/presentation/ directory. For users with read-only 
access to JBuilder samples, copy the samples directory into a directory 
with read/write permissions. A DTD and stylesheets (XSLs) are provided 
as samples.

Before beginning this tutorial, you must first create the XML document as 
explained in “Step 1: Creating an XML document” on page 4-2.

This tutorial contains specific examples that show you how to do the 
following:

• Enable the XML viewer.

• Associate stylesheets with the XML document.

• Transform the XML document by applying several stylesheets.

• Set transform trace options.

This tutorial assumes you have a working knowledge of JBuilder and 
XML. If you are new to JBuilder, see “The JBuilder environment” (Help|
JBuilder Environment). For more information on JBuilder’s XML features, 
see Chapter 1, “Introduction.”

The Accessibility options section in the JBuilder Quick Tips contains tips 
on using JBuilder features to improve JBuilder’s ease of use for people 
with disabilities.

For information on documentation conventions used in this tutorial and 
other JBuilder documentation, see “Documentation conventions” on 
page 1-3.



5-2 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  1 :  E n a b l i n g  t h e  X M L  v i e w e r

Step 1: Enabling the XML viewer
You can view XML documents in JBuilder with a user-defined stylesheet, 
JBuilder’s default stylesheet, or without a stylesheet. By default, JBuilder’s 
XML viewer displays XML documents using a default stylesheet written 
in Extensible Style Language Transformations (XSLT), which displays 
XML in a collapsible tree view. Once you enable the XML viewer, a View 
tab displays at the bottom of the content pane.

In this step, you’ll enable the XML viewer to view it with the default 
JBuilder stylesheet.

1 Create the XML document, MyEmployees.xml, as described in “Step 1: 
Creating an XML document” on page 4-2.

2 Open MyEmployees.xml in the editor.

3 Enable the XML viewer as follows:

a Choose Tools|IDE Options, choose the XML page, and set the 
Enable Browser View option. This enables the XML viewer on the 
View tab. Note that the Apply Default Stylesheet option is set by 
default. The default stylesheet displays XML documents in a 
collapsible tree view.

b Click OK to close the IDE Options dialog box.

Notice that MyEmployees.xml now displays in the XML viewer with the 
default stylesheet applied. Click the plus (+) and minus (-) symbols 
to expand and collapse the tree.



T u t o r i a l :  T r a n s f o r m i n g  X M L  d o c u m e n t s 5-3

S t e p  2 :  A s s o c i a t i n g  s t y l e s h e e t s  w i t h  t h e  d o c u m e n t

Step 2: Associating stylesheets with the document
In addition to viewing documents in a tree view, you can also apply 
custom stylesheets to the XML document. This process of converting an 
XML document to any other kind of document is called XML 
transformation.

To apply custom stylesheets in JBuilder, you need to associate the 
stylesheet with the document. Alternately, you could include an XSLT 
processing instruction in your XML document that references the 
stylesheets.

Next, associate stylesheets with your document as follows:

1 Choose the Transform View tab. Notice that a message indicates that a 
stylesheet is not associated with the document.

2 Click the Add Stylesheets button on the transform view toolbar to open 
the Configure Node Stylesheets dialog box.

3 Click the Add button in the dialog box and open the samples/Tutorials/
XML/presentation/xsls directory where the stylesheets are located. Select 
EmployeesListView.xsl and click OK.

4 Click the Add button again to add the second stylesheet, 
EmployeesTableView.xsl. The XSL stylesheets are now associated with the 
document. Click OK to close the dialog box.

Note You can also add stylesheets in the Properties dialog box. Right-click 
the XML document in the project pane and choose Properties.

Step 3: Transforming the document using stylesheets
Now that the stylesheets are linked to the XML document, you can 
transform the document using several different stylesheets. The 
associated stylesheets are now available from the stylesheet drop-down 
list on the transform view toolbar.

Notice that MyEmployees.xml is displayed in the default tree view. By 
default, transform view uses the default stylesheet to display the 
document if a stylesheet is not available. Turn this view off, then apply the 
stylesheet.

1 Click the enabled Default Stylesheet button to turn off the tree view.

2 Choose EmployeesListView.xsl from the stylesheet drop-down list. The 
transform view now displays the transformed document as a list, as 
determined by the applied stylesheet. The Transform View Source tab 



5-4 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  4 :  S e t t i n g  t r a n s f o r m  t r a c e  o p t i o n s

displays the source code for the transformed document. Your XML 
document should look something like this:

3 Apply the second stylesheet by choosing EmployeesTableView.xsl from 
the drop-down list and look at the resulting transformation to a table in 
the transform view.

Step 4: Setting transform trace options
You can set Transform Trace options so that when a transformation 
occurs, you can follow the flow as the stylesheet is applied. These options 
include Generation, Templates, Elements, and Selections. The traces 
appear in the message pane. Click a trace to highlight the corresponding 
source code. Double-click a trace to change the focus to the source code in 
the editor so you can begin editing.

To set the Trace options,

1 Click the Set Trace Options button on the transform view toolbar or 
choose Tools|IDE Options and click the XML tab.



T u t o r i a l :  T r a n s f o r m i n g  X M L  d o c u m e n t s 5-5

S t e p  4 :  S e t t i n g  t r a n s f o r m  t r a c e  o p t i o n s

2 Select all the trace options and choose OK.

Now, transform MyEmployees.xml by applying EmployeesListView.xsl and 
notice what happens in the message pane.

1 Choose EmployeesListView.xsl from the stylesheet drop-down list. Note 
that when the transformation occurs the message pane opens and four 
nodes appear: generation, templates, elements, selections.

• generation: outputs information after each result tree generation 
event, such as start document, start element, characters, and so on.

• templates: outputs an event when a template is invoked.

• elements: outputs events that occur as each node is executed in the 
stylesheet.

• selections: outputs information after each selection event.

2 Expand each node to view the flow of the document’s transformation.

Congratulations, you’ve completed the tutorial. You’ve enabled the XML 
viewer, associated stylesheets with the document, transformed the 
document with stylesheets, and set transform trace options.

For more XML tutorials, see “Tutorials” on page iv.



5-6 X M L  D e v e l o p e r ’ s  G u i d e



T u t o r i a l :  C r e a t i n g  a  S A X  H a n d l e r  f o r  p a r s i n g  X M L  d o c u m e n t s 6-1

C h a p t e r

6
Chapter6Tutorial: Creating a SAX Handler

for parsing XML documents
This tutorial uses features

in JBuilder Enterprise
This step-by-step tutorial explains how to use JBuilder’s SAX Handler 
wizard to create a SAX parser for parsing your XML documents. Samples 
are provided in the JBuilder samples/Tutorials/XML/saxparser/ directory. 
For users with read-only access to JBuilder samples, copy the samples 
directory into a directory with read/write permissions. This tutorial uses 
a sample XML document that contains employee data, such as employee 
number, first name, last name, and so on.

There are two types of XML APIs: tree-based APIs and event-based APIs. 
SAX, the Simple API for XML, is a standard interface for event-based XML 
parsing. It reports parsing events directly to the application through 
callbacks. The application implements handlers to deal with the different 
events, similar to event handling in a graphical user interface.

JBuilder makes it easy to use SAX to manipulate your XML 
programmatically. The SAX Handler wizard creates a SAX parser 
implementation template that includes just the methods you want to 
implement to parse your XML.

This tutorial contains specific examples that show you how to do the 
following:

• Create a SAX parser with the SAX Handler wizard.

• Edit the SAX parser code to customize the parsing.

• Run the program and view the parsing results.

• Add attributes to the XML document, add code to handle the attributes, 
and parse the document again.



6-2 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  1 :  U s i n g  t h e  S A X  H a n d l e r  w i z a r d

To view source code for MySaxParser.java, see “MySaxParser.java source 
code” on page 6-10.

This tutorial assumes you have a working knowledge of JBuilder and 
XML. If you are new to JBuilder, see “The JBuilder environment.” For 
more information on JBuilder’s XML features, see Chapter 1, 
“Introduction.”

See also

• SAX (Simple API for XML) at http://www.saxproject.org/

• The SAX packages: org.xml.sax, org.xml.sax.ext, and org.xml.sax.helpers 
in the Java API Specification (Help|Java Reference)

• Xerces documentation and samples available in the extras directory of 
the JBuilder full installation

• Xerces at the Apache web site at http://xml.apache.org/

The Accessibility options section in the JBuilder Quick Tips contains tips 
on using JBuilder features to improve JBuilder’s ease of use for people 
with disabilities.

For information on documentation conventions used in this tutorial and 
other JBuilder documentation, see “Documentation conventions” on 
page 1-3.

Step 1: Using the SAX Handler wizard
JBuilder’s SAX Handler wizard helps you create a SAX parser for custom 
parsing of your XML documents using the Xerces parsing engine.

To create the SAX parser using the SAX Handler wizard,

1 Open the project file, SAXParser.jpx, located in samples/Tutorials/XML/
saxparser/ in the JBuilder directory.

2 Open Employees.xml and review the data in the XML document. Notice 
that there are three employees and that each employee record contains 
such data as employee number, first name, last name, and full name.

3 Choose File|New or click the New button on the main toolbar to open 
the object gallery.

4 Choose the XML tab and double-click the SAX Handler icon to open the 
wizard.

5 Make the following changes to the package and class names:

• Package: com.borland.samples.xml.saxparser

• Class Name: MySaxParser



T u t o r i a l :  C r e a t i n g  a  S A X  H a n d l e r  f o r  p a r s i n g  X M L  d o c u m e n t s 6-3

S t e p  1 :  U s i n g  t h e  S A X  H a n d l e r  w i z a r d

6 Check ContentHandler as an interface to override and expand the 
ContentHandler node. Check these five options to create methods for 
them: characters, endDocument, endElement, startDocument, and startElement. 

Step 1 should look like this:

7 Choose Next to go to Step 2 which lists the available parsers and parser 
options. For this tutorial, you’ll accept the default Xerces parser, and 
you won’t select any of the parser options. For information on the 
options, choose the Help button in the wizard. 

Step 2 looks like this:



6-4 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  2 :  E d i t i n g  t h e  S A X  p a r s e r

8 Click Next to go to the last page of the wizard. This page creates the run 
configuration for the SAX handler. The project already has a run 
configuration, so you don’t need to create another one.

9 Choose Finish to close the wizard.

The wizard generates a parser file called MySaxParser.java, adds it to the 
project, and opens it in the editor. Take a moment to look at this file and 
notice that the wizard generated empty methods that you need to 
complete.

Tip To browse any of the imported classes in this file, open the Imports folder 
in the structure pane. Double-click a package to open the Browse Import 
Symbol dialog box and browse to the class you want to view. Choose the 
Doc tab in the content pane to view any available documentation.

Step 2: Editing the SAX parser
The wizard generates empty methods that you need to implement. Notice 
that the structure of MySaxParser.java is visible in the structure pane to the 
left of the editor and that the To Do folder contains five methods that need 



T u t o r i a l :  C r e a t i n g  a  S A X  H a n d l e r  f o r  p a r s i n g  X M L  d o c u m e n t s 6-5

S t e p  2 :  E d i t i n g  t h e  S A X  p a r s e r

to be implemented: characters(), endDocument(), endElement(), 
startDocument(), and startElement().

Look at the main() method’s try block generated by the wizard:

try {
      SAXParserFactory parserFactory = SAXParserFactory.newInstance();
      parserFactory.setValidating(false);
      parserFactory.setNamespaceAware(false);
      MySaxParser MySaxParserInstance = new MySaxParser();
      SAXParser parser = parserFactory.newSAXParser();
      parser.parse(uri, MySaxParserInstance);
    }

This code block instantiates a parser, then passes the XML file specified in 
the Uniform Resource Identifier (URI) to the parser to parse. You’ll specify 
the XML file on the Run page of Project Properties later in the tutorial.

Start by adding print statements to the startDocument() and endDocument() 
methods that print beginning and ending parsing messages to the screen.

1 Add a print statement to the startDocument() method:

System.out.println("PARSING begins...");

Tip Double-click a method in the structure pane or in the To Do folder to 
move the cursor to that method in the editor.

2 Add a print statement to the endDocument() method:

System.out.println("...PARSING ends");

3 Remove the throw statements and the @todo comments in the methods as 
these won’t be needed.

4 Create a variable for indenting the parsed output and declare it just 
before the characters() method:

private int idx = 0; //indent
public void characters(char[] ch, int start, int length) throws 
    SAXException {



6-6 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  2 :  E d i t i n g  t h e  S A X  p a r s e r

5 Create a constant INDENT with a value of 2 just before the main() method.

private static int INDENT = 2;

public static void main(String[] argv) {

6 Create a getIndent() method at the end of the MySaxParser class after the 
startElement() method. This method provides indentation for the 
parsing output to make it easier to read.

private String getIndent() {
  StringBuffer sb = new StringBuffer();
  for (int i = 0; i < idx; i++)
    sb.append(" ");
  return sb.toString();
}

7 Add the following code indicated in bold to each of the methods to add 
indenting to the output:

public void characters(char[] ch, int start, int length) 
    throws SAXException {
  //instantiates s, indents output, prints character values in element
  String s = new String(ch, start, length);
  if (!s.startsWith("\n"))
    System.out.println(getIndent()+ " Value: " + s);
}
public void endDocument() throws SAXException {
  idx -= INDENT;
  System.out.println(getIndent() + "end document");
  System.out.println("...PARSING ends");
}
public void endElement(String uri, String localName, String qName) 
    throws SAXException {
  System.out.println(getIndent() + "end element");
  idx -= INDENT;
}
public void startDocument() throws SAXException {
  idx += INDENT;
  System.out.println("PARSING begins...");
  System.out.println(getIndent() + "start document: ");
}
public void startElement(String uri, String localName, String qName, 
    Attributes attributes) throws SAXException {
  idx += INDENT;
  System.out.println('\n' + getIndent() + "start element: " + qName);

}

Tip You can use Find Definition in the editor to browse classes, interfaces, 
events, methods, properties, and identifiers to learn more about them. 
Position the cursor in one of these names, right-click, and choose Find 
Definition. For a class to be found automatically, it must be on the 
import path. Results are displayed in the content pane of the 



T u t o r i a l :  C r e a t i n g  a  S A X  H a n d l e r  f o r  p a r s i n g  X M L  d o c u m e n t s 6-7

S t e p  3 :  R u n n i n g  t h e  p r o g r a m

AppBrowser. You can also browse classes in the editor from the Search 
menu (Search|Find Classes).

8 Save the project.

Step 3: Running the program
Before running the program, you need to specify the path to the XML 
document as a runtime parameter so the parser application knows what 
file to parse. You’ll do this in the Runtime Configuration Properties dialog 
box.

1 Choose Run|Configurations to open the Run page of the Project 
Properties dialog box. Here you’ll see the existing project runtime 
configuration called Default SaxParser.

2 Select the Default SaxParser in the list and click Edit to modify the 
application parameter.

3 Modify the JBuilder location in the path to the Employees.xml document 
in the Application Parameters field. For example,

file:///C:\jbuilder8\samples\Tutorials\XML\saxparser\Employees.xml

4 Choose OK twice to close the dialog boxes.



6-8 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  4 :  A d d i n g  a t t r i b u t e s

5 Right-click MySaxParser.java in the project pane and choose Run Using 
“Default SaxParser”.

The message pane opens and displays the parsing output:

Step 4: Adding attributes
Next, add attributes to the XML document. Attributes are used to further 
define elements. Then you need to add code to the parser so it can handle 
the attributes.

1 Switch to Employees.xml in the editor.

2 Add an attribute to the first EmpNo element in Employees.xml:

<EmpNo att1="a" att2="b">2</EmpNo>

3 Add attributes to the first FirstName element in the XML document:

<FirstName z="z1" d="d1" k="k1">Robert</FirstName>

4 Switch to MySaxParser.java in the editor.

5 Add the attList variable just above the main() method:

public class MySaxParser extends DefaultHandler {

  private static int INDENT = 2;
  private static String attList = "" ;
  public static void main(String[] argv) {



T u t o r i a l :  C r e a t i n g  a  S A X  H a n d l e r  f o r  p a r s i n g  X M L  d o c u m e n t s 6-9

S t e p  4 :  A d d i n g  a t t r i b u t e s

6 Add the following code to the startElement() method to handle the 
attribute:

public void startElement(String uri, String localName, String qName, 
    Attributes attributes) throws SAXException {
  idx += INDENT;
  System.out.println('\n'+ getIndent() + "start element: " + 
      qName);
  if (attributes.getLength()> 0) {
    idx += INDENT;
    for (int i = 0; i < attributes.getLength(); i++){
      attList = attList + attributes.getQName(i) + " = " + 
          attributes.getValue(i);
      if (i < (attributes.getLength() - 1))
        attList = attList + ", ";
    }
    idx -= INDENT;
  }
}

7 Add the following code to the endElement() method:

public void endElement(String uri, String localName, String qName) 
    throws SAXException {
  if (!attList.equals(""))
    System.out.println(getIndent() + " Attributes: " + attList);
  attList = "";
  System.out.println(getIndent() + "end element");
  idx -= INDENT;
}

8 Save the project and run the program again. Notice that the parsing 
output now includes the attributes.

Congratulations, you’ve completed the tutorial. You’ve created a SAX 
parser with the SAX Handler wizard, edited the SAX parser code to 
customize the parsing, added attributes to the XML document, and parsed 
the XML document.

For more XML tutorials, see “Tutorials” on page iv.



6-10 X M L  D e v e l o p e r ’ s  G u i d e

M y S a x P a r s e r . j a v a  s o u r c e  c o d e

MySaxParser.java source code
The complete source code for MySaxParser.java after completion of the 
tutorial is as follows:

package com.borland.samples.xml.saxparser;

import java.io.IOException;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
import javax.xml.parsers.*;

public class MySaxParser extends DefaultHandler {

  private static int INDENT = 2;
  private static String attList = "" ;

  public static void main(String[] argv) {
    if (argv.length != 1) {
      System.out.println("Usage: java MySaxParser [URI]");
      System.exit(0);
    }
    System.setProperty("javax.xml.parsers.SAXParserFactory",
        "org.apache.xerces.jaxp.SAXParserFactoryImpl");
    String uri = argv[0];
    try {
      SAXParserFactory parserFactory = SAXParserFactory.newInstance();
      parserFactory.setValidating(false);
      parserFactory.setNamespaceAware(false);
      MySaxParser MySaxParserInstance = new MySaxParser();
      SAXParser parser = parserFactory.newSAXParser();
      parser.parse(uri, MySaxParserInstance);
    }
    catch(IOException ex) {
      ex.printStackTrace();
    }
    catch(SAXException ex) {
      ex.printStackTrace();
    }
    catch(ParserConfigurationException ex) {
      ex.printStackTrace();
    }
    catch(FactoryConfigurationError ex) {
      ex.printStackTrace();
    }
  }

  private int idx = 0;



T u t o r i a l :  C r e a t i n g  a  S A X  H a n d l e r  f o r  p a r s i n g  X M L  d o c u m e n t s 6-11

M y S a x P a r s e r . j a v a  s o u r c e  c o d e

  public void characters(char[] ch, int start, int length) throws 
      SAXException {
    String s = new String(ch, start, length);
    if (!s.startsWith("\n"))
      System.out.println(getIndent()+ " Value: " + s);
  }
  public void endDocument() throws SAXException {
    idx -= INDENT;
    System.out.println(getIndent() + "end document");
    System.out.println("...PARSING ends");
  }
  public void endElement(String uri, String localName, String qName) 
      throws SAXException {
    if (!attList.equals(""))
      System.out.println(getIndent() + " Attributes: " + attList);
    attList = "";
    System.out.println(getIndent() + "end element");
    idx -= INDENT;
  }
  public void startDocument() throws SAXException {
    idx += INDENT;
    System.out.println("PARSING begins...");
    System.out.println(getIndent() + "start document: ");
  }
  public void startElement(String uri, String localName, String qName, 
        Attributes attributes) throws SAXException {
    idx += INDENT;
    System.out.println('\n' + getIndent() + "start element: " + qName);
    if (attributes.getLength()> 0) {
      idx += INDENT;
      for (int i = 0; i < attributes.getLength(); i++){ 
        attList = attList + attributes.getQName(i) + " = " +
            attributes.getValue(i);
        if (i < (attributes.getLength() - 1))
          attList = attList + ", ";
      }
      idx -= INDENT;
    }
  }

  private String getIndent() {
    StringBuffer sb = new StringBuffer();
    for (int i = 0; i < idx; i++)
      sb.append(" ");
    return sb.toString();
  }
}



6-12 X M L  D e v e l o p e r ’ s  G u i d e



T u t o r i a l :  D T D  d a t a  b i n d i n g  w i t h  B o r l a n d X M L 7-1

C h a p t e r

7
Chapter7Tutorial: DTD data binding with

BorlandXML
This tutorial uses features

in JBuilder Enterprise
This step-by-step tutorial explains how to use JBuilder’s XML data 
binding features using DTDs and BorlandXML to generate Java classes. 
The sample is provided in the JBuilder samples directory: samples/
Tutorials/XML/databinding/fromDTD/. For users with read-only access to 
JBuilder samples, copy the samples directory into a directory with read/
write permissions. This tutorial uses employee records as a sample with 
such fields as employee number, first name, last name, and so on. An XML 
document and DTD are provided as samples, as well as a test application 
to manipulate the data.

Data binding is a means of accessing data and manipulating it, then 
sending the revised data back to the database or displaying it with an 
XML document. The XML document can be used as the transfer 
mechanism between the database and the application. This transfer is 
done by binding Java objects to an XML document. The data binding is 
implemented by generating Java classes to represent the constraints 
contained in a grammar, such as in a DTD or an XML schema. You can 
then use these classes to create XML documents that comply with the 
grammar, read XML documents that comply with the grammar, and 
validate XML documents against the grammar.

This tutorial contains specific examples that show you how to do the 
following:

• Generate Java classes from a DTD using BorlandXML.

• Unmarshal the data from XML objects and convert it to Java objects.

• Edit the data by adding an employee record and modifying an existing 
employee’s name.

• Marshal the Java objects back to the XML document.



7-2 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  1 :  G e n e r a t i n g  J a v a  c l a s s e s  f r o m  a  D T D

This tutorial assumes you have a working knowledge of JBuilder and 
XML. If you are new to JBuilder, see “The JBuilder environment” (Help|
JBuilder Environment). For more information on JBuilder’s XML features, 
see Chapter 1, “Introduction.”

The Accessibility options section in the JBuilder Quick Tips contains tips 
on using JBuilder features to improve JBuilder’s ease of use for people 
with disabilities.

For information on documentation conventions used in this tutorial and 
other JBuilder documentation, see “Documentation conventions” on 
page 1-3.

Step 1: Generating Java classes from a DTD
The first step in working with your data is to generate Java classes from 
your existing DTD with the Databinding wizard. When BorlandXML is 
selected as the Databinding Type, the Databinding wizard examines the 
DTD and creates a Java class for each element in the DTD.

To generate Java classes from a DTD using the Databinding wizard,

1 Open the project file, BorlandXML.jpx, located in samples/Tutorials/XML/
databinding/fromDTD/ in the JBuilder directory.

2 Open Employees.xml and review the data in the XML document. Notice 
that there are three employees: Robert Nelson, Bruce Young, and Kim 
Lambert. Each employee record contains such data as employee 
number, first name, last name, and full name. This is the data you will 
be manipulating.

Note You can also view the XML document in the XML viewer. Enable the 
browser view on the XML page of the IDE Options dialog box (Tools|
IDE Options). Then, choose the View tab in the content pane to view 
the document in the default tree view.

3 Open Employees.dtd and notice the elements in the XML document: 
XmlEmployee, EmpNo, FirstName, and so on. The Databinding wizard will 
generate a Java class for each of these elements.

4 Right-click Employees.dtd and choose Generate Java to open the 
Databinding wizard. Notice that BorlandXML is selected as the 
Databinding Type. BorlandXML generates Java classes from DTDs.

Note The Databinding wizard is also available on the XML page of the object 
gallery (File|New).

5 Click Next to continue to Step 2.



T u t o r i a l :  D T D  d a t a  b i n d i n g  w i t h  B o r l a n d X M L 7-3

S t e p  1 :  G e n e r a t i n g  J a v a  c l a s s e s  f r o m  a  D T D

6 Fill in the following fields in Step 2 of the wizard:

• DTD File: accept the path to the DTD file, /<jbuilder>/samples/
Tutorials/XML/databinding/fromDTD/Employees.dtd. This field is filled 
out automatically, because you selected the DTD file in the project 
pane before opening the wizard.

• Root Element: select XmlEmployees from the drop-down list. Be sure to 
select XmlEmployees, not the singular element, XmlEmployee.

• Package: change the package name to 
com.borland.samples.xml.databinding.borlandxml

• System Identifier: enter Employees.dtd as the System Identifier.

The Databinding wizard now looks like this:

7 Click Finish.

8 Expand the automatic source package node, 
com.borland.samples.xml.databinding.borlandxml, in the project pane to see 
the .java files generated by the wizard. Notice that each element in the 
DTD has its own class. The package node also includes the test 
application, DB_BorlandXML.java, which has been supplied as part of the 
sample. You’ll be using the test application to manipulate the data.



7-4 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  1 :  G e n e r a t i n g  J a v a  c l a s s e s  f r o m  a  D T D

9 Choose Project|Make Project to compile the classes.

10 Save the project.

Before continuing, take a moment to examine some of the generated 
classes.

1 Open EmpNo.java and examine the code. Notice that there’s a constructor 
for creating an EmpNo object from the EmpNo element, as well as methods 
for unmarshalling the EmpNo element to the EmpNo object and getting the 
tag name for the element.

2 Open XmlEmployee.java. The XmlEmployee element in the XML document 
contains all of the records for the individual, such as EmpNo, FirstName, 
and LastName. In this class, there’s a constructor for creating an 
XmlEmployee object from the XmlEmployee element, declarations that define 
the elements, and methods that set and get the elements contained by 
XmlEmployee. In addition, the unmarshal() method reads the XML objects 
into the Java objects. Then, the marshal() method writes the Java objects 
back to the XML objects after manipulating the objects in the Java 
application.

3 Open XmlEmployees.java. The XmlEmployees class represents the root 
element of the XML document, XmlEmployees. This class has methods to 
get and set the XmlEmployee element, as well as methods that add and 
remove employees, set and get PUBLIC and SYSTEM IDs, and unmarshal 
and marshal the data.

Tip You can use Find Definition in the editor to browse classes, interfaces, 
events, methods, properties, and identifiers. Position the cursor in one of 
these names, right-click, and choose Find Definition. For a class to be 
found automatically, it must be on the import path. Results are displayed 



T u t o r i a l :  D T D  d a t a  b i n d i n g  w i t h  B o r l a n d X M L 7-5

S t e p  2 :  U n m a r s h a l l i n g  t h e  d a t a

in the content pane of the AppBrowser. You can also browse classes in the 
editor from the Search menu (Search|Find Classes).

Step 2: Unmarshalling the data
Now that you have created your Java objects from the XML objects, take a 
look at the test application, DB_BorlandXML.java. This application passes the 
data between the XML document and the Java objects. It uses the 
marshalling framework to handle the conversion between Java and XML. 
First, the data is unmarshalled and read from XML into Java. Next, the 
data is marshalled back and written from Java to XML.

1 Double-click DB_BorlandXML.java in the project pane to open it in the 
editor. Notice that in the main() method of the application, there is a 
db_BorlandXML class variable that calls different methods. Three of these 
have been commented out. These method calls will be implemented 
later.

public class DB_BorlandXML {

  public DB_BorlandXML() {
  }
  public static void main(String[] args) {

    db_BorlandXML = new DB_BorlandXML();
    db_BorlandXML.readEmployees();

//  db_BorlandXML.addEmployee();
//  db_BorlandXML.modifyEmployee();
//  db_BorlandXML.readEmployees();
  }
....
}

In the next step, you’ll run the application without modifying any of 
the code. The application will read the employees from the XML 
document, converting them to Java objects. In later steps, you’ll 
manipulate the data by modifying the code, so the application can add 
and modify employees. The first step is to read the employees from the 
XML document.

2 Run the application by right-clicking DB_BorlandXML.java in the project 
pane and choosing Run Using “BorlandXML”. The application runs, 
reads the employee information, and prints the following to the 
message pane:

== unmarshalling "Employees.xml" ==
Total Number of Employees read = 3
First Employee's Full Name is Nelson, Robert
Last Employee's Full Name is Lambert, Kim



7-6 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  3 :  A d d i n g  a n  e m p l o y e e  r e c o r d

Step 3: Adding an employee record
In this step, you’ll add an employee record and marshal the data back to 
the XML document. To do this you’ll need to uncomment the line that 
calls the addEmployee() method.

You’ll also add another readEmployees() method call to read the new data 
after the employee is added. Then you’ll run the program and Charlie 
Chaplin will be added as a new employee using the addEmployee() method.

1 Remove the comments from this method call:

db_BorlandXML.addEmployee();

2 Add another readEmployees() method call just below the line you just 
uncommented. Your code should look like this:

public static void main(String[] args) {

  db_BorlandXML = new DB_BorlandXML();
  db_BorlandXML.readEmployees();

  db_BorlandXML.addEmployee();
  db_BorlandXML.readEmployees();
//db_BorlandXML.modifyEmployee();
//db_BorlandXML.readEmployees();
}

Look at the addEmployee() and readEmployees() methods so you 
understand what they do.

3 Save the project.

4 Run the program again. Note the output in the message pane.

== unmarshalling "Employees.xml" ==
Total Number of Employees read = 3
First Employee's Full Name is Nelson, Robert
Last Employee's Full Name is Lambert, Kim
== unmarshalling "Employees.xml" ==
Total Number of Employees read = 4
First Employee's Full Name is Nelson, Robert
Last Employee's Full Name is Chaplin, Charlie

5 Switch to Employees.xml and notice that Charlie Chaplin has been added 
as the fourth employee.



T u t o r i a l :  D T D  d a t a  b i n d i n g  w i t h  B o r l a n d X M L 7-7

S t e p  4 :  M o d i f y i n g  a n  e m p l o y e e  r e c o r d

Step 4: Modifying an employee record
Now, modify Charlie Chaplin’s name. To do this you need to add 
comments to the addEmployee() and readEmployees() method calls once again 
and uncomment the modifyEmployee() and readEmployees() method calls.

1 Return to DB_BorlandXML.java and comment out these two lines:

//db_BorlandXML.addEmployee();
//db_BorlandXML.readEmployees();

2 Remove the comments from these two lines:

db_BorlandXML.modifyEmployee();
db_BorlandXML.readEmployees();

Your code should look like this:

public static void main(String[] args) {

  db_BorlandXML = new DB_BorlandXML();
  db_BorlandXML.readEmployees();

//db_BorlandXML.addEmployee();
//db_BorlandXML.readEmployees();
  db_BorlandXML.modifyEmployee();
  db_BorlandXML.readEmployees();
}

Now that you’ve uncommented the modifyEmployee() method call, when 
you run the program again, Charlie Chaplin’s name will be replaced with 
the information in the modifyEmployee() method. Examine the 
modifyEmployee() method to see what it does.

1 Right-click DB_BorlandXML.java in the project pane and choose Run to run 
the application. Note the printout in the message pane and that Charlie 
has been changed to Andy Scott.

== unmarshalling "Employees.xml" ==
Total Number of Employees read = 4
First Employee's Full Name is Nelson, Robert
Last Employee's Full Name is Chaplin, Charlie
== unmarshalling "Employees.xml" ==
Total Number of Employees read = 4
First Employee's Full Name is Nelson, Robert
Last Employee's Full Name is Scott, Andy

2 Return to Employees.xml and note that the data for Andy Scott has been 
marshalled from the Java objects to the XML objects and written back to 
the XML document. So now Andy Scott replaces Charlie Chaplin.



7-8 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  5 :  R u n n i n g  t h e  c o m p l e t e d  a p p l i c a t i o n

Step 5: Running the completed application
Now that you understand what this application is doing, remove the new 
data from the XML document and remove the comments in the program, 
add a print statement to read the new employee, and run the program as 
explained in these steps.

1 Remove the employee data and XML tags for Andy Scott shown here, 
being careful not to remove any other data or XML tags:

  <XmlEmployee>
        <EmpNo>9000</EmpNo>
        <FirstName>Andy</FirstName>
        <LastName>Scott</LastName>
        <PhoneExt>1993</PhoneExt>
        <HireDate>2/2/2001</HireDate>
        <DeptNo>600</DeptNo>
        <JobCode>VP</JobCode>
        <JobGrade>3</JobGrade>
        <JobCountry>USA</JobCountry>
        <Salary>145000.00</Salary>
        <FullName>Scott, Andy</FullName>
  </XmlEmployee>

Now the XML document only contains the original three employee 
records.

2 Return to DB_BorlandXML.java and remove the comments from all of the 
class variable method calls. Your code should look like this:

public static void main(String[] args) {

  db_BorlandXML = new DB_BorlandXML();
  db_BorlandXML.readEmployees();
  db_BorlandXML.addEmployee();
  db_BorlandXML.readEmployees();
  db_BorlandXML.modifyEmployee();
  db_BorlandXML.readEmployees();
}

3 Save the project.

4 Run the program to output the data and see the following printout in 
the message pane:

== unmarshalling "Employees.xml" ==
Total Number of Employees read = 3
First Employee's Full Name is Nelson, Robert
Last Employee's Full Name is Lambert, Kim
== unmarshalling "Employees.xml" ==
Total Number of Employees read = 4
First Employee's Full Name is Nelson, Robert
Last Employee's Full Name is Chaplin, Charlie



T u t o r i a l :  D T D  d a t a  b i n d i n g  w i t h  B o r l a n d X M L 7-9

S t e p  5 :  R u n n i n g  t h e  c o m p l e t e d  a p p l i c a t i o n

== unmarshalling "Employees.xml" ==
Total Number of Employees read = 4
First Employee's Full Name is Nelson, Robert
Last Employee's Full Name is Scott, Andy

5 Switch to Employees.xml to verify that the data has been marshalled back 
to the XML document. Notice that Charlie Chaplin, the new employee, 
has been replaced by Andy Scott.

Congratulations! You’ve completed the tutorial. You’ve read, added, and 
modified employee data in an XML document using a Java application 
and Java classes generated from a DTD using the Databinding wizard.

For more XML tutorials, see “Tutorials” on page iv.



7-10 X M L  D e v e l o p e r ’ s  G u i d e



T u t o r i a l :  S c h e m a  d a t a  b i n d i n g  w i t h  C a s t o r 8-1

C h a p t e r

8
Chapter8Tutorial: Schema data binding

with Castor
This tutorial uses features

in JBuilder Enterprise
This step-by-step tutorial explains how to use JBuilder’s XML data 
binding features using schema and Castor to generate Java classes. The 
sample is provided in the JBuilder samples directory: samples/Tutorials/XML/
databinding/fromSchema. For users with read-only access to JBuilder 
samples, copy the samples directory into a directory with read/write 
permissions. This tutorial uses employee records as a sample with such 
fields as employee number, first name, last name, and so on. An XML 
document and schema file (XSD) are provided as samples, as well as a test 
application to manipulate the data.

Data binding is a means of accessing data and manipulating it, then 
sending the revised data back to the database or displaying it with an 
XML document. The XML document can be used as the transfer 
mechanism between the database and the application. This transfer is 
done by binding a Java object to an XML document. The data binding is 
implemented by generating Java classes to represent the constraints 
contained in a grammar, such as in a DTD or an XML schema. You then 
use these classes to create XML documents that comply with the grammar, 
read XML documents that comply with the grammar, and validate XML 
documents against the grammar as changes are made to them.

This tutorial contains specific examples that show you how to do the 
following:

• Generate Java classes from a schema file using Castor and the 
Databinding wizard.

• Unmarshal the data from XML objects and convert it to Java objects.



8-2 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  1 :  G e n e r a t i n g  J a v a  c l a s s e s  f r o m  a  s c h e m a

• Edit the data by adding an employee record and modifying an existing 
employee record.

• Marshal the Java objects back to the XML document.

For more information on Castor, see the Castor documentation in the 
extras directory of the JBuilder full installation or the Castor web site at 
http://www.castor.org.

This tutorial assumes you have a working knowledge of JBuilder and 
XML. If you are new to JBuilder, see “The JBuilder environment” (Help|
JBuilder Environment). For more information on JBuilder’s XML features, 
see Chapter 1, “Introduction.”

The Accessibility options section in the JBuilder Quick Tips contains tips 
on using JBuilder features to improve JBuilder’s ease of use for people 
with disabilities.

For information on documentation conventions used in this tutorial and 
other JBuilder documentation, see “Documentation conventions” on 
page 1-3.

Step 1: Generating Java classes from a schema
The first step in working with your data is to generate Java classes from 
your existing schema file. When Castor is selected as the Databinding 
Type, the Databinding wizard examines the selected schema file and 
creates Java classes based on that schema.

To generate Java classes from a schema using the Databinding wizard,

1 Open the project file, castor.jpx, located in samples/Tutorials/XML/
databinding/fromSchema in the JBuilder directory.

2 Open Employees.xml and review the data in the XML document. Notice 
that there are three employees: Robert Nelson, Bruce Young, and Kim 
Lambert. Each employee record contains such data as employee 
number, first name, last name, and full name. This is the data you will 
be manipulating.

Note You can also view the XML document in the XML viewer. To enable the 
XML viewer, choose Tools|IDE Options, and choose the XML tab. 
Under General Options, select the Enable Browser View option. Notice 
that the Apply Default Stylesheet option is already enabled. The 
stylesheet option renders the XML document in a tree view. Now, 
choose the View tab in the content pane to view the document in this 
tree view.

3 Open Employees.xsd and review the file. The Databinding wizard 
generates Java classes according to the schema (XSD) file.



T u t o r i a l :  S c h e m a  d a t a  b i n d i n g  w i t h  C a s t o r 8-3

S t e p  1 :  G e n e r a t i n g  J a v a  c l a s s e s  f r o m  a  s c h e m a

4 Right-click Employees.xsd in the project pane and choose Generate Java 
to open the Databinding wizard.

5 Accept Castor as the Databinding Type and click Next to go to Step 2.

Castor uses schema (XSD) to create Java classes. Schemas, more robust 
and flexible than DTDs, have several advantages over DTDs. Schemas 
are XML documents, unlike DTDs which contain non-XML syntax. 
Schemas also support namespaces, which are required to avoid naming 
conflicts, and offer more extensive data type and inheritance support.

6 Fill out the fields as follows:

• XML Schema: browse to the schema file, /<jbuilder>/samples/
Tutorials/XML/databinding/fromSchema/Employees.xsd. This field is 
already filled in for you.

• Package: change the package name to 
com.borland.samples.xml.databinding.castor

• Accept the default options.

Step 2 of the wizard should look like this:

7 Click Finish.

8 Expand the com.borland.samples.xml.databinding.castor package node in 
the project pane to see the .java files generated by the wizard. The 
package node also includes the test application, DB_Castor.java, which 



8-4 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  1 :  G e n e r a t i n g  J a v a  c l a s s e s  f r o m  a  s c h e m a

has been supplied as part of the sample. You’ll be using the test 
application to manipulate the data.

9 Open castor.properties. This file specifies values for the Castor runtime, 
such as indentation, which you can configure. Note that indent is set to 
true. See the “Data binding: Castor” note on page 2-31 for more 
information on the castor.properties file.

10 Choose Project|Make Project to compile the classes.

Note You’ll see deprecated warnings, because Castor generates code that 
uses Sax 1.0.

11 Save the project.

Before continuing to the next step, examine some of the Java classes 
generated by the wizard. Castor executes data binding by mapping an 
instance of an XML schema into an appropriate object model. This object 
model includes a set of classes and types which represent the data. 
Descriptors are used to obtain information about a class and its fields. In 
most cases, the marshalling framework uses a set of ClassDescriptors and 
FieldDescriptors to describe how an Object should be unmarshalled from 
the XML document and marshalled back to the XML document.

First, notice that there are several types of Java files:

• XmlEmployee.java: unmarshals and marshals the data between the XML 
document and the Java objects.

• XmlEmployeeDescriptor.java: gets namespaces, identity, Java class, and so 
on.

• XmlEmployees.java: gets and sets the XmlEmployee element and unmarshals 
and marshals the data between the XML document and the Java 
objects.

• XmlEmployeesDescriptor.java: gets namespaces, identity, Java class, and 
so on.



T u t o r i a l :  S c h e m a  d a t a  b i n d i n g  w i t h  C a s t o r 8-5

S t e p  2 :  U n m a r s h a l l i n g  t h e  d a t a

• XmlEmployeeType.java: defines the datatype of each object.

• XmlEmployeeTypeDescriptor.java: initializes the element descriptors and 
has various methods to get the XML file name, Java class, and 
namespace.

Tip You can use Find Definition in the editor to browse classes, interfaces, 
events, methods, properties, and identifiers. Position the cursor in one of 
these names, right-click, and choose Find Definition. For a class to be 
found automatically, it must be on the import path. Results are displayed 
in the content pane of the AppBrowser. You can also browse classes in the 
editor from the Search menu (Search|Find Classes).

See also

• Castor API in the extras directory of the JBuilder full installation

• Castor web site at http://www.castor.org/javadoc/overview-summary.html

Step 2: Unmarshalling the data
Now that you have created your Java objects for the XML objects, take a 
look at the test application, DB_Castor.java. This application passes the data 
between the XML document and the Java objects using the marshalling 
framework, which handles the conversion between Java and XML. 
Unmarshalling reads the XML objects and converts them to Java objects, 
while marshalling writes the Java objects back to the XML objects.

1 Double-click DB_Castor.java in the project pane to open it in the editor.

2 Examine the source code and notice that there are several method calls 
that manipulate the data. First, the application unmarshals or reads the 
data from the XML document. Then it prints employee count and 
names to the screen. Next, an employee is added, then modified. And 
lastly, the data is marshalled back to the XML document.

Tip To browse any of the imported classes in this file, open the Imports 
folder in the structure pane and double-click a package to open the 
Browse Import Symbol dialog box and browse to the class you want to 
view.

If you ran the application without any changes, it would add and modify 
an employee. But first, break it down into steps, so you can see what’s 
happening. In the next step, you’ll add an employee. Later, you’ll modify 
that new employee data.



8-6 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  3 :  A d d i n g  a n  e m p l o y e e  r e c o r d

Step 3: Adding an employee record
First, modify the application so it only adds an employee. To do this, you 
need to comment out the method call that modifies an employee in 
DB_Castor.java. You’ll modify the employee in the next step.

1 Comment out the setXmlEmployee() method call. With this method call 
commented out, the application unmarshals data, prints to the screen, 
adds a new employee, and marshals the new data back to the XML 
document, but it doesn’t modify the new employee. You’ll modify the 
employee later.

// Modify the last XmlEmployee    
//xmlEmployees.setXmlEmployee(xmlEmployees.getXmlEmployeeCount()-1,
//    getXmlEmployee("8000","600","Peter","Castor","3/3/2001",
//    "VP","USA","3","2096","125000.00"));

2 Add a print statement after the addXmlEmployee() method call. The print 
statement prints the new employee’s name to the screen after it’s 
added.

//Add an XmlEmployee
xmlEmployees.addXmlEmployee(getXmlEmployee("8000","400","Charlie","Castor",
    "3/3/2001","VP","USA","2","1993","155000.00"));
System.out.println("New XmlEmployee's Full Name is " +
    xmlEmployees.getXmlEmployee(
    xmlEmployees.getXmlEmployeeCount()-1).getFullName());

3 Right-click DB_Castor.java in the project pane and choose Run Using 
“Castor”. The application runs, reads the employee information, and 
prints the following to the message pane:

== unmarshalling "Employees.xml" ==
Total Number of XmlEmployees read = 3
First XmlEmployee's Full Name is Nelson, Robert
Last XmlEmployee's Full Name is Lambert, Kim
New XmlEmployee's Full Name is Castor, Charlie

4 Switch to Employees.xml to verify that the new data has been marshalled 
to the XML document and notice that Charlie Castor has been added as 
an employee.

Step 4: Modifying the new employee data
Next, modify Charlie Castor’s employee record with the setXmlEmployee() 
method call and run the program again to update the employee record in 
the XML document.



T u t o r i a l :  S c h e m a  d a t a  b i n d i n g  w i t h  C a s t o r 8-7

S t e p  5 :  R u n n i n g  t h e  c o m p l e t e d  a p p l i c a t i o n

1 Return to DB_Castor.java and comment out the addXmlEmployee() method 
call and the print statement below it:

// Add an XmlEmployee
//xmlEmployees.addXmlEmployee(getXmlEmployee("8000","400","Charlie",
//    "Castor","3/3/2001","VP","USA","2","1993","155000.00"));
//System.out.println("New XmlEmployee's Full Name is " +
//     xmlEmployees.getXmlEmployee(
//     xmlEmployees.getXmlEmployeeCount()-1).getFullName());

2 Remove the comments from the setXmlEmployee() method call and add a 
print statement as follows:

// Modify the last XmlEmployee
   xmlEmployees.setXmlEmployee(xmlEmployees.getXmlEmployeeCount()-1, 
       getXmlEmployee("8000","600","Peter","Castor","3/3/2001",
       "VP","USA","3","2096","125000.00"));
   System.out.println("New XmlEmployee's Modified Full Name is " +
       xmlEmployees.getXmlEmployee(
       xmlEmployees.getXmlEmployeeCount()-1).getFullName());

3 Save the project.

4 Right-click DB_Castor.java and choose Run Using “Castor”. The 
application runs, reads the employee information, and prints the 
number of employees read and the first and last employee full names in 
addition to the modified employee:

== unmarshalling "Employees.xml" ==
Total Number of XmlEmployees read = 4
First XmlEmployee's Full Name is Nelson, Robert
Last XmlEmployee's Full Name is Castor, Charlie
New XmlEmployee's Modified Full Name is Castor, Peter

Step 5: Running the completed application
Now that you understand what this application is doing, you’ll remove all of 
the comments, add a print statement to read the new employee, remove the 
new data from the XML document and run the application in its entirety.

1 Remove the comments from the addXmlEmployee() method call and its 
print statement. Your code should look like this:

// Add an XmlEmployee 
xmlEmployees.addXmlEmployee(getXmlEmployee("8000","400","Charlie","Castor",
    "3/3/2001","VP","USA","2","1993","155000.00"));
System.out.println("New XmlEmployee's Full Name is " +
    xmlEmployees.getXmlEmployee(
    xmlEmployees.getXmlEmployeeCount()-1).getFullName());

// Modify the last XmlEmployee
xmlEmployees.setXmlEmployee(xmlEmployees.getXmlEmployeeCount()-1,
       getXmlEmployee("8000","600","Peter","Castor","3/3/2001",
       "VP","USA","3","2096","125000.00"));



8-8 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  5 :  R u n n i n g  t h e  c o m p l e t e d  a p p l i c a t i o n

System.out.println("New XmlEmployee's Modified Full Name is " + 
       xmlEmployees.getXmlEmployee(
       xmlEmployees.getXmlEmployeeCount()-1).getFullName());

2 Add another print statement after the setXmlEmployee() method call’s 
print statement and before the marshal() method to read the data again 
after the new data has been added and modified. Your code should 
look like this:

// Modify the last XmlEmployee       
xmlEmployees.setXmlEmployee(xmlEmployees.getXmlEmployeeCount()-1, 
     getXmlEmployee("8000","600","Peter","Castor","3/3/2001","VP",
     "USA","3","2096","125000.00"));
System.out.println("New XmlEmployee's Modified Full Name is " 
    + xmlEmployees.getXmlEmployee(
    xmlEmployees.getXmlEmployeeCount()-1).getFullName());
//Read employees again
System.out.println("Total Number of XmlEmployees read = " 
    + xmlEmployees.getXmlEmployeeCount());
// Marshall out the data to the same XML file
xmlEmployees.marshal(new java.io.FileWriter(fileName));

3 Switch to Employees.xml and remove Peter Castor’s employee data and 
XML tags, being careful not to remove any other data or XML tags.

4 Save the project.

5 Return to DB_Castor.java in the editor, right-click the DB_Castor.java file 
name tab, and choose Run Using “Castor” to see the following printout 
in the message pane:

== unmarshalling "Employees.xml" ==
Total Number of XmlEmployees read = 3
First XmlEmployee's Full Name is Nelson, Robert
Last XmlEmployee's Full Name is Lambert, Kim
New XmlEmployee's Full Name is Castor, Charlie
New XmlEmployee's Modified Full Name is Castor, Peter
Total Number of XmlEmployees read = 4

6 Return to Employees.xml to verify that the data has been marshalled back 
to the XML document. If you don’t see the new data, choose another 
file tab and then return to Employees.xml to refresh the file. Notice that 
Charlie Castor was added and then modified. When the employees are 
read a second time, the new employee is counted.

Congratulations. You’ve completed the tutorial. You’ve read, added, and 
modified employee data in an XML document using a Java application 
and Java classes generated by the Databinding wizard from a schema file.

For more XML tutorials, see “Tutorials” on page iv.



T u t o r i a l :  T r a n s f e r r i n g  d a t a  w i t h  t h e  m o d e l - b a s e d  X M L  d a t a b a s e  c o m p o n e n t s 9-1

C h a p t e r

9
Chapter9Tutorial: Transferring data with
the model-based XML database

components
This is a feature of

JBuilder Enterprise
This tutorial explains how to use JBuilder’s model-based XML database 
components to transfer data from an XML document to a database and 
retrieve that data back again from the database to an XML document. It 
also explains how to use the XML-DBMS wizard to create the required 
map file used in the transferring of data and how to create a SQL script file 
you can use to create the database.

Model-based components use a map document that determines how the 
data transfers between an XML structure and the database metadata. 
Because the user specifies a map between an element in the XML 
document to a particular table or column in a database, deeply nested 
XML documents can be transferred to and from a set of database tables. 
The model-based components are implemented using XML-DBMS, an 
open source XML middleware that is bundled with JBuilder.

Working through this tutorial, you’ll learn how to do the following:

• Create a map file that maps the elements of a DTD file to the columns in 
a database table.

• Create a SQL script file that creates the database table metadata.

• Use the XDBMSTable component to transfer data from an XML document 
to a database table.

• Use the same XDBMSTable component to transfer data from the database 
table to an XML document.



9-2 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  1 :  G e t t i n g  s t a r t e d

• Use the XDBMSQuery component to transfer data from the database table 
to an XML document.

• Use XDBMSTable’s and XDBMSQuery’s customizers to set properties and 
view the results of those property settings on the transfer of the data.

This tutorial uses the XMLDBMSBeans.jpx sample in the /<jbuilder>/samples/
Tutorials/XML/database/XMLDBMSBeans/ directory. For users with read-only 
access to JBuilder samples, copy the samples directory into a directory 
with read/write permissions.

This tutorial assumes you have a working knowledge of JBuilder and 
XML. If you are new to JBuilder, see “The JBuilder environment” (Help|
JBuilder Environment). For more information on JBuilder’s XML features, 
see Chapter 1, “Introduction.”

The Accessibility options section in the JBuilder Quick Tips contains tips 
on using JBuilder features to improve JBuilder’s ease of use for people 
with disabilities.

For information on documentation conventions used in this tutorial and other 
JBuilder documentation, see “Documentation conventions” on page 1-3.

Step 1: Getting started
This tutorial creates an XmlEmployee database table that contains basic 
employee information such as a unique employee number, the employee’s 
name, salary, hire data, job grade, and so on. Before you create the table, 
you must have a DTD that defines the metadata of the database table you 
are going to transfer data into and retrieve data from. You can either create 
one manually or, if you have an XML document with the correct structure, 
you can use it to create the DTD by using the XML To DTD wizard.

In JBuilder, open the /<jbuilder>/samples/Tutorials/XML/database/
XMLDBMSBeans/XMLDBMSBeans.jpx project, which contains the DTD file you 
need, Employees.dtd. It looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT XmlEmployee (EmpNo, FirstName, LastName, PhoneExt, HireDate, DeptNo, 
     JobCode, JobGrade, JobCountry, Salary, FullName)>
<!ELEMENT DeptNo (#PCDATA)>
<!ELEMENT EmpNo (#PCDATA)>
<!ELEMENT FirstName (#PCDATA)>
<!ELEMENT FullName (#PCDATA)>
<!ELEMENT HireDate (#PCDATA)>
<!ELEMENT JobCode (#PCDATA)>
<!ELEMENT JobCountry (#PCDATA)>
<!ELEMENT JobGrade (#PCDATA)>
<!ELEMENT LastName (#PCDATA)>
<!ELEMENT PhoneExt (#PCDATA)>
<!ELEMENT Salary (#PCDATA)>
<!ELEMENT XmlEmployees (XmlEmployee+)>



T u t o r i a l :  T r a n s f e r r i n g  d a t a  w i t h  t h e  m o d e l - b a s e d  X M L  d a t a b a s e  c o m p o n e n t s 9-3

S t e p  1 :  G e t t i n g  s t a r t e d

The sample project also has an Employees.xml file. If the project didn’t have 
Employees.xml, you could create it using the DTD To XML wizard and 
specify Employees.dtd as the input DTD. You would then modify the 
resulting XML structure and add the data.

Later, you’ll use Employees.xml to populate the database table and modify 
its data. Employees.xml, as it appears in the sample project, contains data on 
three employees. It looks like this:

<?xml version="1.0"?>
<!DOCTYPE XmlEmployees SYSTEM "Employees.dtd">
<XmlEmployees>
  <XmlEmployee>
    <EmpNo>2</EmpNo>
    <FirstName>Robert</FirstName>
    <LastName>Nelson</LastName>
    <PhoneExt>250</PhoneExt>
    <HireDate>1988-12-28</HireDate>
    <DeptNo>600</DeptNo>
    <JobCode>VP</JobCode>
    <JobGrade>2</JobGrade>
    <JobCountry>USA</JobCountry>
    <Salary>105900.000000</Salary>
    <FullName>Nelson, Robert</FullName>
  </XmlEmployee>
  <XmlEmployee>
    <EmpNo>4</EmpNo>
    <FirstName>Bruce</FirstName>
    <LastName>Young</LastName>
    <PhoneExt>233</PhoneExt>
    <HireDate>1988-12-28</HireDate>
    <DeptNo>621</DeptNo>
    <JobCode>Eng</JobCode>
    <JobGrade>2</JobGrade>
    <JobCountry>USA</JobCountry>
    <Salary>97500.000000</Salary>
    <FullName>Young, Bruce</FullName>
  </XmlEmployee>
  <XmlEmployee>
    <EmpNo>5</EmpNo>
    <FirstName>Kim</FirstName>
    <LastName>Lambert</LastName>
    <PhoneExt>22</PhoneExt>
    <HireDate>1989-02-06</HireDate>
    <DeptNo>130</DeptNo>
    <JobCode>Eng</JobCode>
    <JobGrade>2</JobGrade>
    <JobCountry>USA</JobCountry>
    <Salary>102750.000000</Salary>
    <FullName>Lambert, Kim</FullName>
  </XmlEmployee>
</XmlEmployees>



9-4 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  2 :  C r e a t i n g  t h e  m a p  a n d  S Q L  s c r i p t  f i l e s

Step 2: Creating the map and SQL script files
You already have the structure of the database table as defined by the 
DTD, and you have an XML document that contains data you want to 
store in the database table. But you don’t actually have a database table 
yet, so you must create it. You also must create a map file that describes 
how the data is transferred from the XML elements to the correct columns 
in the new database. JBuilder’s XML-DMBS wizard can create the SQL 
script file that you can execute to create the table at the same time that it 
creates the map file needed to transfer the data.

To open the XML-DBMS wizard,

1 Choose File|New to open the object gallery.

2 Click the XML tab, and double-click the XML-DBMS icon.

Entering JDBC connection information

This tutorial uses the JDataStore employee.jds database found in the /
<jbuilder>/samples/JDataStore/datastores directory. You may already have 
an existing JDBC connection to this datastore on your system if you’ve 
worked with JDataStore samples. If so, click the Choose Existing 
Connection button and select it. When you do so, the connection 
parameters are filled in for you. If you don’t use an existing connection, 
you must enter the information as described in the following steps:

1 Select com.borland.datastore.jdbc.DataStoreDriver as your driver from 
the Driver drop-down list. You must have JDataStore installed on your 
system, which is included in JBuilder Enterprise. If you need 



T u t o r i a l :  T r a n s f e r r i n g  d a t a  w i t h  t h e  m o d e l - b a s e d  X M L  d a t a b a s e  c o m p o n e n t s 9-5

S t e p  2 :  C r e a t i n g  t h e  m a p  a n d  S Q L  s c r i p t  f i l e s

information about working with JDataStore, see “JDataStore 
fundamentals” in the JDataStore Developer’s Guide.

2 Specify the URL for the proper datastore you are using, employee.jds. 
When you selected DataStoreDriver as your driver, a pattern appears 
that guides you in entering the correct URL. Choose the ellipsis (...) 
button next to the URL field to browse to the correct URL. Assuming 
you installed JBuilder on drive C of your system, the URL to the 
employee.jds datastore in the samples directory is this:

jdbc:borland:dslocal:C:\<jbuilder>\samples\JDataStore\datastores\employee.jds

3 Enter Sample in the User Name field.

4 Enter any value in the Password field or leave it blank as employee.jds 
doesn’t require a password.

5 Skip the Extended Properties field.

6 Choose the Save Connection Info button to save the connection you just 
created.

Testing the connection
After establishing the connection, you need to test it to verify that you’ve 
specified your JDBC connection properly.

1 Click the Test Connection button. A Success or Failed message displays 
on the panel next to the button.

2 Choose Next to continue to Step 2 of the wizard.



9-6 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  2 :  C r e a t i n g  t h e  m a p  a n d  S Q L  s c r i p t  f i l e s

Specifying the file names

On the second page of the XML-DBMS wizard, specify the DTD file you 
are using to create the map file and specify the names for the generated 
map file and SQL script file as described in the following steps:

1 Choose the ellipsis (...) button next to the Input DTD File field to 
navigate to and select Employees.dtd in the XMLDBMSBeans.jpx project. Click 
OK.

2 Accept the default file names for the Output Map File and Output SQL 
File fields.

3 Check the Create Default XMLDBMSKey Table check box if it’s not 
already checked.

The XML-DBMS wizard should look like this:

4 Choose Finish to close the wizard.

The XML-DBMS wizard generates Employees.map and Employees.sql, which 
display in the project pane and are open in the editor. View Employees.map 
in the editor to see how the XML elements will be mapped to columns in 
the database table you will create. If you wanted to change the name of the 
columns in the database table you are going to create, you could edit the 
map file and change column names. If you did that, you must also make 
the same changes to the column names in the SQL script file. For this 
tutorial, don’t make any changes. But often you would want to edit the 
map and SQL script files the wizard creates to meet your needs.



T u t o r i a l :  T r a n s f e r r i n g  d a t a  w i t h  t h e  m o d e l - b a s e d  X M L  d a t a b a s e  c o m p o n e n t s 9-7

S t e p  3 :  C r e a t i n g  t h e  d a t a b a s e  t a b l e s

Step 3: Creating the database tables
View Employees.sql in the editor to see the SQL statements the XML-DBMS 
wizard generated. Notice that it contains three CREATE TABLE 
statements, not just one. The first creates an XmlEmployee table that 
contains the metadata the DTD specified with the addition of an 
“XmlEmployeesFK” column (FK stands for foreign key). The second 
CREATE TABLE creates an XmlEmployees table that contains just one 
column, “XmlEmployeesPK” (PK stands for primary key). The third 
creates a XMLDBMSKey table. XML-DBMS uses these tables to represent 
the structure of the input DTD file.

A convenient way to execute these SQL statements is to use JBuilder’s 
Database Pilot:

1 Select all the text in the Employees.sql file and choose Edit|Copy to copy 
it to the clipboard.

2 Choose Tools|Database Pilot to open the Database Pilot.

3 Double-click the employee.jds Database URL you specified in the XML-
DBMS wizard to connect to the database.

4 Enter any text in the User Name field and leave the Password field 
blank. Click OK to connect to the database.

5 Expand the Tables node and notice that the database contains multiple 
tables. You’ll create three new tables in this database.

6 Click the Enter SQL tab on the right side of the Database Pilot.



9-8 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  4 :  W o r k i n g  w i t h  t h e  s a m p l e  t e s t  a p p l i c a t i o n

7 Paste the copied SQL statements into the SQL Statement box:

8 Click Execute. The Database Pilot creates the three tables in the 
employee.jds datastore.

9 Choose View|Refresh in the Database Pilot and expand the Tables 
node again to see the three new tables added to the database.

10 Close the Database Pilot.

Step 4: Working with the sample test application
Usually when you use JBuilder’s XML database components, you’ll be 
developing an application that presents a GUI for your users to interact 
with. You won’t be doing that for this tutorial. Instead you’ll use the 
sample test application, XMLDBMS_Test.java, which is simply a Java class that 
contains the model-based XML database components and sets the 
properties of those components. This tutorial shows you how to work 
with the components’ customizers to set properties and view the results of 



T u t o r i a l :  T r a n s f e r r i n g  d a t a  w i t h  t h e  m o d e l - b a s e d  X M L  d a t a b a s e  c o m p o n e n t s 9-9

S t e p  4 :  W o r k i n g  w i t h  t h e  s a m p l e  t e s t  a p p l i c a t i o n

a transfer of data. Once you are certain a transfer works correctly, you can 
proceed with confidence as you build a GUI application around it.

1 Expand the com.borland.samples.xml.XMLDBMS package node in the project 
pane to view the contents. You’ll find one file, XMLDBMS_Test.java.

2 Double-click XMLDBMS_Test.java to open it in the editor.

3 Examine the source code and you’ll see that it contains two 
components, XMLDBMSTable and XMLDBMSQuery.

Using XMLDBMSTable’s customizer

To begin working with the XMLDBMSTable component,

1 Click the Design tab of the open sample test application, 
XMLDBMS_Test.java, to open the UI designer. You’ll see an Other folder in 
the structure pane that contains the two model-based components.

2 Right-click xmldbmsTable in the structure pane and choose the 
Customizer menu command. The customizer for XMLDBMSTable displays.

Selecting and testing a JDBC connection
The sample test application already sets all the properties in its source 
code. If you were creating your own application, you would need to fill in 
all the fields of the customizer yourself. Imagine that the fields are blank 
and follow along to fill them in. As you did for the first step of the XML-
DBMS wizard, you must select your JDBC connection.

1 Click the Choose Existing Connection button and select the same 
connection you established to the employee.jds datastore. As soon as 
you select your connection, the customizer uses the connection data to 
fill in the rest of the fields.



9-10 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  4 :  W o r k i n g  w i t h  t h e  s a m p l e  t e s t  a p p l i c a t i o n

2 Click the Test Connection button to make sure your connection is 
specified correctly. A Success or Failed message displays to the right of 
the Test Connection button.

Transferring data from XML to the database
Next, you’ll transfer data from the XML document to the database.

1 Click the Transfer tab to view the next page of the customizer:

2 Fill in the required transfer information:

a Choose the ellipsis (...) button next to the Input XML File field to 
navigate to and select Employees.xml in the project. You should always 
specify the fully-qualified name. If you use the ellipsis (...) button, 
the file name always includes the full path information. Click OK.

b Choose the ellipsis (...) button next to the Map File field to navigate 
to and select Employees.map in the project. Click OK.

c Click the XML To DB option in the center of the page if it isn’t 
already selected. You are preparing to transfer the data in 
Employees.xml to the XmlEmployee table.

These are the only fields required for the transfer. The other fields 
are disabled. You will see data values in them, because the sample 
test application, XMLDBMSBeans_Test.java, sets property values for these 
fields in its source code. The fields aren’t used for transferring data 
from the XML document to the XmlEmployee database table. For 
more information on the Transfer page fields, see “Setting properties 
with the customizer” on page 3-8.



T u t o r i a l :  T r a n s f e r r i n g  d a t a  w i t h  t h e  m o d e l - b a s e d  X M L  d a t a b a s e  c o m p o n e n t s 9-11

S t e p  4 :  W o r k i n g  w i t h  t h e  s a m p l e  t e s t  a p p l i c a t i o n

The customizer should look like this:

3 Choose the Transfer button to transfer the data in the XmlEmployees.xml 
document to the XmlEmployee database table you created. The transfer of 
data occurs.

4 Click OK to close the customizer.

5 Open the Database Pilot (Tools|Database Pilot), expand the Tables 
node, select the XmlEmployee table node, and click the Data tab to 
confirm that the data is transferred to the table.

6 Close the Database Pilot.

Transferring data from the database to XML
Before you can transfer data from a database table to an XML document, 
you must modify the Employees.map file. You want the XmlEmployee element 
to behave as the root. Therefore, Employees.map must tell XML-DBMS to 
ignore the present root, the plural XmlEmployees element, and instead use 
the singular XmlEmployee element.



9-12 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  4 :  W o r k i n g  w i t h  t h e  s a m p l e  t e s t  a p p l i c a t i o n

1 Choose the Employees.map file tab in the editor to view the map file.

2 Enter the text shown in bold:

<?xml version='1.0' ?>
<!DOCTYPE XMLToDBMS SYSTEM "xmldbms.dtd" >

<XMLToDBMS Version="1.0">
  <Options>
  </Options>
  <Maps>
    <IgnoreRoot>
      <ElementType Name="XmlEmployees"/>
      <PseudoRoot>
        <ElementType Name="XmlEmployee"/>
        <CandidateKey Generate="No">
          <Column Name="EmpNo"/>
        </CandidateKey>
       </PseudoRoot>
    </IgnoreRoot>

    <ClassMap>
        ...
    </ClassMap>
  </Maps>
</XMLToDBMS>

3 Remove this block of code at the end of the file:

<ClassMap>
  <ElementType Name="XmlEmployees"/>
  <ToRootTable>
    <Table Name="XmlEmployees"/>
    <CandidateKey Generate="Yes">
      <Column Name="XmlEmployeesPK"/>
    </CandidateKey>
  </ToRootTable>
  <RelatedClass KeyInParentTable="Candidate">
    <ElementType Name="XmlEmployee"/>
    <CandidateKey Generate="Yes">
      <Column Name="XmlEmployeesPK"/>
    </CandidateKey>
    <ForeignKey>
      <Column Name="XmlEmployeesFK"/>
    </ForeignKey>
  </RelatedClass>
</ClassMap>

4 Save the project.

Now that data actually exists in the XmlEmployee table, you can transfer 
data from the database to an XML document. You can do this using the 
Transfer page of the XMLDBMSTable's customizer.



T u t o r i a l :  T r a n s f e r r i n g  d a t a  w i t h  t h e  m o d e l - b a s e d  X M L  d a t a b a s e  c o m p o n e n t s 9-13

S t e p  4 :  W o r k i n g  w i t h  t h e  s a m p l e  t e s t  a p p l i c a t i o n

To transfer data from the XmlEmployee table to an XML document named 
Employees_out.xml,

1 Return to the Design tab of XMLDBMS_Test.java.

2 Right-click xmldbmsTable in the structure pane and choose the 
Customizer menu command to open the customizer again.

3 Choose the Transfer tab.

4 Select the DB To XML option. The customizer fields change slightly. 
The Table Name and Key Values fields are now enabled.

5 Click the ellipsis (...) button next to the Output XML File field and 
change the name to Employees_out.xml. Click OK.

6 Accept the default name in the Map File field, Employees.map (the file you 
modified), including the path name.

7 Accept the table name, XmlEmployee.

8 Accept the key value of 2 in the Key Values field. This is the value of the 
“EmpNo” column of the employee you want to transfer from the 
database table to the Employees_out.xml document. The “EmpNo” 
column is the primary key for XmlEmployee. If you want to transfer the 
records of multiple employees, use the Key Values field and its 
property editor to specify multiple employee numbers.

9 Choose View DOM to transfer data from the XmlEmployee table to 
Employees_out.xml. You can see the results of your transfer request. In the 
left pane, a tree view of Employees_out.xml displays, and in the right 
pane, you’ll see the actual XML source code:

10 Click OK twice to close the DOM view and the customizer.



9-14 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  4 :  W o r k i n g  w i t h  t h e  s a m p l e  t e s t  a p p l i c a t i o n

11 Add Employees_out.xml to your project and open it to see that the data 
was transferred:

a Choose Project|Add Files/Packages.

b Select Employees_out.xml and click OK.

c Double-click Employees_out.xml in the project pane.

Using XMLDBMSQuery’s customizer

You can use also use a SQL statement to retrieve data from a database 
table using the XMLDBMSQuery component.

To begin working with the XMLDBMSQuery component,

1 Return to XMLDBMS_test.java in the editor and click the Design tab.

2 Right-click xmldbmsQuery in the structure pane and choose the 
Customizer menu command. The customizer for XMLDBMSQuery displays.

Selecting and testing a JDBC connection
As you did with the XMLDBMSTable component, you’ll select a JDBC 
connection and test it.

1 Click the Choose Existing Connection button and specify the 
connection to employee.jds in the Database URL field. For example, 
jdbc:borland:dslocal:C:\JBuilder\samples\JDataStore\datastores\
employee.jds.

2 Click Test Connection to verify that the connection is successful.

Transferring data with a SQL statement
Now, transfer the data with a SQL statement.

1 Click the Transfer tab to go to the next page.



T u t o r i a l :  T r a n s f e r r i n g  d a t a  w i t h  t h e  m o d e l - b a s e d  X M L  d a t a b a s e  c o m p o n e n t s 9-15

S t e p  4 :  W o r k i n g  w i t h  t h e  s a m p l e  t e s t  a p p l i c a t i o n

2 Fill in the required transfer information:

a Click the ellipsis (...) button next to the Output XML File field to 
navigate to and select the Employees_out.xml file you created earlier. 
You should always specify the fully-qualified name, and if you use 
the ellipsis (...) button, the file name will always include the full path 
information. Click OK.

b Choose the ellipsis (...) button next to the Map File field to navigate 
to and select the EmployeesQuery.map file in the project. Click OK to 
close the dialog box. The XMLDBMSQuery component uses a different 
map file. See “Understanding the map file” on page 9-16 for more 
information.

c Accept the default SQL statement as the value of the SQL field:

   Select * from "XmlEmployee"

The table name must be surrounded by double-quotation marks. This 
statement retrieves all the rows in the XmlEmployee table and 
transfers it to Employees_out.xml. Of course, you can use any valid SQL 
statement you want to query the XmlEmployee table. For example,

   Select *  from "XmlEmployee" where "JobCode" = 'VP'

For more information on the Transfer page fields, see “Setting 
properties with the customizer” on page 3-8.

3 Choose View DOM to see the results. The results of the first query 
should look similar to this:



9-16 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  4 :  W o r k i n g  w i t h  t h e  s a m p l e  t e s t  a p p l i c a t i o n

4 Click OK twice to close the DOM view and the customizer.

5 Open Employees_out.xml in the editor to see that all the employee records 
were transferred from the database to the XML document.

Understanding the map file
You probably noticed that the XMLDBMSQuery component used a different 
map file, EmployeesQuery.map, than the one used by the XMLDMSTable 
component. This is what the EmployeesQuery.map file looks like with the 
changes from the Employees.map file shown in bold:

<?xml version='1.0' ?>
<!DOCTYPE XMLToDBMS SYSTEM "xmldbms.dtd" >

<XMLToDBMS Version="1.0">
   <Options>
   </Options>
   <Maps>
      <IgnoreRoot>
         <ElementType Name="XmlEmployees"/>
         <PseudoRoot>
            <ElementType Name="XmlEmployee"/>
            <CandidateKey Generate="No">
               <Column Name="EmpNo"/>
            </CandidateKey>
         </PseudoRoot>
      </IgnoreRoot>

      <ClassMap>
         <ElementType Name="XmlEmployee"/>
         <ToClassTable>
            <Table Name="Result Set"/>
         </ToClassTable>
         <PropertyMap>
            <ElementType Name="FullName"/>
            <ToColumn>
               <Column Name="FullName"/>
            </ToColumn>
         </PropertyMap>
         <PropertyMap>
            <ElementType Name="JobGrade"/>
            <ToColumn>
               <Column Name="JobGrade"/>
            </ToColumn>
         </PropertyMap>
         <PropertyMap>
            <ElementType Name="Salary"/>
            <ToColumn>
               <Column Name="Salary"/>
            </ToColumn>
         </PropertyMap>



T u t o r i a l :  T r a n s f e r r i n g  d a t a  w i t h  t h e  m o d e l - b a s e d  X M L  d a t a b a s e  c o m p o n e n t s 9-17

S t e p  4 :  W o r k i n g  w i t h  t h e  s a m p l e  t e s t  a p p l i c a t i o n

         <PropertyMap>
            <ElementType Name="JobCode"/>
            <ToColumn>
               <Column Name="JobCode"/>
            </ToColumn>
         </PropertyMap>
         <PropertyMap>
            <ElementType Name="PhoneExt"/>
            <ToColumn>
               <Column Name="PhoneExt"/>
            </ToColumn>
         </PropertyMap>
         <PropertyMap>
            <ElementType Name="JobCountry"/>
            <ToColumn>
               <Column Name="JobCountry"/>
            </ToColumn>
         </PropertyMap>
         <PropertyMap>
            <ElementType Name="LastName"/>
            <ToColumn>
               <Column Name="LastName"/>
            </ToColumn>
         </PropertyMap>
         <PropertyMap>
            <ElementType Name="FirstName"/>
            <ToColumn>
               <Column Name="FirstName"/>
            </ToColumn>
         </PropertyMap>
         <PropertyMap>
            <ElementType Name="HireDate"/>
            <ToColumn>
               <Column Name="HireDate"/>
            </ToColumn>
         </PropertyMap>
         <PropertyMap>
            <ElementType Name="EmpNo"/>
            <ToColumn>
               <Column Name="EmpNo"/>
            </ToColumn>
         </PropertyMap>
         <PropertyMap>
            <ElementType Name="DeptNo"/>
            <ToColumn>
               <Column Name="DeptNo"/>
            </ToColumn>
         </PropertyMap>
      </ClassMap>
   </Maps>
</XMLToDBMS>



9-18 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  4 :  W o r k i n g  w i t h  t h e  s a m p l e  t e s t  a p p l i c a t i o n

When using the XMLDBMSQuery component to query the XmlEmployee database 
table, you want the XmlEmployee element to act as the root. Therefore, the 
map file must tell XML-DBMS to ignore the present root, the plural 
XmlEmployees element, and instead use the singular XmlEmployee element.

If the EmployeesQuery.map file didn’t exist as it does in the sample project, 
you would need to make the changes to the map file yourself. You would 
add the block of code that begins with <IgnoreRoot> and ends with </
IgnoreRoot>. You would also change the output table name to “Result Set”. 
Finally, you would remove this block of code:

  <ClassMap>
         <ElementType Name="XmlEmployees"/>
         <ToRootTable>
            <Table Name="XmlEmployees"/>
            <CandidateKey Generate="Yes">
               <Column Name="XmlEmployeesPK"/>
            </CandidateKey>
         </ToRootTable>
         <RelatedClass KeyInParentTable="Candidate">
            <ElementType Name="XmlEmployee"/>
            <CandidateKey Generate="Yes">
               <Column Name="XmlEmployeesPK"/>
            </CandidateKey>
            <ForeignKey>
               <Column Name="XmlEmployeesFK"/>
            </ForeignKey>
         </RelatedClass>
      </ClassMap>

Congratulations, you’ve completed the tutorial. To learn more about XML 
support in JBuilder, see Chapter 1, “Introduction.”.



T u t o r i a l :  T r a n s f e r r i n g  d a t a  w i t h  t h e  t e m p l a t e - b a s e d  X M L  d a t a b a s e  c o m p o n e n t s 10-1

C h a p t e r

10
Chapter10Tutorial: Transferring data with

the template-based XML database
components

This is a feature of
JBuilder Enterprise

This tutorial explains how to use JBuilder’s template-based XML database 
components to retrieve data from a database to an XML file. It uses the 
XBeans.jpx sample in the /<jbuilder>/samples/Tutorials/XML/database/ 
directory. For users with read-only access to JBuilder samples, copy the 
samples directory into a directory with read/write permissions.

Using the template-based components, you formulate a query and the 
template-based component generates an appropriate XML document. The 
query you provide serves as the template that is replaced in the XML 
document as the result of applying the template. Because there is no 
predefined relationship between the XML document and the set of 
database metadata you are querying, the template-based solution is quite 
flexible. The format of the resulting XML document is flat and relatively 
simple. You can choose to present the resulting XML document as you 
like, using either the default or custom stylesheets.

This tutorial shows you how to do the following:

• Transfer data from a database table to an XML document using the 
XTable component.

• Transfer data from a database table to an XML document using a SQL 
statement created by the XQuery component.

• Use XTable’s and XQuery’s customizers to set properties and view the 
results of those property settings on the transfer of the data.

This tutorial assumes you have a working knowledge of JBuilder and 
XML. If you are new to JBuilder, see “The JBuilder environment” (Help|



10-2 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  1 :  G e t t i n g  s t a r t e d

JBuilder Environment). For more information on JBuilder’s XML features, 
see Chapter 1, “Introduction.”

The Accessibility options section in the JBuilder Quick Tips contains tips 
on using JBuilder features to improve JBuilder’s ease of use for people 
with disabilities.

For information on documentation conventions used in this tutorial and 
other JBuilder documentation, see “Documentation conventions” on 
page 1-3.

Step 1: Getting started
This tutorial uses the same XmlEmployee database table you created in 
Chapter 9, “Tutorial: Transferring data with the model-based XML 
database components.” If you haven’t worked through that tutorial yet, 
you should do so now. At the very least, you should use the XML-DBMS 
wizard to create the map and SQL script files that tutorial describes, and 
then execute the SQL statements to create the XmlEmployee table. 
Chapter 9 tells you how.

1 Open the sample /<jbuilder>/samples/Tutorials/XML/database/XBeans.jpx 
project.

2 Expand the com.borland.samples.xml.XBeans package node to find the 
XBeans_Test.java sample test application. Double-click this sample test 
application to display it in the editor.

Step 2: Working with the sample test application
Usually when you use JBuilder’s XML database components, you’ll be 
developing an application that presents a user interface for the user to 
interact with. You won’t be doing that for this tutorial. Instead, you’ll use 
the sample test application, XBeans_Test.java, which is simply a Java class 
that contains the template-based XML database components and sets the 
properties of those components. This tutorial shows you how to work 
with the components’ customizers to set properties and to view the results 
of a data transfer. Once you are certain a transfer works correctly, you can 
proceed with confidence as you build a GUI application around it.

Examine the source code and you’ll see that it contains the two 
components, xTable and xQuery. If you were creating your own test 



T u t o r i a l :  T r a n s f e r r i n g  d a t a  w i t h  t h e  t e m p l a t e - b a s e d  X M L  d a t a b a s e  c o m p o n e n t s 10-3

S t e p  3 :  U s i n g  X T a b l e ’ s  c u s t o m i z e r

application, you would simply add these components to your application 
by following these steps:

1 Open your application class in the editor.

2 Click the Design tab.

3 Click the XML tab of the component palette.

4 Select the XTable component and drop it on the UI designer.

5 Select the XQuery component and drop it on the UI designer.

Step 3: Using XTable’s customizer
To begin working with the XTable component,

1 Open XBeans_Test.java in the editor and click the Design tab to open the 
UI designer. You’ll see an Other folder in the structure pane that 
contains the two template-based components.

2 Right-click xTable in the structure pane and choose the Customizer 
menu command. The customizer for xTable displays.

Entering JDBC connection information

This tutorial uses the JDataStore employee.jds database found in the /
<jbuilder>/samples/JDataStore/datastores directory. You may already have 
an existing JDBC connection to this datastore on your system if you’ve 
worked with JDataStore samples. If so, click the Choose Existing 
Connection button and select it. When you do, the connection parameters 



10-4 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  3 :  U s i n g  X T a b l e ’ s  c u s t o m i z e r

are filled in for you. If you don’t have an existing connection, you must 
enter the information yourself as described in the following steps:

1 Select com.borland.datastore.jdbc.DataStoreDriver as your Driver from 
the drop-down list. You must have JDataStore installed on your 
system. If you need information about working with JDataStore, see 
“JDataStore fundamentals” in the JDataStore Developer’s Guide.

2 Specify the URL for the proper datastore you are using, employee.jds. 
When you selected DataStoreDriver as your driver, a pattern appears 
that guides you in entering the correct URL. Assuming you installed 
JBuilder on drive C of your system, the URL to the employee.jds 
datastore in the samples directory is this:

jdbc:borland:dslocal:C:\<jbuilder>\samples\JDataStore\datastores\employee.jds

3 Enter Sample as the User Name.

4 Enter any value in the Password field or leave it blank as employee.jds 
doesn’t require one.

5 Skip the Extended Properties field.

6 Click the Test Connection button to see if you specified your JDBC 
connection properly. A Success or Failed message displays next to the 
button.

7 Choose Save Connection Info to save the newly created connection 
information.

Transferring data from the database to XML

Next, you’ll transfer the data from the database to an XML document.

1 Click the Transfer tab to view the next page of the customizer:



T u t o r i a l :  T r a n s f e r r i n g  d a t a  w i t h  t h e  t e m p l a t e - b a s e d  X M L  d a t a b a s e  c o m p o n e n t s 10-5

S t e p  3 :  U s i n g  X T a b l e ’ s  c u s t o m i z e r

The sample test application already fills in most of the required 
information. You’ll accept most of the defaults and modify the Output 
File field to include the complete path to the file.

2 Fill in the following transfer information:

a Leave the Query File field blank, as you won’t be using a query file 
for this tutorial. For information about query files, see “Setting 
properties with an XML query document” on page 3-19.

b Choose the ellipsis (...) button next to the Output File field to specify 
the name of the document you want the data transferred to. Browse 
to the project and accept the default file name, XTableOut.html. You 
must always provide the complete path for the output file. Click OK.

c Skip the XSL File field. This tutorial uses the component’s default 
stylesheet.

d Accept all other defaults.

The Transfer page should look similar to like this:

Now you’re ready to transfer the data.

1 Choose Transfer.



10-6 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  4 :  U s i n g  X Q u e r y ’ s  c u s t o m i z e r

2 Click View to see what the transfer looks like. Your results, which use 
the default HTML stylesheet, will look like this:

3 Choose OK to close the page.

4 Check the XML Output option instead. Note that the Output File you 
specified now has an .xml file extension. Click View to see the default 
XML tree structure:

5 Choose OK twice to close the view and the customizer.

Step 4: Using XQuery’s customizer
You can also use a SQL statement to retrieve data from a database table 
using the XQuery component.

To begin working the sample test application’s XQuery component,

1 Return to XBeans_Test.java and the UI designer.



T u t o r i a l :  T r a n s f e r r i n g  d a t a  w i t h  t h e  t e m p l a t e - b a s e d  X M L  d a t a b a s e  c o m p o n e n t s 10-7

S t e p  4 :  U s i n g  X Q u e r y ’ s  c u s t o m i z e r

2 Right-click xQuery in the structure pane and choose the Customizer 
menu command. The customizer for xQuery displays.

Selecting a JDBC connection

As you did with the XTable component:

1 Click the Choose Existing Connection button and specify the 
connection to employee.jds you established earlier.

2 Click the Transfer tab to go to the next page.

Transferring data with a SQL statement

The Transfer page displays as follows:



10-8 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  4 :  U s i n g  X Q u e r y ’ s  c u s t o m i z e r

The sample test application already fills in the required information. 
You’ll need to modify the Output File field to include the complete path to 
the file.

1 Fill in the following transfer information:

a Leave the Query File field blank, as you won’t be using a query file 
for this tutorial. For information about query files, see “Setting 
properties with an XML query document” on page 3-19.

b Choose the ellipsis (...) button next to the Output File field to specify 
the name of the document you want the data transferred to. Browse 
to the project and accept the default file name, xQueryOut.html. You 
always need to provide the full path for the output file.

c Skip the XSL File field. This tutorial uses the component’s default 
stylesheet.

d Accept the remaining defaults. The value entered in the SQL field 
value, select * from "XmlEmployee", will query the database and return 
all the employee records. For more information on the Transfer page, 
see “Setting properties with the customizer” on page 3-12.

2 Choose View to see the results using the default HTML stylesheet:

3 Choose OK to close the page.



T u t o r i a l :  T r a n s f e r r i n g  d a t a  w i t h  t h e  t e m p l a t e - b a s e d  X M L  d a t a b a s e  c o m p o n e n t s 10-9

S t e p  4 :  U s i n g  X Q u e r y ’ s  c u s t o m i z e r

4 Check the XML Output Format option instead. Note that the Output 
File you specified now has an .xml file extension. Click View to see the 
default XML tree structure:

5 Choose OK to close the view.

Next try a parameterized query as your SQL statement:

1 Enter this statement in the SQL field:

select * from "XmlEmployee" where "EmpNo"= :"EmpNo"

Important Type a space before, but not after, the colon.



10-10 X M L  D e v e l o p e r ’ s  G u i d e

S t e p  4 :  U s i n g  X Q u e r y ’ s  c u s t o m i z e r

2 Click the ellipsis (...) button next to the DefaultParams field to open the 
Default Params dialog box and add "EmpNo" as the Param Name and '5' 
as the Param Value:

3 Choose OK to close the Default Params dialog box.

4 Choose View. Your results display the employee record for employee 5.

Congratulations, you’ve completed the tutorial. To learn more about XML 
support in JBuilder, see Chapter 1, “Introduction.”



I n d e x I-1

A
ATTLIST defined 2-5
attributes 2-5

B
Borland

contacting 1-4
developer support 1-4
e-mail 1-6
newsgroups 1-5
online resources 1-5
reporting bugs 1-6
technical support 1-4
World Wide Web 1-5

BorlandXML data binding 2-27, 2-28

C
Cascading Style Sheets (CSS) 2-7
case sensitivity

XML elements 3-19
Castor

data binding 2-27, 2-29
properties file 2-31

classes
generating from DTD 2-27
generating from schema 2-27, 2-29
generating with Databinding wizard 2-28

Cocoon Web Application wizard 2-13
Cocoon XML publishing framework 2-13
Crimson

parsing XML 2-2
customizers

XML database components 3-12

D
data

marshalling 2-28, 2-29
transferring between XML and databases 2-27
unmarshalling 2-28, 2-29

data binding 2-27
BorlandXML 2-28
Castor 2-29

data transfer
Java to XML 2-28, 2-29
XML to Java 2-28, 2-29

database components
model-based XML 3-11

template-based XML 3-11
XML 3-1

databases
XML support 2-31

Databinding wizard 2-28, 2-29
default stylesheet option 2-9
Document Type Definition (DTD) 2-4, 2-10

See also DTD
documentation conventions 1-3

platform conventions 1-4
DTD

creating from XML documents 2-3, 2-5
creating XML from DTD 2-4
defined 2-4, 2-10
validating XML 2-10

DTD To XML wizard 2-3, 2-4, 2-5

E
editor

creating XML documents 2-2
error messages

XML 2-10
errors

in XML documents 2-11

F
fonts

JBuilder documentation conventions 1-3

G
generating Java classes

BorlandXML 2-28
Castor 2-29

I
IDE options

setting XML 2-9

J
Java API for XML Processing (JAXP) 2-2
Java classes

generating from DTD 2-27
generating from schema 2-27, 2-29
generating with Databinding wizard 2-28

JAXP 2-2, 2-24
JDBC connections

establishing 3-13

Index



I-2 X M L  D e v e l o p e r ’ s  G u i d e

JDBC drivers
specifying 3-13

JDK 1.4
XML processing 2-2

L
libraries

XML 2-22

M
map documents 3-2
marshalling

conversion between Java and XML 2-28
model-based XML components 3-1, 3-2

customizers 3-8
setting properties 3-8
setting properties with Inspector 3-11
specifying transfer information 3-9

N
newsgroups

Borland 1-5
public 1-6

O
object-relational mapping 3-2

P
parameterized queries

XQuery customizer 3-17
XTable customizer 3-17

parsers
Crimson 2-2
Xerces 2-24

parsing
SAX 2-23
Xerces 2-10, 2-24
XML documents 2-11

Q
queries

parameterized 3-17
query document

XML 3-19

R
root element

defined 2-10

S
SAX (Simple API for XML) 2-23
SAX Handler wizard 2-23
SAX handlers

creating 2-23
schemas 2-27

defined 2-11
validating 2-12

Simple API for XML (SAX) 2-23
SQL queries

XML database components 3-2
stylesheets

applying cascading style sheets to XML 
documents 2-7

applying XSL stylesheets to XML 
documents 2-18

XSLT default stylesheet 2-7

T
template-based XML components 3-1, 3-11

setting properties 3-12
setting properties with Inspector 3-19
setting properties with query document 3-19

transforming XML 2-2, 2-18
transform trace options 2-9, 2-21
Xalan 2-2

tutorials
creating a SAX Handler 6-1
creating and validating XML documents 4-1
DTD data binding with BorlandXML 7-1
schema data binding with Castor 8-1
transferring data with the model-based XML 

database components 9-1
transferring data with the template-based XML 

database components 10-1
transforming XML documents 5-1

U
unmarshalling

conversion between XML and Java 2-28
Usenet newsgroups 1-6

V
valid XML

defined 2-10
validating XML documents

against DTDs 2-10
against schemas (XSD) 2-12

validation errors 2-11



I n d e x I-3

W
well-formed XML

defined 2-10
wizards

Cocoon Web Application 2-13
Databinding 2-28
DTD To XML 2-4
SAX Handler 2-23
XML To DTD 2-5
XML-DBMS 3-4

X
Xalan 2-2
Xalan stylesheet processor 2-18
Xerces parser 2-10, 2-18, 2-24
XML data binding 2-27

BorlandXML 2-27
Castor 2-27

XML database components 3-1
XML database support 2-31
XML documents

applying stylesheets 2-18
creating DTD from XML 2-5
creating from DTDs 2-3, 2-4
creating in editor 2-2
errors 2-11
manipulating programmatically 2-22
parsing 2-23
transforming 2-18
validating 2-10
validating against DTDs 2-12
validating against schemas (XSD) 2-12
viewing 2-6
well-formed 2-10

XML error messages 2-10
XML grammar

validating 2-10
XML libraries 2-22
XML map documents 3-2
XML model-based components 2-31
XML options 2-9
XML presentation 2-13
XML processing

JDK 1.4 2-2
XML publishing 2-13
XML query documents 3-14, 3-19
XML template-based components 2-31
XML To DTD wizard 2-3

XML transformation 2-13
defined 2-18

XML viewer
enabling 2-7, 2-9

XML wizards 2-3
See also wizards

XML-DBMS 2-31, 3-2, 3-3
location 3-2
mapping language 3-2

XML-DBMS wizard 3-4
XMLDBMSQuery component 2-31, 3-2

entering transfer information 3-9
XMLDBMSQuery customizer 3-8

establishing a JDBC connection 3-8
XMLDBMSTable component 2-31, 3-2
XMLDBMSTable customizer 3-8

entering transfer information 3-9
establishing a JDBC connection 3-8

XQuery component 2-31
XQuery customizer

entering transfer information 3-14
establishing JDBC connection 3-13
parameterized queries 3-17
transferring to HTML 3-18
transferring to XML 3-18

XSD (schema) defined 2-11
XSLT (Extensible Stylesheet Language 

Transformations) 2-18
XSLT default stylesheet 2-7
XTable component 2-31
XTable customizer

entering transfer information 3-14
establishing JDBC connection 3-13
transferring to HTML 3-18
transferring to XML 3-18
using parameters 3-17


	XML Developer’s Guide
	Contents
	Figures
	Tutorials
	Ch 1: Introduction
	Documentation conventions
	Developer support and resources
	Contacting Borland Technical Support
	Online resources
	World Wide Web
	Borland newsgroups
	Usenet newsgroups
	Reporting bugs


	Ch 2: Using JBuilder’s XML features
	XML features in the Java 2 Platform
	Creating XML-related documents
	Creating XML documents manually
	Creating XML documents with wizards
	Creating an XML document from a DTD
	Creating a DTD from an XML document


	Viewing XML documents
	Using the XML viewer
	Setting XML options
	General options
	Transform Trace options


	Validating XML documents
	Presenting XML documents
	Presenting XML with Cocoon
	Creating a Cocoon web application
	Running Cocoon

	Transforming XML documents
	Applying internal stylesheets
	Applying external stylesheets
	Setting transform trace options


	Manipulating XML programmatically
	Creating a SAX handler
	Manipulating XML through data binding
	The marshalling framework
	BorlandXML
	Castor


	Interfacing with business data in databases

	Ch 3: Using JBuilder’s XML database components
	Using the model-based components
	XML-DBMS
	JBuilder and XML-DBMS
	Creating a map document and a SQL script file
	Setting properties for the model-based components
	Setting properties with the customizer
	Setting properties with the Inspector


	Using the template-based components
	Setting properties for the template beans
	Setting properties with the customizer
	Setting properties with the Inspector
	Setting properties with an XML query document



	Ch 4: Tutorial: Creating and validating XML documents
	Step 1: Creating an XML document
	Creating an XML document manually
	Creating an XML document with the DTD To XML wizard

	Step 2: Validating the XML document
	Step 3: Viewing the XML document

	Ch 5: Tutorial: Transforming XML documents
	Step 1: Enabling the XML viewer
	Step 2: Associating stylesheets with the document
	Step 3: Transforming the document using stylesheets
	Step 4: Setting transform trace options

	Ch 6: Tutorial: Creating a SAX Handler for parsing XML documents
	Step 1: Using the SAX Handler wizard
	Step 2: Editing the SAX parser
	Step 3: Running the program
	Step 4: Adding attributes
	MySaxParser.java source code

	Ch 7: Tutorial: DTD data binding with BorlandXML
	Step 1: Generating Java classes from a DTD
	Step 2: Unmarshalling the data
	Step 3: Adding an employee record
	Step 4: Modifying an employee record
	Step 5: Running the completed application

	Ch 8: Tutorial: Schema data binding with Castor
	Step 1: Generating Java classes from a schema
	Step 2: Unmarshalling the data
	Step 3: Adding an employee record
	Step 4: Modifying the new employee data
	Step 5: Running the completed application

	Ch 9: Tutorial: Transferring data with the model-based XML database components
	Step 1: Getting started
	Step 2: Creating the map and SQL script files
	Entering JDBC connection information
	Testing the connection

	Specifying the file names

	Step 3: Creating the database tables
	Step 4: Working with the sample test application
	Using XMLDBMSTable’s customizer
	Selecting and testing a JDBC connection
	Transferring data from XML to the database
	Transferring data from the database to XML

	Using XMLDBMSQuery’s customizer
	Selecting and testing a JDBC connection
	Transferring data with a SQL statement
	Understanding the map file



	Ch 10: Tutorial: Transferring data with the template-based XML database components
	Step 1: Getting started
	Step 2: Working with the sample test application
	Step 3: Using XTable’s customizer
	Entering JDBC connection information
	Transferring data from the database to XML

	Step 4: Using XQuery’s customizer
	Selecting a JDBC connection
	Transferring data with a SQL statement


	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X



